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Abstract

Background

Cohort studies with metabolomics data are becoming more widespread, however, large-

scale studies involving 10,000s of participants are still limited, especially in Asian popula-

tions. Therefore, we started the Tsuruoka Metabolomics Cohort Study enrolling 11,002

community-dwelling adults in Japan, and using capillary electrophoresis-mass spectrometry

(CE-MS) and liquid chromatography–mass spectrometry. The CE-MS method is highly

amenable to absolute quantification of polar metabolites, however, its reliability for large-

scale measurement is unclear. The aim of this study is to examine reproducibility and validity

of large-scale CE-MS measurements. In addition, the study presents absolute concentra-

tions of polar metabolites in human plasma, which can be used in future as reference ranges

in a Japanese population.

Methods

Metabolomic profiling of 8,413 fasting plasma samples were completed using CE-MS, and

94 polar metabolites were structurally identified and quantified. Quality control (QC) samples

were injected every ten samples and assessed throughout the analysis. Inter- and intra-

batch coefficients of variation of QC and participant samples, and technical intraclass corre-

lation coefficients were estimated. Passing-Bablok regression of plasma concentrations by
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CE-MS on serum concentrations by standard clinical chemistry assays was conducted for

creatinine and uric acid.

Results and conclusions

In QC samples, coefficient of variation was less than 20% for 64 metabolites, and less than

30% for 80 metabolites out of the 94 metabolites. Inter-batch coefficient of variation was

less than 20% for 81 metabolites. Estimated technical intraclass correlation coefficient was

above 0.75 for 67 metabolites. The slope of Passing-Bablok regression was estimated as

0.97 (95% confidence interval: 0.95, 0.98) for creatinine and 0.95 (0.92, 0.96) for uric acid.

Compared to published data from other large cohort measurement platforms, reproducibility

of metabolites common to the platforms was similar to or better than in the other studies.

These results show that our CE-MS platform is suitable for conducting large-scale epidemio-

logical studies.

Introduction

Large-scale metabolomics in prospective epidemiological studies is a promising approach to

identify biomarkers for prevention, diagnosis, and prognosis of chronic diseases including car-

diovascular diseases [1–3] and cancer [4,5]. Since the metabolomic profile is indicative of bio-

logical alterations associated with a wide range of possible genetic or environmental factors,

this is expected to give new insights to understand complex etiology of diseases, related to

genes, external and internal environment, and their interactions [6,7].

Metabolomic profiling using liquid chromatography–mass spectrometry (LC-MS) and gas

chromatography–mass spectrometry (GC-MS) has been conducted for over 1,000 blood sam-

ples collected in European cohorts including Cooperative Health Research in the Region of

Augsburg (KORA) [6,8,9] and TwinsUK registry [6,8–10], and American cohorts such as Fra-

mingham Heart Study (FHS) Offspring cohort [2,3] and Atherosclerosis Risk in Communities

Study (ARIC) [11]. Nuclear magnetic resonance (NMR) has also been used in population stud-

ies such as Estonian Biobank [12], Finnish cohorts [12], COMBI-BIO [13] and the INTERna-

tional study of MAcro/micronutrients and blood Pressure (INTERMAP) Study [14–16].

However, large-scale cohorts involving 10,000s of individuals with metabolomics data are still

limited. In addition, Asian cohorts with metabolomics are limited in scope or small-scale in

size. It is essential to conduct large-scale metabolomics studies in different populations, as it

has been reported that metabolomic profiles vary by ethnic group and lifestyle [15,17,18]. We

therefore initiated the Tsuruoka Metabolomics Cohort Study (TMCS) [19–21] in Japan enroll-

ing 11,002 participants since April 2012. This is among the first Japanese population-based

cohort studies with metabolomics, using capillary electrophoresis-mass spectrometry

(CE-MS) for polar metabolites and LC-MS for lipid metabolites.

Compared to other methods of metabolomic profiling, the CE-MS method has high separa-

tion efficiency and compound identification capability, and allows the absolute quantification

of polar metabolites, including carbohydrates and amino acids [22–24]. Also, CE-MS has

unique advantages which are suitable for large-scale epidemiological studies. Firstly, the ability

for multiplex separations with serial injections of seven or more samples in a single run allows

of higher sample throughput at lower costs with high quality assurance since a QC is included
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in every run [25]. Secondly, CE-MS is optimal to analyse volume-restricted biospecimens

which is critical for retrospective analysis [26].

Some epidemiological or long-term studies using CE-MS were recently reported [27–28],

however, reliability in measurement of thousands of blood samples over long periods of time

is still unclear, especially inter-batch variations. In order to estimate a precise disease risk with

high statistical power in epidemiological studies, it is critically important to limit measurement

error and bias [29]. Thus, in this study, we aimed to examine the reproducibility and validity

of large-scale CE-MS measurements and identify the compounds with reliable measurements.

It is also important to establish the absolute concentrations of metabolomics biomarkers in

epidemiological studies because this helps us to compare and combine the results among dif-

ferent studies and to determine the levels to use practically for prevention. However, little pop-

ulation-based information has been available even for values according to sex and age [30].

Our CE-MS platform can yield these values for a wide range of polar metabolites.

In this study, we examined the reliability of large-scale metabolomics profiling via our

CE-MS platform, using 883 quality control (QC) samples for cation metabolites and 946 for

anions as well as 8,413 participant plasma samples, with data acquired over a period of 52

months. The measurement values for creatinine and uric acid were validated by comparison

with independent clinical laboratory assays of these variables. In addition, we present sum-

mary data of absolute plasma concentration for each metabolite according to sex and age for

community-dwelling adults in Japan, which may be used in future as reference values.

Materials and methods

Study population and sample collection

TMCS is a Japanese cohort, initiated in April 2012 (Tsuruoka City, Yamagata Prefecture,

Japan), involving 11,002 participants aged 35 to 74 years. They were recruited among attendees

of annual municipal or workplace health check-up programs held in four sites of the city at

baseline (2012 April—2015 March). All participants gave written informed consent for this

study; its protocol was approved by the Medical Ethics Committee of the School of Medicine,

Keio University, Tokyo, Japan (approval no. 20110264).

All participants completed a comprehensive questionnaire on lifestyle, dietary habit and

medical history. In addition, biological samples including serum, plasma, urine and DNA, and

medical examination data by health check-up programs were collected at recruitment. These

data and samples continue to be collected prospectively, when the participants undergo annual

municipal or workplace health check-up programs. The follow-up survey to collect informa-

tion for death, change of address and medical information including incidence of cardiovascu-

lar diseases and cancer is also conducted every year, using national records and hospital

records.

TMCS is particularly designed to discover metabolomics biomarkers for common diseases

and disorders, related to environmental and genetic factors. In order to have the optimal sam-

ples for our CE-MS metabolomics platform, we followed suitable protocols reported previ-

ously [19,20,31]. In brief, blood samples were collected in the morning after 12h-overnight

fasting. Plasma samples were collected with ethylenediaminetetraacetic acid-2Na (EDTA-2Na)

as an anticoagulant and kept at 4˚C immediately after collection. The samples were centrifuged

for 15 minutes (1,500g at 4˚C) within 3 hours of collection, divided into aliquots, and pre-

served at 4˚C until extraction of metabolites. Metabolite extraction from plasma was finished

within 6 hours after collection to reduce the metabolic reactions in plasma, then the extract

was stored at -80˚C. Fifty μL of plasma was used for sample extraction. The extraction method

has been detailed previously [32].
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Metabolomics measurement and quality control samples

Metabolomic profiling was conducted for fasting plasma samples via capillary electrophoresis

time-of-flight mass spectrometry (CE-TOFMS). CE-TOFMS analysis of cationic and anionic

metabolites was performed as described previously [23,33,34]. Raw data were processed using

our proprietary software (MasterHands) [34,35]. We used two CE-MS instruments to measure

cation and two for anions exclusively. These four instruments were solely used for this study

during the study period. Mass calibration using tuning solution and MS entrance cleaning

were performed at the beginning of every sequence to ensure robust performance. In addition,

in order to avoid unexpected changes in sensitivity or variance in measurement of mass in a

continuous run, the number of samples per one run was limited up to 100. The average num-

ber of sample runs was 30 per day, and about 0.5% of runs failed due to current drop or capil-

lary fracture in this study. As a preliminary study, we identified 154 polar metabolites with

standard compounds in plasma. For all the participant samples, we measured absolute concen-

trations of 94 metabolites (54 cations and 40 anions, listed in S1 Table), which were expected

to be detected in more than 20% of plasma samples.

Metabolomic profiles of participant samples were analysed from June 2012 in collected

order, and completed for 8,413 samples until August 2016. These data consisted of 105 run-

ning batches of cations and 99 batches of anions. One batch contains an average of 80.1 sam-

ples (maximum 164) for cations, and 83.2 samples (maximum 168) for anions. To monitor the

stability of metabolomics analysis, QC samples were injected every 10 samples and assessed at

the start of the analytical run and at intervals throughout the analysis. In total, 883 QC samples

for cations and 946 for anions were used for this study. For QC samples, 150 mL serum col-

lected from 20 people from the same population in advance were extracted for metabolomics

analysis as soon as collected, then divided into 50 μL aliquots and stored at -80˚C. QC aliquots

stored at -80˚C were thawed and used for monitoring daily during the study. We calculated

the mean concentration for each metabolite in QC samples which were previously analysed in

70 sequences, then when the concentration of each metabolite in QC samples continuously

exceeded (more than twice) the mean concentration ± two standard deviations for more than

half metabolites, we re-analysed the subsequent samples of sequence.

Clinical laboratory assay

For the purpose of validating the absolute measurement values, we used standard clinical labo-

ratory assay data for serum creatinine and uric acid. These data were collected from the health

check-up programs that 2,325 of participants underwent in Tsuruoka Kyoritsu Hospital, at the

same time as recruitment and metabolomics sample collection. Creatinine was measured by

enzymatic method which is widely used in medical examinations in Japan [36] [37]. Uric acid

was also measured by enzymatic method [38]. Both of these methods were authorised by the

Japan Society of Clinical Chemistry as the national standardized method. Tsuruoka Kyoritsu

Hospital acquired certification in quality control of these methods by the Japanese Association

of Medical Technologists [39].

Statistical analyses

For samples where metabolites were not detected, half of the lowest detected values were

imputed [40]. Inter- and intra-batch variance for each metabolite concentration of QC samples

were computed to evaluate reproducibility, using a linear mixed model with observed metabo-

lite level, Y, and a random effects common to each batch, B.

Yi ¼ mþ Bi þ εi
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Then, we calculated the coefficient of variation (CV), by dividing the variance estimated

from this model by the mean. Pearson correlation coefficients between inter- and intra-batch

CV were also calculated. These analyses were also conducted with participant samples to assess

inter- and intra- batch variance.

The intraclass correlation coefficient (ICC) was calculated to compare the reliability of the

metabolomics biomarkers with previous research [41,42]; it was calculated from variance of

measurement errors, σE
2, and total variance, σT

2.

ICC ¼ 1 �
s 2

E

s 2
T

Although we could not compute ICC for participant samples as there were no replicates, we

computed technical errors from the large number of replicates for QC samples considered to

be representative of the population samples. We made approximate calculation of ICC, substi-

tuting CV of QC samples for error variance and CV of participant samples for total variance.

Approximate ICC ¼ 1 �
ðCVQCÞ

2

ðCVParticipantÞ
2

We conducted Passing-Bablok regression of our CE-MS measurements in plasma on stan-

dard clinical laboratory measurements in serum for creatinine and uric acid concentrations.

We also showed Bland-Altman plots using mean of these two methods and percentage of

differences.

We summarized the metabolomics data stratified by sex and age. Linear regression analysis

was performed to investigate differences by sex and age, with adjustment for possible con-

founders: smoking and alcohol drinking habit, history of any ischemic heart disease, stroke

and cancer, and current disease status including hypertension, diabetes, dyslipidaemia and

impaired kidney function. Bonferroni correction was used to account for multiple testing

(α = 0.05/94).

All statistical analyses were performed using performed using R.3.3.1 (R Core Team 2016,

R Foundation for Statistical Computing, Vienna, Austria.).

Results

Coefficient of variation for quality control samples

CV values for QC samples are shown in S1 Table. Of the 94 metabolites, CV was less than 20%

for 64 metabolites (68%), 20–30% for 16 metabolites (17%), and more than 30% for 14 (16%)

(Fig 1A). Median CV was 7.9% for cation compounds and 18.9% for anions. Boxplots of

metabolite concentrations by batches were shown in S1 and S2 Files.

The comparison of reproducibility with other major MS-platforms used in large epidemio-

logic studies was shown in Table 1 and S2 Table. CV values of overlapping polar metabolites

were similar to or better than in other platforms.

Inter-batch CV estimated via a linear mixed model was less than 20% for 81 compounds

(86%), but more than 30% for four of them. Intra-batch CV was less than 20% for 74 com-

pounds (78%) (Fig 1B). Inter- and intra-batch CV had similar values (medians, respectively

5.8% and 5.0% for cations; 11.9% and 13.8% for anions). They were also highly correlated

(Pearson’s r = 0.85) (S1 Fig).
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Variation for participant samples

Statistical summary of metabolites measured in participant samples is shown in S1 Table.

Total, intra- and inter- batch CV among participants are shown in Fig 2. Medians of total,

inter- and intra-batch CV were 32.3%, 9.9% and 30.4% for cation metabolites, respectively,

Fig 1. Histogram of CV for 94 metabolites in QC samples. (A) Coefficients of variation (CV) for detected 94 metabolites in quality control

(QC) samples. (B) Inter- and intra-batch CV for each metabolite in QC samples. Inter- and intra-batch CV were computed using linear mixed

models.

https://doi.org/10.1371/journal.pone.0191230.g001

Table 1. Comparison of reproducibility for polar metabolites between major MS platforms used in large cohorts.

Platform 1 Platform 2 Platform 3 Platform 4

Laboratory performing analysis IAB, Keio University Metabolon Inc. GAC, Helmholtz Zentrum

München

Broad Institute

Study showing CV in QC samples

for polar metabolites

This study Shin et al., 2014 [9] Illig et al., 2010 [43] Shaham et al., 2008 [44]

Cohorts of the above study Tsuruoka Metabolomics Cohort KORA and Twins UK KORA and Twins UK FHS Offspring cohort

Separation method for polar

metabolites

CE LC and GC LC using Absolute IDQ™ kit

(BIOCRATES Life Sciences

AG)

LC

N overlapping metabolites with

Platform 1

94 (reference) 58 15 40

Median of CV for metabolites in

Platform 1

15.5% - - -

for overlapping with Platform 2 10.5% 9.6% - -

for overlapping with Platform 3 6.0% - 6.9% -

for overlapping with Platform 4 10.7% - - 16%

How to measure QC samples QC samples were injected every

10 subject samples,

corresponding to 1829 QC

samples for the study.

4–5 replicates were run each

platform day, corresponding to

1300 QC samples for the study.

45 technical replicates were

measured on 9 different kit

plates (5 replicate samples per

kit).

CV was assessed by splitting

one plasma sample into 7

parts and processing each

part separately.

CE: capillary electrophoresis, CV: coefficient of variation, FHS: Framingham Heart Study, GAC: Genome Analysis Centre, GC: Gas chromatography, IAB: Institute for

Advanced Biosciences, KORA: Cooperative Health Research in the Region of Augsburg, LC: liquid chromatography, MS: mass spectrometry, QC: quality control.

https://doi.org/10.1371/journal.pone.0191230.t001
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and 44.9%, 20.2%, and 38.4% for anions. As expected, CV in participant samples was larger

than in QCs. Participant samples had larger intra-batch CV than inter-batch CV, in contrast

to QCs.

Results of calculation of estimated ICC are shown in Fig 3 and S1 Table. This was> 0.75

for 67 metabolites (71%), 0.40–0.75 for 25 metabolites (27%), and< 0.40 for two (uridine and

malonate, 2%).

Passing-Bablok regression of CE-MS measurements on standard clinical laboratory mea-

surements estimated slope 0.97 (95% confidence interval: 0.95, 0.98) and intercept -4.52 (-5.69,

-3.37) for creatinine, and slope 0.95 (0.92, 0.96) and intercept -21.03 (-27.15, -15.36) for uric

acid. This result for creatinine was consistent even after excluding three samples more than

five standard deviations from the mean as outliers (slope = 0.97, intercept = -21.19). As shown

in intercept values, absolute concentrations of these were relatively lower for plasma by

CE-MS than for serum by the independent clinical assay (Creatinine mean ± standard devia-

tion: 63.2±20.3 μmol/L by CE-MS vs 70.4±22.0 μmol/L by clinical assay, p< 0.001 for paired

t-test; Uric acid: 266.5±72.9 μmol/L vs 307.6±75.6 μmol/L, p< 0.001). Bland-Altman plots

also shows that CE-MS provided lower values than clinical assay, whereas any other bias was

unlikely to be observed. (Figs 4 and 5).

Table 2 and S3 Table show results by sex and age. 73 metabolites differed by sex after age

adjustment and Bonferroni correction. 49 compounds for males and 64 for females were sig-

nificantly related to age. Analysis of creatinine and uric acid measured by clinical assay showed

similar results to CE-MS (Table 2).

Discussion

In our large-scale epidemiological study using the CE-MS metabolomics platform we report

concentrations for 94 polar compounds in blood with good to high reproducibility: CV for 80

compounds (85% of all) was less than 30% despite a measurement period of 52 months. Inter-

batch CV was less than 20% for 81 compounds (86%) among 105 batches for cations and 99

Fig 2. Histogram of CV for each metabolite in participant samples. (A) Coefficient of variation (CV) for each detected metabolite in

participant plasma samples. (B) Inter- and intra-batch CV for each metabolite in participant samples. Inter- and intra-batch CV were computed

using linear mixed models.

https://doi.org/10.1371/journal.pone.0191230.g002
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batches for anions. The measured values by our CE-MS method for creatinine and uric acid

were similar to established clinical laboratory assays for these compounds widely used in epi-

demiologic studies.

In metabolomics studies, QC sample methods are widely used to evaluate reproducibility

[45]. Features with QC CV< 20% are often considered to have good reproducibility, as rec-

ommended by the US FDA [46]. Features with QC CV< 30% are also considered acceptable

[45,47]. Compounds with lower reproducibility in our analyses had small peaks and low sig-

nal/noise ratios, therefore, it was difficult to detect these peak areas precisely, and to differenti-

ate them from noise.

Metabolon [9,10] and the Broad institute [2,44,48] have conducted large-scale targeted

metabolomics measurement for cohort studies including KORA, Twins UK, ARIC and FHS

Offspring Cohort. Absolute IDQ™ kits (BIOCRATES Life Sciences, Innsbruck, Austria) have

been used by studies like KORA and Twins UK [43]. Compared to published data from these

platforms, reproducibility in this study which has unique broad coverage of polar metabolites

was similar to or better than in other studies.

Fig 3. Histogram of estimated ICC. Estimated intraclass correlation coefficients (ICC) calculated using the formula, 1 − (Total CV

of QC samples)2 / (Total CV of subject samples)2.

https://doi.org/10.1371/journal.pone.0191230.g003
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In order to reduce measurement errors, we strictly limited the instruments used for this

study, and were checking sensitivity of instruments regularly. Also, we reanalyse samples when

monitored QC sample concentrations did not match the criteria, in order to keep measure-

ment quality. These careful settings might contribute to good reliability equally to other meta-

bolomics platforms.

However, this comparison should be treated with caution as the method for calculating CV

was different between platforms especially for measurement duration and number of batches

and replicates. Nonetheless, this result shows that our platform is at least comparable to others

and suitable for conducting large-scale epidemiological studies. It should be noted that our val-

ues are reported as absolute concentrations of compounds, instead of the relative intensity of

features.

Compared to other established MS platforms, our CE-MS platform has limited coverage for

overall metabolites because CE-MS is not able to detect most of non-polar metabolites. Most

of polar metabolites were detected consistently in participants, however, some metabolites

(especially anions) were hard to be quantified with adequate precision due to their lower con-

centrations than limit of detection. Despite this limitation, our platform still has broader cov-

erage of polar metabolites than other MS platforms. In addition, environmental load and cost

is relatively lower because little organic solvent is used in CE-MS. Compared to NMR, CE-MS

has lower sample throughput, but coverage and sensitivity for polar metabolites are higher.

Fig 4. Bland-Altman plots for creatinine. X-axis indicates the mean creatinine concentrations (μmol/L) of capillary

electrophoresis-mass spectrometry (CE-MS) and clinical assay, and Y-axis indicates percentage of differences between

these two methods.

https://doi.org/10.1371/journal.pone.0191230.g004
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Fig 5. Bland-Altman plots for uric acid. X-axis indicates the mean uric acid concentrations (μmol/L) of capillary

electrophoresis-mass spectrometry (CE-MS) and clinical assay, and Y-axis indicates percentage of differences between

these two methods.

https://doi.org/10.1371/journal.pone.0191230.g005

Table 2. Concentrations of creatinine and uric acid stratified with sex and age.

All ages Difference by sex -44 y 45–54 y 55–64 y 65- y Difference per age

Male Mean (μmol/L) Estimate P value Mean (μmol/L) Mean (μmol/L) Mean (μmol/L) Mean (μmol/L) Estimate P value

N 1102 28 93 397 584

Creatinine (CE-MS) 72.64±24.43 17.89 1.75E-110 73.74±10.04 70.34±13.54 71.26±13.20 73.90±31.16 0.11 2.80E-01

Creatinine (Clinical assay) 80.38±26.64 18.95 3.64E-105 80.79±8.75 77.46±14.33 78.53±13.44 82.08±34.28 0.17 1.19E-01

Uric acid (CE-MS) 298.53±71.96 60.74 1.70E-98 307.84±64.75 317.13±76.81 306.06±74.16 290.00±68.89 -1.28 2.20E-05

Uric acid (Clinical assay) 345.87±71.34 72.54 5.04E-134 355.18±58.23 364.04±75.19 350.36±70.96 339.47±70.92 -1.21 5.50E-05

Female

N 1223 17 104 463 639

Creatinine (CE-MS) 54.77±9.82 ref ref 57.45±7.48 53.65±9.41 54.42±9.70 55.13±10.02 0.05 2.23E-01

Creatinine (Clinical assay) 61.46±10.63 ref ref 63.08±8.83 60.35±9.52 60.92±10.35 61.99±11.03 0.08 6.73E-02

Uric acid (CE-MS) 237.62±60.74 ref ref 242.26±65.28 240.63±62.53 235.67±58.45 238.42±62.03 -0.11 6.59E-01

Uric acid (Clinical assay) 273.2±61.58 ref ref 268.36±70.87 273.61±56.84 271.66±59.60 274.39±63.57 0.12 6.37E-01

CE-MS: capillary electrophoresis-mass spectrometry, ref: reference

https://doi.org/10.1371/journal.pone.0191230.t002
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Therefore, CE-MS is also suitable to use in combination with other methods to cover broader

metabolites.

Variations between samples can be classified as inter- or intra-batch variations. Reducing

inter-batch variations is an important issue in large-scale metabolomics [49,50]. The results

show that our metabolomics method controlled inter-batch effects well for most of the mea-

sured compounds without any statistical adjustments, regardless of the large scale with 883

QC samples among 105 batches for cations and 946 QC samples among 99 batches for anions.

Inter- and intra-batch variations were comparable. Even for metabolites with poor reproduc-

ibility, this reflected intra-batch effects, except for triethanolamine, indole-3-acetate, and malo-

nate where inter-batch CV was larger than intra-batch one.

The larger CV for participant plasma samples than for serum QCs can be interpreted as due

to variation between subjects including biological differences. The larger intra-batch CV than

inter-batch CV also indicates that increasing CV for participant samples was mainly due to the

variation between subjects, rather than measurement errors. Although the difference between

serum and plasma should be taken into account, our preliminary study showed that the metab-

olites detected in serum samples included all the metabolites detected in plasma, and metabo-

lite concentrations in EDTA plasma and serum correlate well with the exception of some

metabolites such as hypoxanthine and lactic acid [31,51].

Technical ICC can add another aspect to evaluate technical variation, focusing on partici-

pant variation including true biological differences. In epidemiological studies, statistical

power is influenced by the magnitude of the effect of interest in the population. When the

biological variation is larger than technical variation, biological differences can be detected

despite measurement errors. Our estimate of ICC, 1 − (Total CV of QC samples)2 / (Total

CV of Participant samples)2, was above 0.40 for most measured compounds, except for malo-

nate and uridine. Even for compounds with poor reproducibility, those with ICC above 0.40

may be worth examining as potential biomarkers, with careful evaluation of their measure-

ment errors.

The reliability of CE-MS measurements for creatinine and uric acid, measured by cation

mode and anion mode, respectively, were evaluated with respect to clinical laboratory data.

Clinical measurements of serum creatinine and uric acid are standardized and certificated

nationwide, and commonly adopted in medical laboratories and hospitals. The slope of Pass-

ing Bablok regression was nearly one with narrow 95% confidence interval in both of creati-

nine and uric acid. These results indicate that CE-MS and clinical laboratory data were similar,

although the slope was slightly less than one and the intercept was less than zero due to the 10–

13% lower mean concentrations by CE-MS. It is possible that this was due to the difference

between plasma and serum, considering previously reported findings that most metabolite

concentrations are higher in serum than in EDTA plasma [51]. Nonetheless both methods

gave similar results with respect to differences by sex and age. This further indicates that our

metabolomics data are fit for purpose for epidemiological studies.

Our metabolomics summary data by sex and age provide for the first time absolute concen-

trations for a large sample of community-dwelling adults in Japan. These data can be used as a

reference for other population studies, especially Asians, though careful interpretation is

required for some of the compounds with low reproducibility. Our data show sex differences

in concentrations for most metabolites even after adjusting for potential confounders includ-

ing unique metabolites in our CE-MS platform such as guanidinoacetate, gamma-butyrobe-

taine, and mucate that may contribute to explaining the biological sex differences. Many

metabolites were also associated with age after adjustment for confounders, although we are

unable to evaluate whether this is cause or consequence because of the cross-sectional design.
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This study is characterized by large sample size from one population of community dwell-

ing adults in Tsuruoka city, Japan. This can result in good internal validity in this population.

This population can be considered as representative of Japanese whose genetic background is

homogeneous, although the variety of environmental factors should be taken account of. In

order to generalize our findings, further studies are needed in other populations in Japan and

other countries. In addition, external validation and cross-platform and inter-lab round-robin

studies are expected to establish the methodology of large-scale studies using CE-MS platform.

International collaborative studies should be proceeded to address these issues.

In conclusion, this study shows the CE-MS platform yields reliable concentrations for

plasma metabolites in a large-scale study. It provides high-quality metabolomics data which

will aid in the understanding of links between disease risk and metabolism.
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