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Sudden cardiac death (SCD) is a leading cause of mortality, comprising

approximately half of all deaths from cardiovascular disease. In the US, the

majority of SCD (85%) occurs in patients with ischemic cardiomyopathy (ICM)

and a subset in patients with non-ischemic cardiomyopathy (NICM), who

tend to be younger and whose risk of mortality is less clearly delineated

than in ischemic cardiomyopathies. The conventional means of SCD risk

stratification has been the determination of the ejection fraction (EF), typically

via echocardiography, which is currently a means of determining candidacy

for primary prevention in the form of implantable cardiac defibrillators (ICDs).

Advanced cardiac imaging methods such as cardiac magnetic resonance

imaging (CMR), single-photon emission computerized tomography (SPECT)

and positron emission tomography (PET), and computed tomography (CT)

have emerged as promising and non-invasive means of risk stratification for

sudden death through their characterization of the underlying myocardial

substrate that predisposes to SCD. Late gadolinium enhancement (LGE) on

CMR detects myocardial scar, which can inform ICD decision-making. Overall

scar burden, region-specific scar burden, and scar heterogeneity have all

been studied in risk stratification. PET and SPECT are nuclear methods that

determinemyocardial viability and innervation, as well as inflammation. CT can

be used for assessment of myocardial fat and its association with reentrant

circuits. Emerging methodologies include the development of “virtual hearts”

using complex electrophysiologic modeling derived from CMR to attempt

to predict arrhythmic susceptibility. Recent developments have paired novel

machine learning (ML) algorithms with established imaging techniques to

improve predictive performance. The use of advanced imaging to augment risk

stratification for sudden death is increasingly well-established and may soon
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have an expanded role in clinical decision-making. ML could help shift this

paradigm further by advancing variable discovery and data analysis.
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sudden cardiac death (SCD), ventricular arrhythmias, cardiovascular magnetic

resonance (CMR), positron emission tomography (PET), single-photon emission

computerized tomography (SPECT), computed tomography

Introduction

Sudden cardiac death is an unexpected death from a

cardiac cause within a short period (typically an hour or

less) from symptom onset or, if unwitnessed, within 24 h of

last being seen alive (1, 2). While the incidence of SCD has

gradually declined over the past decades, the annual incidence

is ∼200,000–400,000 cases per year (the extensive range being

attributable to the uncertainty of the cause of some deaths),

amounting to around 15–20% of all deaths (3). Among patients

with known cardiovascular disease (CVD), which represents

about half of cases of SCD, ventricular arrhythmia (VA) is the

leading mechanism of SCD in both ischemic cardiomyopathy

(ICM) and non-ischemic cardiomyopathy (NICM). In ICM,

obstructive coronary artery disease (CAD) leads to myocardial

scarring, and regions of heterogeneous conduction serve as

substrates for initiating ventricular tachycardia (VT). NICM

encompasses diverse cardiac conditions that can result in scar

formation or fibrosis, which along with electrophysiological

remodeling, can result in VT or ventricular fibrillation (VF).

The entity of ischemia but no CAD (INOCA) has also been

described and remains an area of active investigation. Thus, far

in clinical practice, primary prevention and risk reduction of

SCD is accomplished with medical therapy and the implantable

cardiac defibrillator (ICD), with slightly different approaches

for patients with previously detected VA or resuscitated arrest.

Guidelines for primary prevention ICD in both ICM and NICM

are driven by clinical symptoms of heart failure and decreased

ejection fraction (EF)<35% as derived by imaging (4). However,

more useful prognostic data can be obtained from imaging than

EF alone (5, 6).

Efforts to improve risk stratification for SCD, or even to

reclassify risk assigned by EF, have been undertaken across

all cardiac imaging modalities. Herein, we focus on the role

of advanced imaging, namely cardiac magnetic resonance

imaging (CMR), single-photon emission computer tomography

(SPECT), and positron emission tomography (PET), and its

application to risk stratification for SCD (Figure 1).We highlight

unique techniques of each modality and their limitations, with

particular attention to the patient subgroups that inform the

utility and pathophysiology of each method (Table 1). For each

study, we distinguish endpoints that are related though not

interchangeable: while studies with SCD were emphasized in

this review, we mention when cardiac death, all-cause mortality,

or VA were the primary endpoint as they too are informative.

We also describe current and future applications of machine

learning (ML) in advanced imaging for SCD, from image

acquisition to model construction.

Cardiac magnetic resonance
imaging

Ventricular geometry and function

Chamber geometry has long been known to reflect the

role of remodeling in CVD and, in turn, is associated with

outcomes including VA (7, 8). Cardiac MRI has been described

as the gold standard for structural and functional quantification

of cardiac chambers (9, 10). Using CMR, geometry-based

approaches to SCD risk stratification have emphasized these

attributes, and measurements based on wall thickness have

been found to distinguish patients with ICM who develop

SCD (11). From a clinical standpoint, studies have suggested

that at-risk patients may be inadvertently excluded from ICD

as echocardiography overestimates EF when compared with

CMR (12, 13). While every imaging modality is to some extent

operator dependent, it is perhaps most prominently described

in echocardiography as affecting interpretation (14). This

highlights that LVEF thresholds may need to be individualized

for different modalities, and CMR may be preferable to TTE

for therapeutic decision-making in patients with intermediate-

range LVEF (15). That said, EF < 35% as a selection criterion

for primary prevention ICDs has routinely been critiqued for

its low sensitivity and specificity in predicting VA and SCD.

Furthermore, patients meeting these criteria encompass only

13% of all suffering SCD (16).

Role of LGE in ICM and CAD

CMR with LGE has developed as a means of characterizing

myocardial tissue, and its value in prognosticating

cardiovascular outcomes, including SCD, has been widely

reviewed and increasingly well-established (17, 18). This has
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FIGURE 1

Overview. This review seeks to describe the role of advanced imaging in the risk stratification of SCD and its interplay with promising

technologies such as machine learning and personalized virtual heart models. This figure visually summarizes these goals and highlights some

of the content to be covered.

been demonstrated across a wide variety of phenotypes in both

patients with ICM and NICM. In ICM, heterogeneous scar, also

termed gray zone, is an independent predictor of VA and SCD

in a number of studies of patients with ICD or undergoing ICD

implantation (19–21). A recent retrospective study among 979

patients with CAD and majority EF with > 35% showed that

gray zone mass was more strongly associated with SCD than

LVEF (22). The same group showed that in a mixed ICM/NICM

population with ICD and cardiac resynchronization therapy,

the absence of myocardial fibrosis on visual assessment virtually

excluded patients at risk of VA and SCD over 7 years follow-up

and among those with scar, gray zone extent added predictive

value and improved net reclassification (23). Likewise, a

prospective study in a mixed population of ICM and NICM

patients undergoing primary prevention ICD demonstrated that

the combination of low gray zone mass and low high-sensitivity

C-reactive protein identified a subgroup with very low risk for

VA (24). In a similar population (mixed ICM/NICM with ICD),

an analysis incorporating random survival forests for model

construction showed LV scar mass as well as gray zone mass by

LGE were top predictors for VA and SCD (25). The same study

suggested a hierarchy of risk wherein no scar was less risky than

scar, larger total/core scar had higher risk than smaller scar, and

larger gray zone had higher risk than smaller gray zone for the

same core scar size. Additional applications of LGE, beyond

presence and extent, have also been developed, including LV

entropy, a measure of the distribution of pixel intensity across

the myocardium (26, 27). Amongst patients with CAD and

Frontiers inCardiovascularMedicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2022.884767
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Xie et al. 10.3389/fcvm.2022.884767

TABLE 1 Comparison of imaging modalities described in this review.

Modality Sequences Characteristics

studied

Evaluation of

structure

Evaluation of

function

Tissue

characterization

Cost

Echocardiography 2D • LVEF

• Strain

++ ++ + Low

CMR LGE

T1

T2*

• Strain

• Scar

• Diffuse fibrosis

+++ +++ +++ Moderate

SPECT MIBG • Scar

• Viability

• Innervation

+ + ++ High

PET FDG

HED

• Scar

• Viability

• Innervation

++ + ++ High

+ for fair,++ for good, and+++ for excellent.

ICDs, entropy was a significant predictor for VA and SCD

(27, 28). A mechanistically-minded approach in LGE has been

identifying conducting channels, a nidus for VT as identified in

CAD (29). A study in a mixed ICM/NICM population showed

that the presence and mass of these channels were associated

with the risk of VA and appropriate primary prevention ICD

therapy (30).

Role of LGE in NICM

In NICM, the role of LGE for SCD risk stratification has

been frequently studied in patients with dilated cardiomyopathy

(DCM) and hypertrophic cardiomyopathy (HCM) (31–33).

LGE has been used to identify higher-risk patients who fall

outside the EF criterion for primary prevention ICD (34). In

a multivariate model for SCD in NICM, LGE had incremental

prognostic value over clinical measures, whereas EF did not

(35). Among HCM patients, LGE extent has been favorably

compared with clinical risk models and, in some cases, exceeded

the performance of these models (36–38). To define an LGE

cut-off for risk stratification, various thresholds of LGE have

been described. In HCM, LGE extent >10% identified patients

with SCD rates up to an order of magnitude greater than

predicted with clinical risk score (39). A further analysis using

serial LGE imaging in DCM illustrated that amongst patients

with fibrosis progression, the majority had minimal change in

EF (<5%), ergo identifying a high-risk cohort for all-cause

mortality not captured by LVEF alone (40). In a case series

among athletes, LGE pattern, specifically involving the lateral LV

wall, was also noted to correlate with increased risk of malignant

arrhythmias (41). As in ICM, LV entropy in DCM patients with

ICD significantly improved a clinical model for VA, although

there was only one instance of SCD among these (26). Despite

these advances and its prominence in the literature, LGE has yet

to be included in clinical guidelines. A likely rationale for this

is that there has yet to be a completed randomized control trial

using LGE for risk stratification, though several are enrolling and

underway (18, 31).

Proposed diagnostic guidelines for arrhythmogenic

cardiomyopathies, which carry profound and inherent

risk for VA and SCD, have included LGE patterns among

other criteria (42). In arrhythmogenic right ventricular

cardiomyopathy/dysplasia (ARVC/D) specifically, abnormal

CMR findings including LGE were associated with increased VA

(43). Advances in CMR may allow for improved RV assessment

facilitating earlier disease detection and ergo risk stratification

(44). Similarly in myocarditis, LGE presence and extent have

been associated with increased risk of major adverse cardiac

events, including VA and SCD (45, 46).

Shortcomings of LGE and alternative
CMR sequences

While LGE is perhaps the most widely studied CMRmethod

for SCD risk stratification, other CMR sequences have also

been investigated, which may address certain shortcomings of

LGE. An intrinsic limitation of gadolinium administration is

toxicity, particularly among patients with renal insufficiency,

though the degree of risk is controversial (47, 48). Fortunately,

the most feared complication, nephrogenic systemic fibrosis,

is exceedingly rare with modern gadolinium agents; a recent

consensus statement from the American College of Radiology

and the National Kidney Foundation leaves the decision for

gadolinium administration in renal impairment to the clinician

(49). LGE-CMR furthermore depends on several factors such as

the timing of contrast injection and selection of scan parameters

that can impact the interpretation of intensity values on imaging.

Another limitation of LGE for risk stratification of SCD is
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that a subset of patients with NICM who develop VF may not

have LGE on CMR (50). Several alternative measures derived

from CMR have been proposed that may address some of

these limitations, including native T1 mapping and extracellular

volume (ECV), which reflect diffuse fibrosis, a characteristic

not captured by LGE (51, 52). In a prospective study of T1

mapping and LGE assessment in participants receiving ICDs,

native T1 was independently associated with VA, although

performed more poorly than LGE in reclassifying participants

to a low-risk group (53). Among patients with DCM, native

T1 was predictive of death independent of LGE, which was

present only in 27% of the study population (54). Another

study in HCM patients without LGE at CMR showed an

association of native T1 with SCD, though it was limited by

the small number of patients (n = 5) reaching this endpoint

(55). Less well studied is T2∗ mapping, which combines spin-

spin relaxation (T2) with magnetic field inhomogeneity to

detect field distortions from the presence of materials such

as iron (56). As such, it was traditionally applied to identify

myocardial iron accumulation in iron storage diseases and

considered arrhythmogenic in those populations (57). More

recently, it has been suggested T2∗ may add to the assessment

of fibrosis, although this has not yet been well-studied (58, 59).

Thus, far, a small study of the association of T2∗ with VA in

patients with HCM was negative (60). Yet another sequence,

T2-weighted short-tau inversion recovery (T2w-STIR) has been

used to assess myocardial edema in survivors of cardiac arrest.

Presence of edema, hypothesized to represent a transient

arrhythmogenic substrate, has been associated with fewer ICD

shocks (61).

Innovative uses of CMR for personalized
virtual heart models to predict VA and
SCD risk

A more recent development in SCD risk stratification is

the use of advanced imaging to build electrophysiologic virtual

heart models, which can be used to simulate arrhythmias in

silico (62). These 3D computational models entail a biophysical

approach from the cell-scale to the organ-scale and are specific

to each patient’s disease and resultant remodeling. Perhaps

uniquely among risk stratification methodologies, virtual hearts

evaluate how triggers from different locations will interact with

the substrate to initiate VA, potentially providing mechanistic

insights into how and VAs can develop in the patient heart (63).

This approach was initially demonstrated in patients with ICM

and ICDs; wherein virtual hearts were superior to clinical risk

factors in predicting VA (64). This work has also been extended

in a small study of patients not meeting ICD implantation

criteria, distinguishing patients with VT history from those

without (65). These models make use of complex patterns of

imaging data such as distribution and degree of fibrosis, as

well as a fusion of different pulse sequences as was done with

T1 mapping in HCM (66). It is worth noting these studies

have all been retrospective thus far regarding event prediction.

However, virtual heart technology has recently been used to

prospectively identify VT ablation targets in a small cohort,

extending the utility of CMR from predicting SCD risk to

guiding therapy (67).

Nuclear imaging

Overview

Nuclear medicine presents another advanced imaging

modality that has been applied for risk stratification of SCD

(68). Single-photon emission computer tomography (SPECT)

is commonly used in cardiology for myocardial perfusion

imaging (MPI) to assess coronary patency (69). Among patients

with CAD, composite scores of fixed and reversible perfusion

defects determined via SPECT are independently associated

with SCD, including patients with EF > 35% (70, 71). These

results were also reproduced in patients without significant CAD

(72). Positron emission tomography (PET) provides another

method of MPI, with the degree of myocardial abnormalities,

such as scar, ischemia, or hibernating myocardium, associated

with cardiac death (although data on PET MPI and SCD

specifically is sparse) (73, 74). Both PET and SPECT can

be used to characterize myocardial scar, a similar substrate

to what is assessed by LGE. In an unadjusted analysis, scar

extent by SPECT was associated with SCD (75). A larger study

using PET among patients with EF <35% showed that scar

alone, and not reversible ischemia, was significantly associated

with ICD firing and SCD (76). Interestingly in the study

above, the scar alone was not a significant predictor for SCD

after adjustment, although it is worth noting participants in

this study had a considerably higher EF (70). Combining

MPI with imaging of cardiac inflammation using (18) F-

fluorodeoxyglucose (FDG) has identified higher risk NICM

patients independent of LVEF and clinical markers (77). Other

myocardial features associated with SCD that PET and SPECT

can image include sympathetic innervation and hibernating

myocardium (78–80).

Means of measuring sympathetic
innervation and its significance

Assessment of innervation is conducted with radiolabeled

catecholamines, most commonly iodine-123-labeled

metaiodobenzylguanidine (MIBG) in SPECT though several

tracers have also been studied for use with PET, most notably

11C-hydroxyephedrine (HED). Globally decreased uptake of
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these tracers is thought to reflect the increased sympathetic

tone, which can trigger malignant arrhythmias (81). However,

regional reductions in uptake can be seen in sympathetic

denervation caused by myocardial ischemia and are prevalent in

CAD (82). Studies, primarily undertaken amongst patients with

ICM, have demonstrated both global and regional approaches

for risk stratification of SCD. A prospective study of patients

with HFrEF showed that reduced global uptake of MIBG was

significantly associated with potentially lethal arrhythmias

and cardiac death (83). Using a different measure of reuptake,

another group demonstrated that abnormal MIBG washout

in HFrEF was associated with SCD specifically (though this

group excluded the use of beta-blockers, perhaps limiting

the generalizability of the study) (84). Using PET with HED,

a study among ICM patients showed regionally reduced

uptake; specifically, the volume of denervated tissue was

associated with SCD (85). This was similarly demonstrated

with regional MIBG washout being associated with SCD

(86). The role of sympathetic denervation in HFpEF and

NICM continues to be explored, and studies have shown

decreased MIBG uptake is associated with increased mortality

and readmission. However, the relationship with SCD is

unclear (87–89).

Hibernating myocardium

Conceptually, hibernating myocardium describes regions

of viable tissue with chronically reduced function and resting

perfusion caused by chronic ischemia or recurrent (90).

This is thought to be an arrhythmogenic substrate and

has been associated with VA in porcine models (91, 92).

In studies of patients with ischemic cardiomyopathy, the

extent of hibernating myocardium has been associated

with all-cause mortality and composite cardiac deaths

(93, 94). However, in the aforementioned study of PET

with HED in ICM, hibernating myocardium was not

associated with SCD and was only rarely identified (85).

It has been suggested that modern revascularization

strategies and medical therapy may diminish the role

of hibernating myocardium for risk stratification of

SCD (95).

Future potential of hybrid imaging

It is worth briefly noting that hybrid PET/MRI scanners have

become commercially available relatively recently (since 2010)

and brought with them a unique set of technical challenges

as well as clinical possibilities (96). Thus far, PET/MRI has

been applied in similar roles as its constituent modalities—in

perfusion and viability studies (97). An example comparing PET

and CMR in the same patient, albeit not using a hybrid scanner,

demonstrates the utility of each modality. PET/MRI has in

particular been investigated for diagnosis of cardiac sarcoidosis

and proof-of-concept demonstrated; it is speculated that the

increased quality of data gathered with PET/MRI in sarcoid

patients may 1 day be used for identification of those at greater

risk for VA and death (98–101). However, the role of PET/MRI

in risk stratification remains hypothetical, and no study has

yet described the association of any PET/MRI measure with

SCD (96).

Computed tomography

CT is presently a more accessible and generally lower cost

modality than those previously mentioned. It provides higher

spatial resolution and for certain purposes better temporal

resolution as well. CT is perhaps most prominently used in

cardiology for non-invasive assessment of the coronary arteries,

the presence (or absence) of which is diagnostically significant

and certainly a significant predictor of both VA and SCD (102).

In terms of tissue characterization however, CT lags behind

CMR, PET, and SPECT though developments are being made

rapidly to improve this (103). It is also worth noting that there

are patients in whom CMR may be contraindicated due to

implants or foreign objects, or where ICD-related artifact is too

limiting, in whom CT may provide a necessary alternative for

risk stratification in the future.

CT has been used to detect fibrosis, such as by iodinated

contrast enhancement (104). Scar qualification/quantification

by CT has been favorably compared with LGE-CMR (105).

A group recently used CT to map wall thinning to identify

potential VT isthmuses in post-MI patients with a VT history,

yielding 100% sensitivity when compared with gold-standard

EP studies although with 50% positive predictive value (106).

Similarly, regions of myocardial fat deposition as characterized

by CT have been associated with VT circuit sites in patients with

history of VA (107). CT has also been used to identify areas

of lipomatous metaplasia after infarction which are associated

with VA in experimental models (108). As with the previously

mentioned modalities, CT has also been used for development

of virtual heart models (109).

The emerging role of machine
learning and artificial intelligence

Machine learning in image acquisition

In recent years, machine learning techniques have seen

increasing integration withinmedicine, particularly as applied in

imaging (110). This has specifically included applications across

numerous modalities in cardiology, including CMR and nuclear

imaging (111). The value of ML in the risk stratification of SCD

can be appreciated at multiple stages of the imaging pipeline
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(Table 2). ML has been used to enhance image processing on

a granular level, such as by voxel denoising. In time-intensive

modalities such as MRI, this has been shown to allow for

a significant reduction of acquisition time while preserving

quantitative metrics such as demonstrated in brain imaging of

cerebral blood flow (112). On a more experimental level, ML

has been applied in low-field MRI to address reconstruction

using noisy data, which may increase CMR availability in less

resource-rich environments (124, 125). Finally, as an analog in

PET, the clinical utility of dynamic scans required for more rapid

imaging and low count protocols minimizing radiation exposure

in young patients is limited by poorer image quality (113).

While hardware advances provide one means of addressing

this challenge, a likely more cost-effective pathway is the

utilization of ML to improve the quality of the reconstructed

image (126). In parallel to improving image quality, ML has

been used to lower the computational burden of contemporary

post-processing techniques such as scatter correction in PET

(114, 115). Another forward-looking application of ML is

in attenuation and scatter correction for PET-only, SPECT-

only, or hybrid PET/MRI imaging, as this is conventionally

accomplished with simultaneous CT (116). This may increase

the accessibility and capability of advanced imaging and allow

for a broader range of patients to undergo risk stratification with

these modalities.

Machine learning in image processing

Perhaps more widely reported are clinician-facing advances

in image analysis and interpretation using ML, described by the

overarching term “computer vision” to include any automated

interpretation of images (127). ML-based algorithms have been

available in commercial software for segmentation for some

time now. They are widely used for automated quantification

of structure and function, for example, ventricular volumes and

EF (128). Some of these data are, as previously mentioned, used

in models for the prediction of SCD. However, automation has

extended to tissue characterization as well. LGE segmentation,

when performed manually, can be a labor-intensive process

requiring significant training to mitigate subjectivity and inter-

operator variability (129).

Nonetheless, manual segmentation has previously been

considered the gold standard for accuracy, especially when

compared with techniques based on older ML algorithms

(130). More recent studies have demonstrated the feasibility

of novel approaches, such as deep convolutional neural

networks, for automated scar quantification approaching

manual segmentation in subsets of patients such as those with

ICM and HCM (117, 131). This has also shown promise in

multicenter datasets, potentially addressing the challenge of

practice standardization (118, 132).

TABLE 2 Incorporation of machine learning into advanced imaging.

Imaging

steps

Role of ML Examples of applications

Acquisition • Increasing acquisition

speed

• Decreasing

radiation exposure

• Voxel denoising in CMR (112)

• Implementing low count

(radiation) protocols for

PET (113)

Processing • Reducing computation

burden

• Automating labor-intensive

analysis

• Standardization

• Scatter correction (114, 115)

• Synthetic CT (applied to PET,

SPECT, and PET/MRI) (116)

• Automated scar quantification

(117)

• Common algorithm for

segmentation across multiple

centers (118)

Feature

extraction

• Generating novel features,

texture analysis

• Investigation of

hypothetical markers

• ML-derived scar heterogeneity

(119)

• Generating hundreds of

features from individual

sequences (120)

Model

construction

• Advanced analytics

• Dimension reduction;

identifying significant

markers

• Data synthesis

• Applying random survival

forests (121)

• Combining non-simultaneous

PET, MRI modalities (122)

• Unified analysis using

EMR (123)

Machine learning for feature extraction

Sequential to obtaining imaging measures is its

interpretation and application to predicting cardiovascular

endpoints. Techniques such as texture analysis may be applied

to pre-existing LGE segmentation to obtain features beyond

quantitative scar burden, such as measures of heterogeneity

and shape, which have been proven valuable in conventional

workflows (119, 133). Numerous extracted features and varying

ML models have been evaluated for this role; in other words,

ML can be used to identify novel predictors and implement

novel prediction methods (134, 135). However, these extracted

features are typically unrecognizable to the human eye,

especially when obtained from composite, multistep analyses

necessitating further selection to identify covariates with the

strongest predictive value (119, 136). For example, in a cohort of

patients with DCM, principal component analysis was applied

across ventricular geometric models to derive shape-based

features, which were integrated into a score that was shown

to be independently associated with composite VA and SCD

(137). Another study generated 608 features from LGE and T2

sequences in Takotsubo patients to predict outcomes, including

MI and death (120). ML was also used for dimensionality
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reduction in this study, which interestingly resulted in all

LGE-derived features being discarded. Along these lines, a

recent study used an unsupervised, deep learning approach on

cine CMR among ICM patients to derive cardiac features that

were then used as inputs in a separate deep neural network

that successfully predicted VA risk (138). The inverse approach,

using ML to generate pre-defined features, is also appreciable

in recent literature. For example, ML-derived measures based

on LGE, such as scar complexity, were associated with VA in a

cohort where entropy was not a significant predictor (139).

Innovating the role of advanced imaging
with machine learning

In the future, machine learning may be integrated into

the risk stratification workflow from the point of image

acquisition to patient-facing risk prediction models, and there

are studies demonstrating this in principle. One example is

incorporating manual measurements and segmentation with

using ML for feature extraction and statistical model-building

(134). Sophisticated virtual heart simulations incorporating both

MRI and PET data, then using ML to synthesize imaging and

clinical data for SCD prediction, have been shown to outperform

existing risk models (122). This approach is not specific to VA or

SCDoutcomes, and it has also been used to predict improvement

in EF after cardiac resynchronization therapy (140). Because

of the sheer volume of data available to the clinician from the

electronic medical record and conglomerate imaging, it seems

increasingly likely that ML will play a central role in the fusion

of data of different sources and risk modeling (123, 141–143).

Conclusion

As described in this review, there are numerous promising

applications of advanced imaging to identify patients at risk

of SCD. Some of the above techniques and sequences may

likely be incorporated into clinical guidelines and ultimately

into regular practice in the coming years. Machine learning

may enable advances democratizing advanced imaging for at-

risk patients, as has been achieved with CT screening in

smoking. Physicians and cardiologists of the future will likely

have a wide variety of complementary imaging modalities and

analytic tools to identify SCD risk amongst different patient

populations optimally.
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