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Abstract: We evaluated the effectiveness and toxicity of proton beam therapy (PBT) for hepatocellular
carcinomas (HCC) >5 cm without fiducial markers using four-dimensional CT (4D-CT) planning.
The subjects were 29 patients treated at our hospital between March 2011 and March 2015.
The median total dose was 76 Cobalt Gray Equivalents (CGE) in 20 fractions (range; 66–80.5 CGE in
10–32 fractions). Therapy was delivered with end-expiratory phase gating. An internal target volume
(ITV) margin was added through the analysis of respiratory movement with 4D-CT. Patient age
ranged from 38 to 87 years (median, 71 years). Twenty-four patients were Child–Pugh class A and
five patients were class B. Tumor size ranged from 5.0 to 13.9 cm (median, 6.9 cm). The follow-up
period ranged from 2 to 72 months (median; 27 months). All patients completed PBT according to the
treatment protocol without grade 4 (CTCAE v4.03 (draft v5.0)) or higher adverse effects. The two-year
local tumor control (LTC), progression-free survival (PFS), and overall survival (OS) rates were 95%,
22%, and 61%, respectively. The LTC was not inferior to that of previous reports using fiducial
markers. Respiratory-gated PBT with 4D-CT planning without fiducial markers is a less invasive and
equally effective treatment for large HCCs as PBT with fiducial markers.

Keywords: hepatocellular carcinoma; 4-dimensional CT planning; respiratory-gated irradiation;
proton beam therapy

1. Introduction

Hepatocellular carcinoma (HCC) is a common cancer in East Asia, including Japan, where
hepatitis B and hepatitis C infection are prevalent [1]. In HCC treatment, resection, liver transplantation,
and radiofrequency ablation (RFA) are designated as curative treatments and transcatheter arterial
chemoembolization (TACE) and sorafenib chemotherapy are designated as palliative treatments in the
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Barcelona Clinic Liver Cancer (BCLC) staging system [2]. Resection appears to be the most effective
treatment for HCC; however, it is invasive and poorly tolerated by sicker patients [3]. RFA is less
invasive than resection. Its overall survival rate appears to be equivalent to that of surgical resection on
small HCCs [4]; however, it is difficult to treat tumors >3 cm, or close to the hepatic artery, portal vein,
and/or intestines [5].

Classic photon radiation therapy has rarely been used in HCC because the dose tolerance of normal
liver tissue is considerably lower than that necessary for tumor control. Recently, highly conformal
radiotherapy, such as stereotactic body radiation therapy (SBRT), has been reported to achieve good control
for small HCCs with a tolerable liver dose [6,7]. However, for larger HCCs, photon therapy cannot easily
provide adequate coverage of the target without increasing the risk of radiation-induced liver disease [8].

The excellent dose distribution in proton beam therapy (PBT) makes it possible to treat large
liver tumors without a high dose to the normal liver. Recent studies have reported that PBT for HCC
achieves good local control with less toxicity than photon therapy [9,10].

The liver moves in association with respiration [11–13]. There are many techniques to reduce the
internal target volume (ITV) margin by decreasing respiratory motion using oxygen inhalation, abdominal
compression, respiratory-gated treatment with/without implanting fiducial markers, and a voluntary
breath-holding device [9,10,14–16]. In SBRT and PBT for liver neoplasms, fiducial markers are often used
to aid in positioning [9,10,14]. Although complications are rare, implanting fiducial markers in the liver is
an invasive procedure [14,17,18]. Using four-dimensional computed tomography (4D-CT) planning with
fiducial markers has been reported to be highly accurate [19,20]. Combining the 4D-CT planning technique
and adaptive PBT with frequent evaluation of the target during treatment may allow for PBT without
fiducial markers. We evaluated the effectiveness and toxicity of 4D-CT planning for PBT for large HCCs
(>5 cm) without fiducial markers.

2. Results

2.1. Toxicities

All patients completed PBT. Twenty-nine patients were followed up until death or until July 2017.
Median follow-up time was 27 months (range, 2–72 months) (Table 1).

Table 1. Characteristics of the patients and the tumors.

Characteristics n

Number of patients 29
Gender, male/female 22/7

Age (years); median (range) 71 (38–87)
PS 0/1/2 21/7/1

Tumor size; median (range) 69 (50–139)
50–100 mm/>100 mm 22/7

CH HCV/HBV/alcoholic/others 5/11/4/9
Child Pugh A/B 24/5

Tumor thrombus PV/HV/bile duct 9/4/1
Prior treatment TACE/RFA/surgery 13/4/3

Operable/inoperable 7/22
Solitary/multiple (two or more) 14/15

Single nodular type/non single nodular type 5/24
T stage 1/2/3a/3b/4 4/8/9/7/1

GTV (cm3); median (range) 107 (23–1056)
PTV (cm3); median (range) 293 (138–1566)

Liver volume (cm3); median (range) 1310 (810–2259)

Abbreviations; PS: performance status; CH: chronic hepatitis; HCV: hepatitis C virus; HBV: hepatitis B virus; PV:
portal vein; HV: hepatic vein; TACE: Transcatheter arterial chemoembolization; RFA: radiofrequency ablation; GTV:
Gross tumor volume; PTV: planning target volume.



Cancers 2018, 10, 71 3 of 10

Acute toxicity occurred in one patient, characterized by Grade 3 hyperbilirubinemia during treatment.
Other patients had skin reactions ≤ Grade 2. Six patients experienced late toxicity; two of Grade 3 pleural
effusion and one of Grade 3 ascites, and one patient each with a Grade 2 rib fracture, radiation pneumonitis,
and erosions of the ascending colon. No patient had late treatment-related toxicity > Grade 3.

2.2. Survival

The overall survival (OS) rates at two and four years after PBT were 61% (95% confidence interval
(CI), 52–70%) and 39% (28–48%), respectively. The local tumor control (LTC) rates at two and four
years were both 95% (95% CI, 91–100%). The progression-free survival (PFS) rates at one and two years
were 30% (95% CI, 21–38%) and 22% (14–30%), respectively. The median PFS was five months (range,
1–51 months) (Figure 1). A case of successfully-treated HCC is shown in Figure 2. The patient had no
severe complications over three years of follow-up.
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Figure 2. HCC (7.9 × 5.6 cm) treated by PBT (66 CGE/10 fractions) in a female in her eighties with 
hepatitis C liver cirrhosis, Child–Pugh class A. Tumor shows hypo-intensity in the hepatobiliary 
phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced MRI (EOB-MRI) 
before treatment (a). The isodose lines displayed on planning CT (b). Three years on from PBT, the 
tumor was reduced in size on EOB-MRI. The normal liver in the irradiated area was atrophied, but 
severe liver damage was not observed (c). 

Figure 1. Kaplan-Meier estimates of overall survival (OS), progression-free survival (PFS) rates,
and local tumor control (LTC) for 29 patients. The median overall survival period was 26.9 months
(range, 2.4–72.3 months). The median progression-free survival period was 4.7 months (range,
0.7–50.6 months). The two-year OS, PFS, and LTC rates were 61%, 22%, and 95%, respectively.
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Figure 2. HCC (7.9 × 5.6 cm) treated by PBT (66 CGE/10 fractions) in a female in her eighties with
hepatitis C liver cirrhosis, Child–Pugh class A. Tumor shows hypo-intensity in the hepatobiliary phase
of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced MRI (EOB-MRI) before
treatment (a). The isodose lines displayed on planning CT (b). Three years on from PBT, the tumor was
reduced in size on EOB-MRI. The normal liver in the irradiated area was atrophied, but severe liver
damage was not observed (c).
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There were no significant factors associated with OS in univariate and multivariate analyses.
There were some significant factors associated with PFS in univariate analysis: T stage, size of tumor,
planning target volume (PTV), operability, and history of prior treatment. In multivariate analysis,
T stage and tumor size were significant factors associated with PFS (Table 2).

Table 2. Multivariate analysis of potential predictive factors for progression-free survival (PFS).

Variables HR 95% CI p-Value

T stage (T1-2/T3-4) 0.28 0.09–0.87 0.03
Tumor size (≤100 mm/>100 mm) 0.24 0.06–1.00 0.049

Volume of PTV (≤300 mL/>300 mL) 1.04 0.27–4.02 0.95
Operable/inoperable 0.63 0.14–2.74 0.54

History of previous treatment 0.95 0.33–2.77 0.92

Abbreviations; HR: hazard ratio; CI confidence interval; PTV: planning target volume.

3. Discussion

Particle beam therapy is more focused than photon therapy because of the energy being concentrated
in the Bragg peak. This property allows for highly conformal therapy for HCC with a much smaller dose
to organs at risk (OARs) in comparison with photon therapy [21]. Many reports have been published
about local control in PBT for HCC [9,10,22,23]. In our study, at two years, the OS was 61% and the
local tumor control (LTC) was 95%. These are comparable with the results of previous reports (Table 3).
However, our PFS rates at one and two years of 30% (95% CI, 21–38%) and 22% (14–30%) were lower
than those of the previous studies, possibly because 17 of 29 cases had an advanced T-stage and multiple
lesions (some treated with RFA or TACE). PBT for HCC, including our study, can achieve good local tumor
control, but OS is unsatisfactory. Tumor size, tumor number, vascular invasion, and liver function are
known prognostic factors in resected HCC patients [5], and are also prognostic in patients treated with
PBT. We consider that early detection and prevention of cirrhosis of the liver caused from hepatitis virus,
alcohol, and non-alcoholic steatohepatitis might improve the OS in PBT for HCC.

Table 3. Reports of proton beam therapy for HCC.

Author Number Median Tumor Size
(Range)

Median Treatment
Dose

OS
2 Years

LTC
2 Years

Mizumoto et al. [9] 266 34 mm (6–130 mm) 72.6 CGE/22 Fr 61%
(3 years)

87%
(3 years)

Fukumitsu et al. [10] 51 28 mm (8–93 mm) 66.0 CGE/10 Fr 49%
(3 years)

95%
(3 years)

Sugahara et al. [22] 22 110 mm (100–140 mm) 72.6 CGE/22 Fr 36% 87%
Kimura et al. [23] 24 90 mm (50–180 mm) 72.6 CGE/22 Fr 52% 87%

This study 29 69 mm (50–139 mm) 76.0 CGE/20 Fr 61% 95%

Abbreviations; HCC: hepatocellular carcinoma; OS: overall survival; LTC: local tumor control; CGE: cobalt gray
equivalent; Fr: fractions.

In statistical analysis, we could not find factors significantly influencing OS. However, the T stage, size
of tumor, PTV, operability, and history of prior treatment were associated with PFS using univariate analysis.
In multivariate analyses, T stage and tumor size were associated with PFS. Komatsu et al. reported that
Child–Pugh classification was an independent risk factor for local recurrence in multivariate analysis
and the age, performance status, and Child–Pugh classification significantly influenced OS in univariate
analysis [24]. Tumor size, number of tumors, and vascular invasion were reported to be associated with
PFS in resected HCC patients [25–27]. Our results are consistent with the PFS rates of patients with the risk
factors described in the previous reports [9,25–27].

Reactions were generally mild and all patients completed PBT according to the treatment protocols
with acceptable complications. Of 29 patients, one had acute Grade 3 hyperbilirubinemia. Six patients
had late Grade 3 adverse events. No patient had Grade 3 liver dysfunction, bleeding, or inflammation
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of the digestive tract. Acute or late complications ≥ Grade 4 were not observed. Our results are
consistent with the previous PBT reports using fiducial markers [9,10,22–24,28]. This suggests that our
method offers effective treatment without the need for fiducial markers.

In PBT for HCC, a respiratory gating system with fiducial markers or the localization of lipiodol
are two methods used for accurate positioning in the tumor after TACE [9,10,29]. Fiducial marker
implantation in the liver is safe; however, some cases of bleeding and other complications have been
reported [14,17,18,30]. In unfavorable cases, such as patients with poor liver function and coagulation
abnormalities, fiducial marker implantation poses a risk. Accordingly, we used the diaphragm under
fluoroscopic guidance as the landmark for liver tumors with a respiratory-gated system. Balter et al. [31]
and Yang et al. [32] reported the diaphragm to be an acceptable anatomic landmark for liver motion.
For precise treatment, we evaluated the target motion with 4D-CT planning and frequently re-examined
the target with CT and/or MRI during the treatment period for adaptive PBT. We applied adaptive PBT
using a respiratory-gated system with narrow gating at 17–25% of the duty cycle at end-expiration (about
1 s). Narrow gating can prolong the treatment time in patients with irregular respiration. To shorten
treatment time, our patients had breath training to reduce irregular patterns [33]. Our method is useful for
precise irradiation for treatment of large HCCs without inserting fiducial markers.

There are some limitations to this study. The number of patients was limited, with retrospective
analysis and a short follow-up period. Prospective studies with larger numbers of patients are
needed to confirm the effectiveness and safety of 4D-CT planning PBT without fiducial markers for
large HCC. Some guidelines do not accept radiation therapy and proton beam therapy for HCC as
a standard treatment modality. Some guidelines suggested radiation therapy, or particle beam therapy
for unresectable HCC, which would be difficult to treat with RFA. However, these guidelines do not
recommend it [5]. Further evaluation in clinical studies is necessary.

Large tumor size is a negative prognostic factor as it is associated with resistance to radiation
therapy. This is largely because of the hypoxic tumor microenvironment, and the increased expression
of Poly(ADP-ribose) polymerase (PARP) and Hypoxia Inducible Factor 1a (HIF-1a) [34]. In our study,
although good LTC was achieved, OS and PFS were not improved. Better adjuvant therapy may
improve the treatment outcome of PBT for large HCCs.

4. Patients and Methods

This retrospective study was approved by the research ethics committee of our hospital (IRB
number 13–25) and written informed consent for this study was waived owing to its retrospective
nature. Between March 2011 and March 2015, 118 patients were treated with PBT for HCC in our
hospital. A total of 54 out of 118 patients had HCCs >5 cm in diameter; 29 of 54 patients who could be
observed over 12 months or died within 12 months after PBT were enrolled. The 29 patients comprised
22 men and seven women, whose median age was 71 years (range, 38–87 years) (Table 1). HCCs were
pathologically confirmed in four cases and clinically diagnosed in 25 cases based on the characteristic
findings on dynamic CT and/or MRI, and serum level elevations of AFP and Des-gamma-carboxy
prothrombin (PIVKA II). Treatment policy was discussed with surgeons and other physicians about
the course of treatment at the tumor board in our hospital.

4.1. Proton Beam Therapy Planning

The patient setup and planning imaging have been previously reported [35]. We used respiratory-
synchronized 4D-CT (Aquilion LB TSX-201A: Toshiba Medical Systems Co., Tochigi, Japan) for
planning. Respiratory gating was controlled by monitoring abdominal wall motion with the laser
sensor of a respiratory gating system (AZ-733V: Anzai Medical Co., Tokyo, Japan) under stable
breathing (period of breathing 10–15 times/min by inducing rhythm using a metronome) [36]. CT data
were reconstructed at a section thickness of 2 mm, and section interval (gap) of 0.4 mm. The field of
view (FOV) was adjusted to match the physique of the patient.
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Targets were contoured at the end-expiratory phase using 4D-CT. Gross tumor volume (GTV) was
delineated manually with contrast-enhanced CT and MRI. Clinical target volume (CTV) encompassed
the GTV with a 0.5 cm margin in all directions. ITV was determined as CTV plus an additional margin
due to respiratory movement calculated by the 4D-CT analysis. The internal margin due to respiratory
movement was customized based on the amount of tumor motion visualized in the gating window
at 17–25% duty cycle around the end of exhalation [37]. Planning target volume (PTV) encompassed
the ITV with a 0.5 cm margin in all directions (Radiation treatment planning system: XiO-N; Elekta,
Mitsubishi Electric Corporation, algorithm: proton pencil beam algorithm). We used two or more beam
ports for PBT of liver tumors. Beam directions were selected to minimize dose to normal liver and to
avoid the GI tract using patient collimators [28,38]. The total dose at the isocenter was prescribed to
cover 95% of the PTV.

4.2. Proton Beam Treatment

The PBT system (MELTHEA, Mitsubishi Electric Corporation, Kobe, Japan) uses proton beams
ranging from 150 to 230 MeV, generated through a linear accelerator and synchrotron, spread out and
shaped with ridge filters, a scatterer, a pair of wobbling magnets, multileaf collimators, and custom-made
patient collimators and boluses, to conform the beams to the treatment planning data. The proton beams
were controlled by the respiratory gating system, as simulated in treatment planning. It is an image-guided
radiation therapy (IGRT) system with biplane kVp X-rays placed in the anterior–posterior and right–left
directions using a robotic treatment table with six-axis correction of movement. It can correct setup
errors by matching to the vertebral bodies and can show real-time movement of the diaphragm by kVp
X-ray fluoroscopy. It can measure the distance between the diaphragm position at planning and the
diaphragm position in peak-expiratory phase for gating. In our treatment, we adjusted the target position
using vertebral bodies as landmarks, then adjusted for the displacement of the diaphragm by moving the
treatment couch in the CC direction.

Seven protocols for respiratory-gated PBT (66.0–80.5 CGE in 10–38 fractions using 150, 190,
or 230-MeV proton beams) were used in this study (Table 4), using an irradiation schedule of 5 fractions
per week. The PBT protocol was selected depending on tumor location based on the previously
reported studies [24]. A total dose of 66.0 CGE in 10 fractions was selected for tumors that were not
adjacent to the GI tract or the porta hepatis. A total dose of 76.0 CGE in 20 fractions was selected for
tumors adjacent to the porta hepatis. For tumors that were adjacent to the GI tract, a total dose of
76.0 CGE in 38 fractions or 70.4 CGE in 32 fractions was selected. Other protocols were employed as
needed to minimize the OAR dose or accommodate the physical condition of the patient.

Table 4. Treatment protocols.

Total Dose
(CGE)

Number of
Fractions

Cases
(n = 29)

The Number of
Re-Plan

Fraction at Re-Plan
(Cases)

66 10 4 - -
76 20 13 1 13 (1)

80.5 23 1 - -
80 25 1 - -

67.5 25 1 - -
70.4 32 5 5 20 (1), 22 (4)
76 38 4 4 20 (2), 30 (2)

Abbreviations; CGE: cobalt Gray equivalent.

The radiation dose was prescribed in CGE using a relative biological effectiveness value of 1.1,
based on our preclinical experiments. Proton treatment beams were controlled for respiratory-gated
delivery at 17–25% duty cycle around end-expiration (about 1 s) [37,39,40].

We evaluated the irradiated area by autoactivation imaging using positron-emission tomography/
computed tomography (PET/CT) on the first day of PBT [41]. Autoactivation PET is suboptimal for
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evaluating irradiated dose or position in detail, thus we used this image for rough irradiated position
confirmation. Therefore, we intended to evaluate the shape of the tumor, liver, and GI tract using CT
images (slice thickness 3.75 mm) under breath-holding position at end of exhalation. We examined the
target with CT and MRI at the time after 15–20 fractions (3–4 weeks after the beginning of treatment)
for change of treatment planning [42]. The changes in the size of GTV, shape of liver, and GI tract were
evaluated by rigid image registration using commercially available software (MIM Maestro: MIM
Vista Corp, Cleveland, OH, USA). If GTV had shifted out of the PTV or OARs had moved into the PTV,
we generated a new treatment plan.

4.3. Follow-Up and Toxicity Evaluation

Follow-up evaluations were performed every three months after completion of PBT for the first
three years, every six months in the following 3–5 years, and annually thereafter. At the follow-up
visits, all patients received clinical and radiological examinations (abdominal CT and MRI). Toxicity
was graded according to Common Terminology Criteria for Adverse Events, Version 4.03 (CTCAE
v4.03 (draft v5.0)) (National Cancer Institute, Bethesda, MD, USA).

4.4. Statistical Methods

The Kaplan–Meier method was used for calculation of OS, PFS, and LTC. Multivariate analysis
was performed using a Cox regression analysis. Variables using multivariate analysis were clinical
factors (gender, age, chronic liver disease with viral infection, alcoholic liver, Child–Pugh class,
operability, performance status, T classification, prior treatment, single mass or not [43], and whole
liver volume), and planning factors (dose per fraction, tumor size, PTV). Hazard ratios (HRs) with 95%
confidence intervals (CI) were calculated for each independent factor. The Kaplan–Meier method and
the Cox regression analysis were performed using commercial (SPSS 20.0, IBM Corp., Armonk, NY,
USA) software. A p value < 0.05 was defined as statistically significant.

5. Conclusions

Four-dimensional CT planning for respiratory-gated PBT without fiducial markers has the
potential to be an effective and less invasive treatment method for large HCCs.
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