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The aim of our study was to explore the dynamic functional alterations in the brain in
patients with subjective cognitive decline (SCD) and their relationship to apolipoprotein
E (APOE) €4 alleles. In total, 95 SCD patients and 49 healthy controls (HC) underwent
resting-state functional magnetic resonance imaging (rs-fMRI). Then, the mean time
series of 90 cortical or subcortical regions were extracted based on anatomical
automatic labeling (AAL) atlas from the preprocessed rs-fMRI data. The static functional
connectome (SFC) and dynamic functional connectome (DFC) were constructed and
compared using graph theory methods and leading eigenvector dynamics analysis
(LEiDA), respectively. The SCD group displayed a shorter lifetime (p = 0.003, false
discovery rate corrected) and lower probability (p = 0.009, false discovery rate corrected)
than the HC group in a characteristic dynamic functional network mainly involving the
bilateral insular and temporal neocortex. No significant differences in the SFC were
detected between the two groups. Moreover, the lower probability in the SCD group
was found to be negatively correlated with the number of APOE ε4 alleles (r = −0.225,
p = 0.041) in a partial correlation analysis with years of education as a covariate. Our
results suggest that the DFC may be a more sensitive parameter than the SFC and can
be used as a potential biomarker for the early detection of SCD.

Keywords: subjective cognitive decline, resting-state, neuroimaging, dynamic functional connectome, static
functional connectome

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative cause of dementia and is
associated with significant morbidity and mortality. AD has a heavy economic burden on the health
care system (Oboudiyat et al., 2013). Subjective cognitive decline (SCD), also known as significant
memory concern (SMC), has been suggested to be the preclinical stage of AD, which is characterized
by a subjective decline in cognitive function without any notable alterations in neuropsychological

Abbreviations: SCD, subjective cognitive decline; HCs, healthy controls; CDSB, clinical dementia rating scale-sum of boxes;
F, female; M, male; MMSE, mini-mental state exam; MoCA, montreal cognitive assessment; RAVLT, rey auditory verbal
learning test; LMDRT = logical memory – delayed recall-total number of story units recalled; ADAS, Alzheimer’s disease
assessment scale; FAQ, functional activities questionnaire; APOE, the number of APOE ε4 alleles.
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test results (Sperling et al., 2011; Viviano and Damoiseaux,
2020). Pathophysiological changes in the brain have been
proved to occur long before cognitive symptoms (Morris, 2005).
Therefore, exploring biomarkers of SCD will contribute to
the early diagnosis of AD. Early diagnosis and timely clinical
intervention can greatly improve the prognosis of the patients. As
a non-invasive neuroimaging technique, resting-state functional
magnetic resonance imaging (rs-fMRI) has been widely applied to
explore the neural mechanisms underlying SCD based on various
neuroimaging measures, such as regional homogeneity (Li et al.,
2021), amplitude of low-frequency fluctuations (Sun et al., 2016),
functional connectivity (Hafkemeijer et al., 2013; Dillen et al.,
2016) and complex network measures (Chen et al., 2020; Xue
et al., 2020).

However, previous studies have mainly focused on static
assessments and ignored the dynamic alterations in brain activity,
while recent studies have shown that brain activity changes
over time and that dynamic characteristics can provide useful
information for understanding brain cognitive functions (Chang
and Glover, 2010; Hutchison et al., 2013; Preti et al., 2017).
Regarding SCD, recent studies have attempted to explore changes
in the dynamic functional connectome (DFC) by using the sliding
window approach (Sakoglu et al., 2010). Xie et al. found that
centrality frequency in anterior cortical regions, especially in
the default mode network (DMN), weakened its contribution
to cognitive performance (Xie et al., 2019). Chen et al. (2021)
observed increased fractional windows and mean dwell time in a
hyper-connected state and a reduced number of state transitions
in the SCD group compared to the healthy control (HC) group.
However, the sliding window approach is limited by the choice
of window length, which may affect the temporal resolution as
well as statistical validation (Hindriks et al., 2016; Preti et al.,
2017). Thus, a data-driven phase coherence technique, leading
eigenvector dynamics analysis (LEiDA; Cabral et al., 2017), has
been developed to overcome these limitations; LEiDA does not
require any thresholding and is sensitive to phase-shifted patterns
(Glerean et al., 2012; Cabral et al., 2017). To date, no study has
used LEiDA to investigate alterations in the DFC in SCD patients.

In this study, we conducted an rs-fMRI study by using LEiDA
to explore alterations in the DFC related to SCD, while the
static functional connectome (SFC) was also evaluated based on
graph theory methods. Furthermore, a previous study reported
that the number of apolipoprotein E (APOE) €4 alleles was
related to severe memory loss in AD (Lehtovirta et al., 1996),
but whether the number of alleles is associated with alterations
in the DFC in the context of SCD remains unclear. Thus, the
relationship between the number of APOE €4 alleles and altered
DFC parameters was also evaluated to explore the link between
brain function and genetics in SCD.

MATERIALS AND METHODS

Participants
All the data in this study were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1,

1http://adni.loni.usc.edu

and informed consent was obtained in accordance with the
Declaration of Helsinki. Participants were included if they were
diagnosed with SCD according to the standard criteria described
in the ADNI-2 procedures manual2. The key inclusion criterion
was a self-reported cognitive decline from the participant
without impairment on the Logical Memory II subscale (delayed
paragraph recall, paragraph A only) from the Wechsler Memory
Scale-Revised. The HC showed no signs of depression, mild
cognitive impairment (MCI), dementia or self-reported cognitive
decline. APOE genotyping was performed at the time of
participant enrollment. For more details please see the reference
paper (Saykin et al., 2010). To maintain consistency of the scan
parameters, only participants scanned by the Magnetom Prisma
3T scanner were included. Thus, a total of 95 SCD patients and
49 HC were included. Detailed information is shown in Table 1.

Resting-State Functional Magnetic
Resonance Imaging Data Acquisition
and Preprocessing
Resting-state functional magnetic resonance imaging data were
obtained from a 3T MRI scanner (Magnetom Prisma, Siemens,
Erlangen, Germany). When the participants were scanned, they
were asked to keep their eyes open and to stay awake. Each
examination lasted for 591 s and contained 197 image volumes.
The following parameters were used: field strength = 3.0 Tesla;
flip angle = 90.0 degrees; manufacturer = SIEMENS; matrix
X = 448.0 pixels; matrix Y = 448.0 pixels; mfg model = Prisma_fit;
pixel spacing X = 3.4 mm; pixel spacing Y = 3.4 mm; pulse
sequence = EP; slices = 197.0; slice thickness = 3.4 mm; echo time
(TE) = 30.0 ms; and repetition time (TR) = 3000.0 ms.

Data preprocessing was performed using Gretna version
2.0 software3. First, the initial 10 time points were deleted to

2http://www.adni-info.org
3http://www.nitrc.org/projects/gretna/

TABLE 1 | Demographic and clinical dataa.

Variables SCD HC P valueb

Sample size 95 49 –

Age (years)c 70.69 ± 6.37 71.33 ± 6.16 0.945

Sex (M/F) 32/63 17/32 1.000

Education (years) 16.96 ± 2.21 17.00 ± 1.78 0.907

ADAS11 9.28 ± 2.50 8.79 ± 2.49 0.689

ADAS13 13.48 ± 4.1 12.0 ± 4.10 0.444

MMSE 29.07 ± 1.12 28.92 ± 1.13 0.585

RAVLT_immediate 45.47 ± 10.75 47.71 ± 9.32 0.531

RAVLT_learning 6.09 ± 2.19 6.45 ± 2.42 0.626

RAVLT_forgetting 3.97 ± 3.07 1.90 ± 4.39 0.815

RAVLT_perc_forgetting 37.07 ± 30.36 19.73 ± 41.86 0.372

LMDRT 12.81 ± 3.95 13.94 ± 3.29 0.117

MoCA 25.95 ± 2.70 26.35 ± 2.41 0.386

APOE (0, 1, 2) 52, 27, 5 31, 10, 2 0.519

aData are presented as the mean ± standard deviation.
bP values for sex and APOE were obtained by using chi-square tests, and p values
for the other variables were obtained by using two-sample t-tests.
cAge was defined at the time of MRI scanning.
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minimize the impact of signal instability at the beginning of the
MRI scan, and corrections were carried out for the acquisition
delay between slices. Friston 24-parameter correction was used
to ensure that the effects of head motion did not contribute
to the results we obtained. Then, images were normalized to
the echo-planar imaging (EPI) template with a voxel size of
3 × 3 × 3 mm and smoothed by using a 4-mm full-width
at half-maximum (FWHM) Gaussian kernel. Then the images
were linearly detrended. The white matter signals and cerebral
spinal fluid signals were also regressed out. Finally, a filter
(bandpass: 0.01–0.1 Hz) was used to minimize the influences of
low-frequency drift and high-frequency noise. Head movement
with an average FD > 0.25 was considered excessive. None of the
subject exceeded this threshold.

Static Functional Connectome Analysis
This step was performed by using Gretna version 2.0 software.
First, the whole brain was separated into 90 cortical or subcortical
regions based on the anatomical automatic labeling (AAL) atlas
(Fenchel et al., 2008), and the mean time series of these regions
were extracted. Pearson’s correlation analysis and Fisher r-to-Z
transformation were performed to obtain a 90 × 90 undirected
and weighted correlation matrix for each subject. Finally, two
network efficiency parameters (Latora and Marchiori, 2001),
local efficiency (Eloc) and global efficiency (Eglob), as well as
two nodal parameters, nodal degree (Rubinov and Sporns,
2010) and nodal efficiency (Achard and Bullmore, 2007), were
calculated to investigate the topology of the SFC, while functional
connectivity was evaluated by using the network-based statistics
(NBS) method (Zalesky et al., 2010). For additional details, see
the Supplementary Material.

Dynamic Functional Connectivity
Analysis
The DFC analysis was performed by using LEiDA (Cabral et al.,
2017). Briefly, first, the instantaneous blood oxygenation level-
dependent (BOLD) synchronization matrix was calculated by
using the Hilbert transform based on the mean time series
of the 90 brain regions for each subject, and the dominant
dynamic pattern of each time point was identified as the leading
eigenvector. Then, the leading eigenvectors were clustered
to different phase-locked (PL) states by applying a k-means
clustering algorithm. This method usually requires researchers
to choose a number of clusters (k). In this study, the algorithm
was run for 10 iterations with the value of k between 3 and 12,
with higher k values resulting in more fine-grained configurations
(Alonso Martinez et al., 2020). For each state of each iteration,
the probability was calculated as the number of times each state
was dominant, and the lifetime (LT) was calculated as the average
duration during which a state was dominant, in seconds. To
visually identify each PL state, these results were plotted in the
cortex by using BrainNet Viewer4, and the characteristic leading
eigenvectors for each PL state were identified as the leading
eigenvectors that were detected positively only in this PL state

4http://www.nitrc.org/projects/bnv/

rather than every other PL state. For additional details, see the
reference paper (Cabral et al., 2017).

Correlation Analysis
To explore the relationship between changed DFC parameters
(LT and probability of PL state 3; k = 4) and the number of
APOE ε4 alleles in the SCD group, correlation analysis was
performed by using partial correlation analysis with years of
education as a covariate.

Statistical Analysis
For the demographic, clinical and neuropsychological data, the
group differences in sex and the number of APOE ε4 alleles were
evaluated by using chi-square tests, while the group differences
in other variables were all evaluated by using two-sample t-tests
with an alpha threshold of 0.05.

The SFC and DFC properties between the SCD group and HC
group were compared by using two-sample t-tests with a false
discovery rate (FDR)-corrected alpha threshold of 0.01.

RESULTS

Demographic, Clinical and
Neuropsychological Data
Regarding the demographic data, no significant differences in age,
sex or years of education were found between the two groups.
Regarding the neuropsychological data, no significant differences
were found in any of the neuropsychological test results. Detailed
information is shown in Table 1.

Dynamic Functional Connectome
Analysis
In the dynamic functional analysis, a significant difference was
detected only in PL state 3 when the DFC was divided into four
PL states (Figure 1). There was a shorter LT (p = 0.003, FDR
corrected) and a lower probability (p = 0.009, FDR corrected)
in the SCD group than in the HC group (Figure 2A) (see
Supplementary Material for all p values for all partition models
and leading eigenvectors for each PL state). The characteristic
leading eigenvectors of PL state 3 mainly included the bilateral
insular and temporal neocortex (Figure 2B).

Static Functional Connectome Analysis
In the SFC analysis, no significant differences in topological
parameters or functional connectivity were found between the
SCD group and HC group after FDR correction.

Correlation Analysis
In our correlation analysis, the probability of PL state 3 was
negatively correlated with the number of APOE ε4 alleles
(r = −0.225, p = 0.041), while the LT of PL state 3 was not
significantly correlated with the number of APOE ε4 alleles
(r = −0.057, p = 0.607) (Figure 3).
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FIGURE 1 | The patterns of 4 PL states detected by clustering the set of leading eigenvectors into 4 clusters. (A) Cortical space representation of each PL state, the
regions colored with orange represent the leading eigenvectors with positive sign, while the regions colored with white represent the leading eigenvectors with
negative sign, for each PL state. (B) The 90×90 connectivity pattern corresponding to each state.

FIGURE 2 | (A) Group comparisons of state probability and LT between the SCD and HC groups. Bar plot representing the group differences between the SCD and
HC groups. Asterisks indicate significant group differences between the two groups after false discovery rate correction (P < 0.01). Error bars represent standard
error. (B) The characteristic regions for PL state 3. Regions colored red represent the bilateral insular, regions colored yellow represent the bilateral temporal
neocortex.

DISCUSSION

In this study, we evaluated both static and dynamic alterations
in the brain functional network in the SCD group compared
with the HC group. Our dynamic analysis revealed a shorter LT
and lower probability of occurrence in PL state 3 in the SCD
group than the HC group. Our results suggested that shorter
LT and lower probability in PL state 3 are characteristics and
biological markers of SCD, which may have great potential in

clinical diagnosis. LT is an indicator of the average duration of
time in one PL state, and the probability indicates the number
of times that one PL state was dominant. Previously, alterations
in LT and probability have been found to be related to cognitive
performance in several functional networks (Cabral et al., 2017).
In our study, the characteristic region associated with PL state
3 consisted of the bilateral insular and temporal neocortex. The
temporal neocortex is considered to participate in the formation
of verbal memory (Kucewicz et al., 2018), auditory memory
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FIGURE 3 | Scatter plots of the correlation between the dynamic measures of PL state 3 and the number of APOE ε4 alleles. Asterisks indicate significant correlation
between the two parameters. (A) The probability of PL state 3 was negatively correlated with the number of APOE ε4 alleles, and linear model fitting is shown over
the scatterplot (red line). (B) The LT of PL state 3 was not significantly correlated with the number of APOE ε4 alleles, and linear model fitting is shown over the
scatterplot (red line).

(Munoz-Lopez et al., 2015) and visual recognition memory
(Boggio et al., 2009), as well as in the regulation of memory
retrieval (Vaz et al., 2019). While the insula has not been directly
correlated with memory function, it was considered to play
a role in controlling engagement of the DMN and executive
control network (CEN; Menon and Uddin, 2010; Hu et al., 2017),
which are independently related to episodic memory (Buckner
et al., 2008) and working memory (Seeley et al., 2007). Thus, we
can speculate that SCD may be related to dynamic functional
alterations in characteristic regions, including the insular and
temporal neocortex, which are not only involved in memory
functions but also associated with the ability to properly recruit
different regions.

In contrast to the remarkable dynamic functional alterations,
no significant group differences were detected in our static
analysis, including the topological parameters and static
functional connectivity. These results suggested that the DFC
is more sensitive than the SFC and can reflect an earlier stage
of brain dysfunction associated with cognitive impairment.
One possible reason is that the DFC describes brain activity at
each time point, while the SFC describes the average state of
brain activity over a period of time. The average value will mask
small differences between internal data, resulting in reduced
sensitivity. In this study, LEiDA was used for the DFC analysis.
As the preclinical stage of AD, alterations of brain function in
SCD patients may be very slight. Compared with other DFC
analysis methods (such as sliding window method), LEiDA
has higher time resolution. Small changes in brain function
in patients with SCD could be found. A previous study also

reported that no significant differences in whole-brain BOLD
signal standard deviation were detected between the SCD and
normal groups (Scarapicchia et al., 2019). In addition, some
studies also revealed no group differences in the static analysis
of topological parameters between AD dementia patients and
normal controls (NCs; Peraza et al., 2015; Schumacher et al.,
2019).

In the correlation analysis, we found that the probability of PL
state 3 was significantly correlated with the number of APOE ε4
alleles. This is the first study to identify the relationship between
the SCD dynamic network and genes, which provides further
evidence that changes in the DFC can reflect related neural
changes and are a genetic feature. APOE ε4 alleles have been
shown to be associated with several forms of impaired neuronal
maintenance (Haan et al., 1999), such as the development of
β-amyloid and neurofibrillary tangles (Schmechel et al., 1993;
Gomez-Isla et al., 1996). Thus, increased APOE ε4 alleles may
bring about functional impairment, which may lead to alterations
in dynamic brain function. Previous studies have also found that
APOE ε4 alleles were associated with structural and functional
alterations in the brain in the prodromal stage of AD (Filippini
et al., 2009a,b; Brown et al., 2011).

Several limitations should be noted. First, in this study, we
observed dynamic functional alterations in the brain in the
prodromal stage of AD; however, it is still not clear whether these
alterations will further develop with the progression of disease,
so longitudinal research should be considered in future studies.
In addition, each rs-fMRI examination lasted 591 s in our study,
which is slightly shorter than the 10 min that some researchers
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have suggested, but it was still enough to describe the dynamics
in brain function. Moreover, in the preprocessing of the rs-fMRI
data, we did not regress the global signal because of the rich
information it contains (Li et al., 2019), as the previous study did
(Cabral et al., 2017). However, this made the influence of noise
more marked (Murphy and Fox, 2017), so whether to regress
the global signal needs to be further discussed. Finally, LEiDA is
very susceptible to the influence of time points. Future studies
should focus on the difference of DFC between the data with
different time points.

In this study, we investigated the differences in both the SFC
and DFC between those with SCD and HC, and we observed a
significant difference only in the DFC and not in the SFC, which
suggested that the DFC may be a more informative parameter
than the SFC measures. Moreover, the DFC parameters were
found to be negatively related to the number of APOE ε4 alleles,
which provides further evidence that dynamic alterations in brain
function may be associated with genetics and therefore serve as a
potential biomarker for the early detection of SCD.
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