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Commercial off-the shelf (COTS) wearable devices continue development at

unprecedented rates. An unfortunate consequence of their rapid commercialization

is the lack of independent, third-party accuracy verification for reported physiological

metrics of interest, such as heart rate (HR) and heart rate variability (HRV). To address

these shortcomings, the present study examined the accuracy of seven COTS devices

in assessing resting-state HR and root mean square of successive differences (rMSSD).

Five healthy young adults generated 148 total trials, each of which compared COTS

devices against a validation standard, multi-lead electrocardiogram (mECG). All devices

accurately reported mean HR, according to absolute percent error summary statistics,

although the highest mean absolute percent error (MAPE) was observed for CameraHRV

(17.26%). The next highest MAPE for HR was nearly 15% less (HRV4Training, 2.34%).

When measuring rMSSD, MAPE was again the highest for CameraHRV [112.36%,

concordance correlation coefficient (CCC): 0.04], while the lowest MAPEs observed

were from HRV4Training (4.10%; CCC: 0.98) and OURA (6.84%; CCC: 0.91). Our

findings support extant literature that exposes varying degrees of veracity among COTS

devices. To thoroughly address questionable claims from manufacturers, elucidate the

accuracy of data parameters, and maximize the real-world applicative value of emerging

devices, future research must continually evaluate COTS devices.

Keywords: wearables, root mean square of successive differences, heart rate variability, validation, heart rate,

electrocardiogram, photoplethysmography

INTRODUCTION

The proliferating market for consumer off-the-shelf (COTS) wearables – Forbes forecasted the
wearable market to evolve into a $27 billion industry by 2022 – has created an opportunity
for consumers to systematically monitor their own health on a regular basis (Bunn et al., 2018;
Lamkin, 2018). As the wearables market continually becomes more competitive, options for
wearables include fashion commodities such as smart watches and rings, as well as clothing textiles
offering dual-purposes beyond visual appeal that, in many cases, provide users with a plethora of
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health-related data (Waugh et al., 2018; Aroganam et al.,
2019; Depner et al., 2020). These data present a unique
opportunity to the end-user that affords them the ability to garner
actionable insights related to their personal health, which may
include stress states and recovery, as well as physical, cognitive,
and psychomotor performance (De Arriba-Pérez et al., 2016;
Cardinale and Varley, 2017; Bunn et al., 2018; Aroganam et al.,
2019). Ultimately, end-users may incorporate wearable-derived
physiological data to sense, assess, and subsequently augment
their own well-being by deploying acute lifestyle alterations
(e.g., sleep more, increase exercise training load) that eventually
manifest into chronic, sustained enhancements (Galster and
Johnson, 2013).

Of the commonly reported physiological metrics among
COTS wearables, heart rate (HR) data are most consistently
captured as it has a multitude of applications and is easily
interpretable for most end-users (Achten and Jeukendrup,
2003). HR values provide a numeric representation of general
functionality within the human body, with lower values more
indicative of a body at rest (negligible stressors). Increased HR
values are reflective of an individual’s cardiovascular workload
during physical exertion or stress (Borresen and Lambert,
2008), with higher values typically reflecting increased metabolic
demand or a decrease in functional efficiency (e.g., suppressed
running economy due to fatigue) (Achten and Jeukendrup,
2003). Modulations in HR over time are indicative of stress
adaptation, which may be considered positive (e.g., increased
fitness yielding decreased HR during exercise) or negative (e.g.,
poor nutrition and sleep yielding increased HR at rest), and
are often used in medical, sports, and health/fitness settings
as a metric for characterizing general health status (Hillman
et al., 2003; Borresen and Lambert, 2008). Further, HR is a
strong indicator for mortality (Mensink and Hoffmeister, 1997;
Watanabe et al., 2001) as cardiovascular complications are the
leading cause of death in the United States (Kitamura et al.,
2020). However, there remains a theoretical disconnect in the
application of HR to assess autonomic regulation, which would
provide a better understanding of stress-recovery states in an
individual (Tarvainen et al., 2014). The harmony between stress
and recovery within the human body is kept in check by the
autonomic nervous system (ANS), which comprises a dynamic
balance between its two components, the parasympathetic and
sympathetic nervous systems (Aubert et al., 2012). Fluctuations
in ANS elements are often quantified by assessing an individual’s
heart rate variability (HRV) (Shaffer and Ginsberg, 2017).

HRV, derived from the inter-beat intervals spanning across
consecutive heart beats (Shaffer and Ginsberg, 2017), provides
a more in-depth reflection of auto-regularity modulation within
the human body (Acharya et al., 2006; Markovics et al.,
2018). Standard HRV metrics comprise the time and frequency
domains, which oscillate in response to an individual’s immediate
psychophysiological response to events or stressors (Shaffer and
Ginsberg, 2017). Of those metrics, the most commonly reported
metrics are the standard deviation of NN intervals (SDNN)
and root mean square of successive differences (rMSSD), both
representative of the changes in HR cycles within the time
domain (Shaffer and Ginsberg, 2017). Of note, rMSSD is the

primary and most useful resting HRV time domain metric
(Buchheit, 2014; Shaffer and Ginsberg, 2017), as previous
research identified it as an indicator of parasympathetic response
to stress (Mayya et al., 2015). rMSSD permits quantification of
parasympathetic modulation (Stanley et al., 2015) and reflects
the cognitive processes and stress states (Mayya et al., 2015) via
direct vagus nerve innervation (DeGiorgio et al., 2010; Wang and
Huang, 2012). Deviations from normative rMSSD are indicative
of sudden death in epilepsy (DeGiorgio et al., 2010; Wang and
Huang, 2012), atrial fibrillation (Wang and Huang, 2012) and
other cardiovascular related complications such as congenital
heart disease and respiratory sinus arrhythmia (Massin et al.,
1999; Berntson et al., 2005). In high performing populations
(i.e., athletes or active duty military), rMSSD provides insightful
information to ascertain changes in psychophysiology (Berntson
et al., 2005), with increased values reflective of adaptation to
training and a higher level of fitness and recovery state (i.e.,
sufficient psychophysiological coping with external stressors)
(Schmitt et al., 2015). However, by utilizing a combinatorial
approach and regularly assessing HR and rMSSD, more objective
monitoring of stress resiliency is accomplished (Buchheit, 2014).
Specifically, an inverse correlation between HR and rMSSD has
been identified such that a decrease in rMSSD and subsequent
increase in HR is reflective of the body’s stressed response
(positive adaptation) to a greater magnitude in external stress
stimuli (Bhati and Moiz, 2017). Additionally, most commercial
devices that measure HRV report rMSSD, so it can be generally
considered a common metric across HRV technologies. Due to
the aforementioned reasons, rMSSD was chosen as the primary
HRV metric in the present study to investigate the accuracy of
various COTS wearables.

Historically, HR and HRV related metrics are most accurately
obtained by use of a multi-lead electrocardiogram (mECG),
which is often found in clinical-based settings. However,
the recent COTS wearables industry surge stimulated the
expansion of various types of electrocardiogram (ECG) and
photoplethysmography (PPG) devices. The signal captured from
ECG based devices represents electrical activity of the heart,
whereas PPG COTS devices utilize an optical technique to
infer heart rate dynamics from the quantification of volumetric
changes in distal blood flow (Allen, 2007; Georgiou et al., 2018).
The gold standard for evaluating cardiovascular physiology
(Drew et al., 2004) is an mECG device comprised of multiple
leads that are strategically placed in close proximity to the
heart itself, enabling the signal to noise ratio (SNR) to remain
minimal and constant (Kher, 2019). Still, mECG is considerably
impractical for the general population to perform more routine
(e.g., daily, weekly) HRV evaluations in real-world settings
(Castaneda et al., 2018). Not only are the costs and equipment
sophistication associated with clinical mECG unreasonable for
most users, the degree of expertise necessary to collect and
analyze mECG data further limits the practical applications
(Smulyan, 2019). As previously mentioned, the demand for the
monitoring of HR and HRV related metrics has been remedied
through the emergence and proliferation of COTS wearable
technologies, by providing a more user-friendly, comfortable,
and cost-effective strategy for end-users. Notably, PPG devices
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remain among the most popular COTS technologies (Castaneda
et al., 2018; Henriksen et al., 2018; Bent et al., 2020), with an
estimated 20.1 million smartwatches sold in 2019 (Statista, 2019).
Generally speaking, PPG sensors are located on the periphery
of the body, resulting in a temporal delay in the propagation
of the peripheral pulse wave to the wearable device (Georgiou
et al., 2018). The distal location of the devices are also known
to make them more susceptible to motion artifacts (Lee and
Zhang, 2003; Bent et al., 2020). HRV indices such as rMSSD are
highly dependent on the signal quality and the duration of signal
acquisition. Certainly, both of these signal components can be
corrupted by motion artifacts or inferior data quality (Lee and
Zhang, 2003; Baek and Shin, 2017; Castaneda et al., 2018) and
purport the need for validation against a vetted mECG device.

As the market and demand for wearables continues to expand
with an estimated 137 million smartwatches sold by 2022 (Bunn
et al., 2018; Pevnick et al., 2018), there remains a critical lack
of third-party, independent validations. Research investigating
COTS device accuracy, specific to HRV, is limited, despite the
established knowledge that tracking HRV provides pertinent
insights related to the stress-recovery and performance states
across individuals (Makivic et al., 2013; Teisala et al., 2014; Flatt
and Esco, 2016; Lischke et al., 2018). The lack of direct validation
for COTS technologies that utilize this valuable measurement
tool creates concern surrounding the accuracy of decisions
being made from its current applications. To date, HRV metric
validation efforts are limited to examining device accuracy during
bouts of physical activity (Hernando et al., 2016; Bunn et al., 2018;
Henriksen et al., 2018), which is likely a result of the growing
interest in HRV monitoring for stress adaptations as they relate
to sport performance and physical health (Jiménez-Morgan
and Mora, 2017). Thorough third-party validations are further
limited by manufacturers often incorporating proprietary noise
cleaning algorithms (De Arriba-Pérez et al., 2016; Henriksen
et al., 2018; Markovics et al., 2018; Bent et al., 2020) to allegedly
bolster signal quality, as many popular wearable devices are
commonly sensitive to motion artifact (Lee and Zhang, 2003;
Yousefi et al., 2013; Waugh et al., 2018). These algorithms
are rarely disseminated to consumers or tested by independent
researchers (De Arriba-Pérez et al., 2016). The result is a black
box effect for both parties, leaving everyone, except for the
manufacturers, unaware as to how the physiological metrics are
processed (Tuovinen and Smeaton, 2019).

Shortcomings in the extant literature pertaining to HRV
commercial technologies are concerning as data derived from
these sources may be incorporated into daily decision making
by clinicians, researchers, practitioners, or consumers. In 2016,
IBM estimated that poor data quality cost the United States $3.1
trillion per year (Redman, 2016). As such, it is paramount that
the validity of current COTS technologies be assessed against an
mECG so that any and all end-users are afforded the opportunity
to sufficiently evaluate the wearable device(s) most suited to
their needs.

Therefore, the purpose of the present study was to perform
resting-state validations of HR and rMSSD, collected via COTS
devices, against a commercially available mECG. A secondary
objective was to determine whether or not there were differences

in accuracy for measuring rMSSD when comparing commercial
ECG and PPG devices. Extending the knowledge of real-life
utility (with respect to decision-making and personal health)
in commercial wearable devices, specifically those that measure
resting state HR and HRV, has profound implications for not
only the general consumer, but clinicians, practitioners, and
researchers alike. As such, individuals may be afforded greater
degrees of confidence when implementing such wearables into
daily living, general practices, and/or research protocols.

METHODS

All components of the experimental protocol delineated
below were approved by the Institutional Review Board of
West Virginia University (Protocol Number 1803027033) for
human subject’s research. Procedures were compliant with the
Declaration of Helsinki guidelines. Written consent was obtained
from each participant prior to enrollment.

Subjects
Five healthy adults, comprised of three males (mean ± SD;
age: 20.33 ± 2.08 y; height: 181.19 ± 10.57 cm; weight: 77.11
± 9.07 kg) and two females (age: 19.50 ± 0.71 y; height:
160.02 ± 7.18 cm; weight: 56.70 ± 3.21 kg) were recruited to
collectively perform a total of 148 validation trials. Participants
were screened by the American College of Sports Medicine
Risk Stratification guidelines and were deemed as “low risk”
(Medicine, 2017). Provided that physiological measurements
derived from the COTS devices within a single person may
be dependent, the COTS devices do not know that and thus
measure indiscriminately from person-to-person. The devices
themselves are machines by nature that function to objectively
measure heart rate signals derived from any human body that
they come into contact with. As such, the experimental design
deployed in this study enabled ideal conditions for COTS devices
to perform at their best ability, which is similar logic to previously
published validations on consumer wearables (Burns et al., 2010a;
Kaewkannate and Kim, 2016; Nelson and Allen, 2019; Nakano
et al., 2020).

Experimental Design
This study was designed to evaluate the measurement accuracy
of various COTS devices purporting the quantification of rMSSD
and mean HR. Experimental trials comprised resting-state
measurements obtained in the same environmental conditions
(e.g., room temperature, ambient lighting) from COTS devices
with simultaneous mECG collection as a comparative validation
standard. A comprehensive list of the devices and software
applications utilized in the present study is provided in Table 1.

Commercial Off-The-Shelf Devices and
Measuring HRV
The various COTS devices and applications implemented for
direct comparisons to mECG (Shimmer, Dublin, Ireland)
included three tangible devices and three third-party
applications. Shimmer was previously validated against clinical
grade mECG and was incorporated as our mECG validation
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TABLE 1 | Comprehensive device list.

Device name Platform used Device type Measurement strategy

Shimmer3 mECG

Unit

iMotions Software Multi-lead

electrocardiography

ECG

5 leads (RA, RL, LA, LL, chest-V1)

Pre-gelled adhesive electrodes

Polar H10 EliteHRV

HRV4Training

Chest-based strap ECG

Multiple contact sensors on strap

Firstbeat Textile

Strap

Firstbeat Chest-based strap ECG

Multiple contact sensors on strap

OURA (2nd Gen.) OURA Finger-based ring PPG

Contact Infrared (900 nm)

Transmission

iPhone 8 Camera HRV

Elite HRV

HRV4Training

Smartphone PPG

Contact LED

A summary of the mECG validation standard, the commercial off-the-shelf devices as well as all smartphone application pairings that were analyzed in the present study.

standard device (Burns et al., 2010a,b; Kerdjidj et al., 2016).
Of the devices examined, the 2nd generation Oura smart
ring (OURA; OURA, Oulu, Finland) was a finger-based ring
whereas both the Polar H10 (Polar, Kempele, Finland) and
Firstbeat Textile strap (FSTBT; Firstbeat, Jyväskylä, Finland)
were commercial chest-based ECG straps (cECG). Data from
OURA and FSTBT were obtained via Bluetooth synchronizing
to the companies’ smartphone application on an iPhone
8 (Apple, California, United States). The Polar H10 strap
was connected via Bluetooth to the third-party smartphone
applications HRV4Training (HRV4TR/ECG; HRV4Training,
Amsterdam, Netherlands) and EliteHRV (ELT/ECG;
EliteHRV, North Carolina, United States). Additionally,
PPG comparisons were conducted for the following third-
party applications: HRV4Training (HRV4TR/PPG), EliteHRV
(ELT/PPG), and CameraHRV (CAMHRV; CameraHRV,
Amsterdam, Netherlands). An iPhone 8 camera was utilized for
HRV4TR/PPG, ELT/PPG, and CAMHRV such that all three
were fingertip-based PPG (fPPG) assessments. Refer back to
Table 1 for a summary of how COTS devices and the different
software applications were implemented.

Validation Trials
In order to evaluate PPG and cECG COTS devices, a chest-
mounted, 5-lead (RA, RL, LA, LL, chest-V1), mECG device
(Shimmer) was worn constantly throughout the duration of
each experimental trial (Burns et al., 2010a,b; Kerdjidj et al.,
2016). This device was formatted to record data at 512Hz
via the software program, iMotions (Version 8.1, Copenhagen,
Denmark). Electrode sites were prepared by abrading the skin
with an alcohol prep pad. New mECG leads were checked for
moist conduction gel, then placed at the customary right arm
(RA), left arm (LA), right leg (RL), and left leg (LL) anatomical
locations, according to manufacturer guidelines. A single trial
consisted of successive altering of the various PPG/cECG devices.
To mitigate device signal acquisition interference, no more than
one device was employed at each location (e.g., wrist, finger,
chest). For example, no more than two fPPG’s (right and left
index fingers) were simultaneously collecting data, and only

one cECG strap was introduced at a time, ensuring no physical
interference from the mECG. Order of device appearance as well
as limb placements were randomized prior to the first trial. Trial
durations were dictated by a COTS device’s default recording
periods and were either 3 or 5min in duration. In summary,
devices were introduced based on anatomical location required
for data collection (wrist vs. finger vs. chest) and duration
of single recording periods (3 or 5min). The Firstbeat Quick
Recovery Test (QRT) and CAMHRV smartphone application
recordings were the only COTS technologies requiring 3-min
trials, whereas all others spanned 5min. To perform an HRV
(rMSSD) assessment with OURA requires the execution of their
custom app feature “Moment,” which then reports both the
minimum HR and average rMSSD during a 5-min window.
However, the reporting of minimum HR rather than average HR
prevented direct comparisons of HR for OURA vs. the other
COTS devices assessed in this study. Each device also had its own
calibration window between when the “Start” button was pressed
and when data collection commenced. This calibration window
was predetermined before data collection and incorporated into
the procedures. Ultimately, the goal was to ensure all data
collection periods were synchronized for simultaneous initiation
and cessation of recording periods.

Prior to collection, subjects were instructed to remain in
an upright, seated position, with their hands rested in their
lap. During instances which required the use of a fingertip for
fPPG measurements, participants supinated their hands (rested
on their thighs) and were instructed to place the camera of
an iPhone 8 on their index finger such that no erroneous
pressure originating from the finger was being applied to the
iPhone camera. Additionally, participants were asked to continue
normal, spontaneous breathing and abstain from any verbal
or non-verbal communication throughout the duration of data
collection. Time of day (HH:MM:SS), which was obtained from
the same internal clock on the computer used for the entirety of
data collection, was manually recorded precisely at the moment
COTS devices were initiated. Manual time stamps were later used
to denote the exact corresponding time interval from mECG
to which COTS were compared against. Time spent switching
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between devices, time between sessions, and time of day for
data collection were not controlled because, for the sake of
assessments, we aimed for a relatively higher variation in diurnal
rhythm to better understand the performance of the commercial
devices under slightly different conditions. Moreover, controlling
for the above variables would likely not influence the results, as
both the mECG and test wearables ought to be measuring the
same data (HR and rMSSD) over the same periods in time. For
instance, should there be inconsistencies in timing as a result
of the participant or investigator, the impact of such stalling
on varying HR or rMSSD would be measurable by both the
mECG and wearable with proportionate accuracy and reliability
(if the COTS device is capable). Following each evaluation
time sequence, data from the respective COTS devices were
immediately exported and stored in version 16 ofMicrosoft Excel
(Microsoft, Washington, United States) for later comparisons
to Shimmer.

Data Analysis
Raw mECG waveform data (from the Shimmer) were analyzed
via Kubios HRV Premium (V3.2.0, Kuopio, Finland) to enable
time segmenting, such that comparisons were directly aligned
(using themanually recorded timestampsmentioned above) with
data exports obtained from each of the COTS devices (Tarvainen
et al., 2014). For the measurement of rMSSD from the raw
Shimmer signal, data processing was executed within Kubios to
enable direct (synchronized with COTS devices) comparisons.
Since the HRV analyses primarily focused on rMSSD (i.e.,
autonomic activity), very low frequency trend components were
removed by using the Smoothing priors method. The smoothing
parameter was set to λ = 400, which corresponds to a cut-off
frequency of 0039Hz (below the low-frequency band). Finally,
inter-beat intervals (IBIs) were extracted from the R-R temporal
differences throughout each recording session. For each device,
rMSSD was calculated as the square root of the mean squared
differences between successive RR intervals for the specified
recording period. In summary, HR and rMSSD values from
COTS devices were obtained from their companion applications
whereas the same metrics derived from the Shimmer signal were
analyzed in and extracted from Kubios.

Statistical Analyses
Analysis began with the calculation of absolute percent errors
(APE) with respect to mECG for each available device (listed
in Table 1) and metric pairing. Evaluations of mean HR were
performed on all COTS devices except for OURA, although the
smart ring is included in rMSSD comparisons. The formula used
for APE follows:

|COTS device measurement−mECGmeasurement|

mECGmeasurement
∗100 (1)

Next, the Tukey outlier detection rule was employed to identify
any extreme outliers in APE values with respect to each device
and metric combination (Pan and Tompkins, 1985). According
to this rule, an APE observation is regarded as “extreme” if it lies
outside the outer fence of the device/metric APE boxplot, which
is defined as 3∗IQR above the respective third quartile, or 3∗IQR
below the respective first quartile (Dawson, 2011). Removal

of these values helped to account for errors in procedure, or
problems with Kubios. A total of 20 extreme outliers were
identified out of 363 total data points (this explains the varying
sample sizes in the results to follow).

From here, summary statistics per device/metric pairing were
provided, including mean APE (MAPE). Then, ordered boxplots
(determined by MAPE) were constructed to help visualize and
compare device performance. A second measure of device
performance, Lin’s concordance correlation coefficient (CCC),
was also calculated (Lin, 1989). This is an established analysis
for evaluating agreement (Morgan and Aban, 2016) that has
been used in other COTS wearables research validating heart
rate measurements (Nelson and Allen, 2019) and validating new
methods to measure myocardial blood flow (Dunet et al., 2016).
The CCC aims to measure the overall strength of agreement
between device measurements and their corresponding mECG
measurements by comparing their bivariate relationship to the
concordance (identity) line. Similar to the traditional Pearson
correlation coefficient, the CCC has a range from−1 to+1, with
+1 representing perfect agreement.

Neither the CCC nor APE provide any clinically applicable
information on whether the device measurements overestimate
or underestimate the mECG measurements (with respect to the
metric in question). However, this is a topic of interest thus the
Bland Altman (BA) limits of agreement method, which provides
measures and visualizations of device bias and precision (or
lack thereof), was employed (Bland and Altman, 1986). This
method is also recommended for use in evaluating agreement
(McLaughlin, 2013), with applications in studies comparing PPG
pulse rate variability measurements to ECG HRV measurements
(Bánhalmi et al., 2018). For each metric and device combination,
an individual BA analysis was conducted. The usual BA statistics
[bias, lower limit of agreement (LOA), upper LOA] were
presented in tabular form, while the plots were arranged in
a grid. Additionally, with respect to each device and metric
combination, it was of interest to determine whether significant
bias was present. This was achieved by conducting a paired
difference t-test using a hypothesized mean of 0. Since there
weremultiple devices in comparison, a Bonferroni correction was
applied to the resulting p-values. From here, cases where p< 0.05
were deemed statistically significant.

Statistical analyses were performed in R version 4.0.0 (Team,
2019). Plots were constructed via the gridExtra package (Auguie,
2017) as well as the tidyverse packages, which were also utilized
for data pre-processing (Wickham et al., 2019). The blandr and
rstatix packages were incorporated to facilitate calculations of
Bland Altman statistics (Datta, 2017; Kassambara, 2019).

RESULTS

Evaluation of COTS Devices in Reporting
Heart Rate
Before determining accuracy in reporting rMSSD, mean HR data
from the COTS devices (when available) were first compared
to the mECG device via APE. COTS devices were sorted from
lowest to highest MAPE values (FSTBT: 0%; CAMHRV: 17.26%,
respectively) and are presented in Figure 1. Accompanying
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summary statistics for absolute percent error appear in Table 2.
When measuring HR, the top two performers were FSTBT
and ELT/ECG, with reported MAPE values of 0 and 0.69%,
respectively. MAPE values were <5% for five of the six COTS
devices analyzed. CAMHRV, an fPPG third-party app, reported
as the worst device for measuring HR with a MAPE of 17.26%,
which was further corroborated by having the highest median
(12.03%), maximum (56.03%), and interquartile range (IQR;
15.31%) in comparison to all other COTS devices. For this
reason, CAMHRVwas omitted from Figure 1 to avoid drastically
skewing the scaling of the figure. Otherwise, FSTBT (MAPE; 0%),

ELT/ECG (0.69%), ELT/PPG (1.22%), HRV4TR/PPG (2.07%),

HRV4TR/ECG (2.34%) were all deemed sufficient at measuring
and reporting HR according to APE summary statistics (Table 2).

Propensity for estimation bias with respect to HR is presented

in Table 3, which determined significant bias for HRV4TR/ECG

[−0.97 beats per min (bpm); p < 0.05] and CAMHRV

(11.14 bpm; p < 0.05). The apparent underestimation from

HRV4TR/ECG was <1 heartbeat away from mECG values and
the 95% CI was remarkably close to zero (−1.47 to −0.47 bpm),

which suggests statistical significance was observed due to low

variations in reporting HR thus measurements still report at

an acceptable degree of accuracy. Contrarily, poor HR data
from CAMHRV (as discussed above) translated to a significant

overestimation of HR (11.14 bpm) despite an especially large

LOA Range (38.58 bpm). All other devices did not significantly

over or underestimate HR as FSTBT (0 bpm), ELT/ECG (−0.32
bpm), ELT/PPG (0.34 bpm), and HRV4TR/PPG (−0.10 bpm) all
fell within one beat per min with respect to the mECG values.

Evaluation of COTS Devices in Reporting
rMSSD
To determine device capabilities for assessing rMSSD, APE values
were again calculated for the six COTS devices, which are sorted
in ascending order from the lowest MAPE value (HRV4TR/ECG:

TABLE 2 | Absolute percent error executive summary statistics: mean heart rate.

Metric Device n MAPE (%) Min. (%) Median (%) Max. (%) IQR (%)

HR FSTBT 21 0 0 0 0 0

ELT/ECG 19 0.69 0 0 3.92 0.75

ELT/PPG 21 1.22 0 0 6.06 1.70

HRV4TR/

PPG

20 2.07 0.14 1.38 6.80 2.59

HRV4TR/

ECG

21 2.34 0.77 2.53 3.88 0.88

CAMHRV 23 17.26 0 12.03 56.03 15.31

Absolute percent error summary statistics are reported for all devices that provided mean

heart rate measurements. Data are presented in ascending order with respect to mean

absolute percent error (MAPE). n, number of trials; Min, minimum; Max, maximum; IQR,

interquartile range.

FIGURE 1 | Mean heart rate absolute percent error: box plot visualization of absolute percent error (APE) for the commercial-off-the-shelf (COTS) devices that

reported mean heart rate (mHR). COTS devices that are presented include Firstbeat (FSTBT), Elite HRV via electrocardiogram (ELT/ECG), Elite HRV via

photoplethysmography (ELT/PPG), HRV4Training via PPG (HRV4TR/PPG), and HRV4Training via ECG (HRV4TR/ECG).
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4.10%) to the highest (CAMHRV: 112.36%) in Figure 2 below.
Further examination of the APE summary statistics in Table 4

(APE summary table for rMSSD) revealed that HRV4TR/ECG
and OURA possessed the lowest MAPE, median percentage
and IQR relative to all other COTS devices (4.10, 2.76,
3.74% and 6.84, 4.06, 6.55%, respectively). Similarly, ELT/ECG
(7.66%), ELT/PPG (8.71%), and HRV4TR/PPG (9.43%) all
possessed MAPE values <10% whereas FSTBT was close with a
MAPE of 11.27%. The inability for CAMHRV to measure HR
accurately, as depicted in Figure 1 and Tables 2, 3, translated
to its inability to report rMSSD measurements. MAPE for
CAMHRV exceeded 100% (112.36%) while maximum error
was recorded as 328.67% (after extreme outlier removal).
CAMHRV was omitted from Figure 2 due to the drastically
large degree of error relative to the other COTS devices such
that figure scaling would have been severely limited thus
hindering interpretations.

Individual Bland Altman plots for the COTS
devices arranged from smallest to largest LOA
range when measuring rMSSD are provided in
Figures 3A–F whereas the worst performing device,
CAMHRV appears separately in Figure 4 due to the
drastically larger degree of error and axis scaling.
Additionally, Bland Altman summary statistics providing
additional insights for each COTS device are presented
in Table 5.

Consistent with performing as the most accurate for
measuring rMSSD per APE statistics, biases were the lowest
for HRV4TR/ECG [Figure 3A; −0.74 milliseconds (ms)] and
OURA (Figure 3B; −2.33ms), their respective 95% confidence
intervals for bias both contained zero and they had the lowest
LOA ranges (Table 6). Bland Altman analyses for rMSSD also
revealed that CAMHRV (Figure 4) was the only device with
significant bias, which was denoted as an overestimation of
rMSSD by 78.33ms (p < 0.05). Overall, devices maintained
consistent performance when measuring average HR and
rMSSD (e.g., if average HR was accurate then rMSSD was
accurate), excluding FSTBT, which was a top performer for HR

(MAPE = 0%) yet faulted in performance for rMSSD (MAPE
= 11.27%).

Lastly, the Concordance Correlation Coefficient (CCC)
for COTS devices that measured rMSSD provided a
singular summary statistic denoting the degree of agreeance
(concordance) between individual COTS devices and the
mECG (Figure 5 and Table 6). Again, HRV4TR/ECG (0.98)
was determined to be the strongest amongst COTS devices
for reporting rMSSD, although ELT/PPG (0.94) and OURA
(0.91) both performed well enough to garner CCC’s >0.90.
HRV4TR/PPG was the COTS device displaying the next
highest CCC, which was 0.87. CCC also provided additional
corroboration for the inability of CAMHRV (0.04) to measure
rMSSD. ELT/ECG (0.77) and FSTBT (0.76) both performed
similarly with respect to CCC, although for precise physiological
measurements CCCs below 0.90 are not ideal.

DISCUSSION

The manufacturing and marketing of commercial off-the-shelf
(COTS) wearables asserting capabilities of precise physiological
monitoring via heart rate variability (HRV) typically avoids
third-party evaluations of accuracy (De Arriba-Pérez et al.,
2016; Henriksen et al., 2018; Bent et al., 2020). Consequently,
end-users, such as the general consumer, elite performers
practitioners, researchers, and clinicians that purchase COTS
devices with the intent of deploying strategies to augment certain
health metrics based on derived insights, are severely restricted in
their knowledge of device capabilities. The present study aimed to
assess the validity of various COTS devices (both tangible devices
and third-party software applications) when measuring rMSSD,
a common heart rate variability (HRV) metric consistently
reported across the wearables market (Bent et al., 2020). Prior
to examining device accuracy with respect to rMSSD, however,
evaluations of mean heart rate (HR) were also conducted to
provide additional evidence as to why a COTS device can or
cannot successfully report rMSSD. Comparisons between cECG

TABLE 3 | Bland altman statistics: mean heart rate.

Metric Device n Bias

(95% CI)

Adjusted

p-value

Lower LOA

(95% CI)

Upper LOA

(95% CI)

LOA

range

HR FSTBT 21 0

(0, 0)

NA 0

(0, 0)

0

(0, 0)

0

ELT/ECG 19 −0.32

(−0.71, 0.08)

1 −1.92

(−2.57, −1.28)

1.29

(0.65, 1.93)

3.21

HRV4TR/ECG 21 −0.97

(−1.47, −0.047)

0.008* −3.13

(−3.95, −2.31)

1.19

(0.37, 2.01)

4.32

ELT/PPG 21 0.34

(−0.29, 0.97)

1 −2.39

(−3.42, −1.35)

3.07

(2.03, 4.10)

5.45

HRV4TR/PPG 20 −0.10

(−0.85, 0.65)

1 −3.23

(−4.45, −2.01)

3.04

(1.82, 4.26)

6.27

CAMHRV 23 11.14

(6.88, 15.40)

<0.001* −8.15

(−15.13, −1.18)

30.43

(23.45, 37.41)

38.58

The bias and lower and upper limits of agreement (LOA), along with the corresponding 95% confidence intervals (CI) for each, are included for all the devices. Instances in the “Adjusted

p-value” column denoted with “*” symbolize statistical significance (p < 0.05), which in this case indicates significant bias (over or underestimation). The letter “n” denotes the number

of trials that were examined for each device following extreme outlier detection. bpm, beats per min; 95% CI, 95% confidence interval; NA, not available; LOA, limits of agreement.
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FIGURE 2 | Root mean square of successive differences absolute percent error: box plot visualization of absolute percent error (APE) for the commercial-off-the-shelf

(COTS) devices that reported root mean square of successive differences (rMSSD) as an indicator of heart rate variability (HRV). COTS devices that are presented

include HRV4Training via ECG (HRV4TR/ECG), OURA Smart Ring (OURA), Elite HRV via electrocardiogram (ELT/ECG), Elite HRV via photoplethysmography
(ELT/PPG), HRV4Training via PPG (HRV4TR/PPG), and Firstbeat (FSTBT).

and PPG devices were also pertinent, provided those two types
of technologies are the most commonly available across the
commercial market.

COTS devices and an mECG validation standard device
were deployed while study participants rested in a seated
position, and later compared to ascertain which, if any, COTS
devices demonstrated reasonable utility for measuring rMSSD.
The primary finding in this study was that HRV4TR/ECG
and OURA were consistently among the top performers when
reporting rMSSD, as evidenced by the lowest mean absolute
percent error (MAPE) values (See Figure 1 and Table 2), lowest
limits of agreement (LOA) ranges with unremarkable biases
as demonstrated by the Bland Altman analysis (See Table 3),
and possessing remarkably high CCC values (Table 6). Although
evaluations for mean HR from OURA were not available in the
present study, it may be inferred that OURA was capable of
accurateHR assessments or it is likely that rMSSDwould not have
been as accurate as the data indicated. Moreover, the remaining
top two devices when reporting rMSSD, HRV4TR/ECG and
ELT/ECG (according to MAPE), both measured mean HR with
a MAPE value <5% (2.34 and 0.69%, respectively). Conversely,
CAMHRV was consistently the worst performer for all of the
aforementioned analyses with respect to rMSSD, which was
further corroborated by a poor mean HR measurement (See
Figure 2 and Tables 2, 3). For the two devices that allowed both
cECG and fPPG options, the cECG based versions were able to

estimate rMSSD more accurately compared to their PPG and
fPPG based counterparts. However, there was no clear distinction
among device type efficacy when evaluating HR.

Indeed, there are a number of technical and logistical
considerations to contemplate when determining whether or not
a popular COTS device is suitable for any given application(s).
Please refer back to Table 1 for device pairing specifications if
necessary. Notably, Elite HRV and HRV4Training were paired
with a Polar H10 strap and used alone as an fPPG based device
with an iPhone 8. We did not assess the efficacy of the Polar
H10 strap at collecting data, rather the phone applications at
their ability to process the data. The Polar H10 has already been
validated by previous researchers (Gilgen-Ammann et al., 2019;
Speer et al., 2020) and has been used by researchers as a standard
criterion device for quantifying cardiovascular metrics (Müller
et al., 2019; Weaver et al., 2019). The observed bias for CAMHRV
was higher than previous research conducted on CAMHRV
which reported 6ms bias when compared to an FDA-approved
pulse oximeter (Pai et al., 2018). The larger bias observed in
the present study may be attributed to the previous utilization
of a pulse oximeter rather than the preferred methodological
comparison strategy that uses mECG. When validated against
Kubios HRV 2.2, previous research reported a mean bias of
−2.7% residuals when pairing Elite HRV phone application with
the Polar H7 c-ECG device (Perrotta et al., 2017), which offers
consistencies with our findings. To our knowledge, no validation
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FIGURE 3 | Root mean square of successive differences Bland Altman plots: visualization driven by Bland Altman analysis for the commercial-off-the-shelf (COTS)

devices that reported root mean square of successive differences (rMSSD) as an indicator of heart rate variability (HRV). COTS devices that are presented include

HRV4Training via ECG (A; HRV4TR/ECG), OURA Smart Ring (B; OURA), Elite HRV via photoplethysmography (C; ELT/PPG), Firstbeat (D; FSTBT), HRV4Training via

PPG (E; HRV4TR/PPG), and Elite HRV via electrocardiogram (F; ELT/ECG).
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FIGURE 4 | Root mean square of successive differences CameraHRV Bland Altman. Visualization driven by Bland Altman analysis for measurements of root mean

square of successive differences (rMSSD) via CameraHRV (CAMHRV).

studies have been conducted with Elite HRV using their fPPG
based technology.

Findings in the present study deviated from previous research
in which the FSTBT textile strap was strongly correlated to
a 3-lead mECG (0.99 Pearson correlation coefficient) for both
HR and rMSSD. That study also provided a Bland Altman
plot of rMSSD illustrating that all but one value was observed
within the mean± 1.96 SD threshold, supplemented with tighter
CI bounds (Bogdány et al., 2016) compared to the findings
in the present study. Previous studies validated HRV4Training
with a clinical grade mECG device and reported similar trends
to those found here. Namely, the mean bias was previously
reported as −1.5 and 1.4ms when paired with a Polar H7
cECG and a smartphone camera (fPPG), respectively, while
participants breathed normally (Plews et al., 2017). In both
cases, HRV4Training underestimated rMSSD when paired with
a cECG device compared to when it was used as a fPPG
device and subsequently overestimated rMSSD. The Bland
Altman analysis for OURA indicated a narrow 95% confidence
interval (−5.6, 0.94ms) with negligible bias (−2.33ms), which
supports previous research that reported a 95% confidence
interval spanning from−8.8 to 6.5ms when compared to mECG
(Kinnunen et al., 2020).

Consistent with APE and Bland Altman analysis, CCC was
also determined to be markedly high for HRV4TR/ECG as well
as OURA. Findings in this present study support the extant

literature that unveils inconsistencies in performance among
COTS, as discussed. Due to the popularity of cECG and PPG
devices, many types of technologies were included in the direct
comparisons to mECG. Considering our study design, there
are factors to recognize with respect to the different devices,
their hardware and software technicalities, and their standard
procedures for HRV (rMSSD) data collection. Namely, there are
inherent differences between cECG and PPG COTS wearables
and variations in duration of signal acquisition.

It is crucial to realize the fundamental differences between
cECG- and PPG-based technologies. In addition to the hardware
differences of COTS devices, of equal importance are the shape
and tendencies of cECG and PPG physiological signals. ECG
waveforms are denotated with a characteristic peak, whereas
PPG waveforms are sinusoidal by nature. This distinction has
profound implications on the signal processing capabilities that
must be utilized to distinguish subsequent peaks from one
another. PPG based devices require more robust processes that
compensate for the lack of distinction from one heartbeat to the
next (Kher, 2019). Both cECG and PPG COTS wearables are
subject to signal disruption, though ECG is generally associated
with a better signal to noise ratio (SNR) (Kher, 2019). ECG
signals can be corrupted with baseline drift induced by chest
movements during respiration, electrode contact movement, and
increased electrode impedance (Allen, 2007) whereas PPG COTS
are known to be especially susceptible to motion artifact, ambient
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light, and skin complexions (Lee and Zhang, 2003; Castaneda
et al., 2018; Bent et al., 2020). Provided the known challenges
with motion artifact in PPG COTS devices, our study analyzed
subjects at rest thus establishing ideal environmental conditions
for evaluating the capabilities of cECG and PPG COTS devices
in estimating rMSSD and HR. Our data demonstrates that
cECG based devices performed more accurately than their fPPG
counterparts (cases where the COTS devices used the same
application, like Elite HRV and HRV4Training). FSTBT and
OURA were exceptions to the observed trends in cECG and PPG
performance for measuring rMSSD. More specifically, OURA
elicited the lowest MAPE for rMSSD among all PPGs and
demonstrated a high degree of concordance with the mECG
standard (See Table 6). The Oura smart ring uses infrared optical
sensors (∼900 nm wavelength), which penetrate the skin more
deeply (Kinnunen et al., 2020) than conventional PPG devices
using green LED (∼520–530 nm) (Fallow et al., 2013; Bent et al.,
2020). The fPPG devices examined in this study utilized the LED
from the iPhone’s camera flash which is ∼512 nm (McCracken
et al., 2017) thus being more highly absorbed in the tissue
compared to the near infrared range contained in Oura smart
rings. FSTBT was an anomaly as it performed immaculately
when measuring HR but failed to accurately report rMSSD.
Unlike all other cECG COTS devices, FSTBT unveiled especially
diminished accuracy with respect to rMSSD as it was one of the
worst performers in this study (See Table 4). It is postulated that
this inconsistency in performance is related to the acquisition
duration of the physiological signal.

The standard short (ST) epoch to conduct HRV analysis is
5min, as noted in the most recent recommended guidelines
on optimal conditions for HRV measurement state (Shaffer and
Ginsberg, 2017). This 5-min representation of HRV is used to
make inferences about the SNS and PNS in relation to ANS
balance while the subject is at rest (Bourdillon et al., 2017; Plews
et al., 2017; Shaffer and Ginsberg, 2017). Although previous
research deemed that 10-s and 1-min epoch windows were
suitable for rMSSD analysis (Esco and Flatt, 2014; Pereira et al.,
2016; Shaffer and Ginsberg, 2017; Georgiou et al., 2018), it is still

TABLE 4 | Absolute percent error executive summary statistics: rMSSD.

Metric Device n MAPE (%) Min. (%) Median (%) Max. (%) IQR (%)

rMSSD HRV4TR/

ECG

21 4.10 0.21 2.76 15.35 3.74

OURA 25 6.84 0.21 4.06 21.02 6.55

ELT/ECG 18 7.66 0.12 5.75 34.54 9.72

ELT/PPG 22 8.71 0.15 9.73 16.63 8.44

HRV4TR/

PPG

18 9.43 0.17 5.03 27.37 8.46

FSTBT 25 11.27 0.13 10.25 33.77 10.19

CAMHRV 25 112.36 1.06 75.77 328.67 197.35

Absolute percent error summary statistics are reported for all devices that provided

rMSSD measurements. Data are presented in ascending order, with respect to mean

absolute percent error (MAPE). n, number of trials; Min, minimum; Max, maximum; IQR,

interquartile range.

presumed that these shorter time windows are not as accurate
as the ST interval (Mayya et al., 2015). The duration of data
collection varied among COTS devices and applications based
on the recording period determined via company guidelines.
When assessing rMSSD, FSBT and CAMHRV recorded for 3-
min epochs, which indeed translated to poorer performance
compared to HRV4TR/ECG, OURA, and ELT/PPG, all of which
used 5-min epochs. Performance was reflected in higher MAPE,
large bias, wider LOA ranges, and weaker CCCs. It appears
that the duration of signal acquisition had a greater impact on
device accuracy than type of technology (e.g., cECG vs. PPG).
Markedly, FSTBTwas the leading performer whenmeasuringHR
but then, conversely, suffered from more inaccurate measures of
rMSSD. This disparity in performance may be explained by the
Quick Recovery Test (commonly referred to as the “QRT”) that
FSTBT utilizes for rMSSD measurements which only captured
data for 3min. For these reasons, those commercial companies
that are interested in effectively assessing HRV (rMSSD in
most cases) are recommended to incorporate longer duration
periods (i.e., ≥5min). The incorporation of data collection
segments of at least 5min ensures that daily decisions (e.g., sleep
alterations, alternative recovery interventions, training volumes,
and intensities) based upon HRV “status” are done so with a
greater degree of confidence (Mayya et al., 2015; De Arriba-Pérez
et al., 2016). In the present study, devices, such as FSTBT and
CAMHRV, that recorded for <5min would have likely reported
more favorable MAPE and CCC values as well as smaller biases
and LOA ranges.

Future
The COTS devices in the present study were selected based on
input from collaborative research partners in the field of human
performance, which suggested that these devices were among the
most commonly used. The authors acknowledge that there are
other (and even newer versions of the same) COTS devices on
the commercial market that were not included in this analysis.
End-users purchasing the various COTS devices should be better
informed on the accuracy of device claims (with respect to
physiological monitoring). However, as mentioned before, this
particular market expands at a pace that scientific evaluations
struggle to keep up with. For these reasons, routine evaluations of
COTS devices occurring as frequently as possible with laboratory
resources devoted to maintaining and updating device libraries
and inventories are crucial to the dissemination of the relevant
information on device accuracy to the end-users.

Like most research, this study was conducted with inherent
limitations. The subject population comprised five young and
healthy adults between the ages of 20 ± 1.58 years, and of
varying ethnicities. Previous research determined that variations
in skin complexions and textures influence the quality of data
acquisition from COTS devices. Individuals with darker skin
tones are often associated with higher error rates from PPG
that utilizes a green LED (Fallow et al., 2013; Bent et al., 2020).
Elderly patients with fragile skin and tremors are also known
to elicit bad signal recording quality (De Arriba-Pérez et al.,
2016; Georgiou et al., 2018). We elected not to control for skin
complexions as we pursued investigation of how COTS devices
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perform with respect to rMSSD in a small sample of general
consumers. Our recruitment strategies on a collegiate campus
also skewed age demographics such that our data are from
particularly young adults. Future studies should aim to examine
larger populations with variation in age and skin color, with
repeated measures across all individuals. Moreover, since sample
sizes varied slightly for each device (due to outlier removal),
future research specifically aimed at identifying instances of
COTS device vulnerability via questionable data recordings
is warranted.

This study sought to analyze and compare the processed
output of values from COTS devices as they are observed
and interpreted via user interface by the end-user. Granted,
the present study did not compare the raw data outputs
used to generate the summary values of HR and rMSSD.
Future research should incorporate raw signal recordings in
comparison to a standardized reference device and take a deeper
dive into the metrics that modulate signal quality, such as
the sampling frequency, sensor type, and sensor placement.
Sampling frequency, or the rate of signal obtention, modulates
the resolution and subsequent quality of the data and the COTS
devices examined in this study ranged from 1 to 1,000Hz.
However, the sampling frequency is not always disseminated

to the end-user (as was the case in several instances herein).
Alternatively, end-users must accept the sampling frequency

for what it is or contact the manufacturer of the company.
Sensor placement varied across COTS devices, either placed

on the chest, wrist, or finger. Location of the sensor can

impact the quality of the signal and its susceptibility to motion
artifact. Future studies should address these variations and
their subsequent impacts on accurately reporting HR and
HRV metrics.

Although the preferred method of time stamping comprises
instantaneous stamps triggered by a central software that would
synchronize all COTS devices and the mECG, the present study

was limited to manual time stamping. Additionally, we did
not assess the algorithms embedded within the COTS devices
and their respective signal processing capabilities, primarily
due to the black-box phenomenon. Due to the proprietary
nature of COTS devices, there remains a concerningly large
gap in research by independent third parties that thoroughly
authenticate the algorithms and signal processing techniques
deployed by COTS manufacturers. Manufacturers should
be encouraged to place greater emphasis on validation by
independent researchers, prior to marketing unvalidated (peer-
reviewed) claims and releases. Researchers and manufacturers
alike must participate in more symbiotic collaborations, to
benefit the end-users of the COTS devices, through engaging
in independent research that examines data acquisition and
processing methodologies. The present study was limited in that
it merely compared summary values derived from COTS devices
to mECG. Ideally, synchronized (chronologically) raw data
streams from the mECG and the COTS devices are compared.
When accurately and objectively obtained, wearable technologies

TABLE 6 | Lin’s Concordance Correlation Coefficient (CCC): rMSSD.

Metric Device n Concordance

rMSSD HRV4TR/ECG 21 0.98

ELT/PPG 22 0.94

OURA 25 0.91

HRV4TR/PPG 18 0.87

ELT/ECG 18 0.77

FSTBT 25 0.76

CAMHRV 25 0.04

The precise CCC values for each COTS device are presented to denote the overall

strength of agreement (or lack thereof) between COTS device measurements and the

mECG standard device. The closer the CCC is to +1, the stronger the agreement.

TABLE 5 | Bland altman summary statistics: rMSSD.

Metric Device n Bias

(95% CI)

Adjusted p-value Lower LOA (95%

CI)

Upper LOA (95%

CI)

LOA range

rMSSD HRV4TR/ECG 21 −0.74

(−2.79, 1.30)

1 −9.55

(−12.88, −6.21)

8.06

(4.73, 11.40)

17.61

OURA 25 −2.33

(−5.60, 0.94)

1 −17.85

(−23.23, −12.47)

13.19

(7.82, 18.57)

31.04

ELT/PPG 22 3.62

(0.10, 7.14)

0.58 −11.94

(−17.70, −6.19)

19.18

(13.43, 24.94)

31.13

FSTBT 25 −7.37

(−12.77, −1.97)

0.12 −33.00

(−41.88, −24.12)

18.27

(9.39, 27.15)

51.27

HRV4TR/PPG 18 2.96

(−3.83, 9.75)

1 −23.79

(−34.77, −12.81)

29.71

(18.73, 40.70)

53.50

ELT/ECG 18 −6.98

(−14.02, 0.06)

0.67 −34.74

(−46.13, −23.34)

20.78

(9.38, 32.17)

55.52

CAMHRV 25 78.33

(48.74, 107.92)

<0.001* −62.16

(−110.84, −13.49)

218.83

(170.15, 267.50)

280.99

Tabular presentation of the bias, lower and upper limits of agreement (LOA), and their respective 95% confidence intervals (CI), per device. Instances in the “Adjusted p-value column”

that are denoted with “*” symbolize statistical significance (p < 0.05).
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FIGURE 5 | Root mean square of successive differences lin’s concordance correlation coefficient. Concordance between commercial-off-the-shelf (COTS) devices

and the reference standard multi-lead electrocardiogram (Shimmer; SHIM) for measurements of root mean square of successive differences (rMSSD). COTS devices

include HRV4Training via ECG (A; HRV4TR/ECG), Elite HRV via photoplethysmography (B; ELT/PPG), OURA Smart Ring (C; OURA), HRV4Training via PPG (D;

HRV4TR/PPG), Elite HRV via electrocardiogram (E; ELT/ECG), Firstbeat (F; FSTBT), and CameraHRV (G; CAMHRV).

have the potential to provide non-invasive, continuous, real-
time monitoring. The quantification of daily stress and
recovery balance in mass general populations affords potentially
valuable data to infer health or performance outcomes and
drive decision-making.

Lastly, the present study specifically emphasized rMSSD from
COTS devices. However, there still remains a litany of other HRV
metrics, such as high frequency (HF) power, low frequency (LF)
power, total power (TP), and HF/TP to be assessed in addition

to continually evaluating rMSSD. The aforementioned metrics
can provide additional insight into the autonomic regulation
of the body beyond analyzing rMSSD alone. Despite the more
robust HRV knowledge delivered by the accurate reporting of
these various metrics, most COTS devices significantly limit what
values are reported to the end-user. This is also not accounting for
the notion that often times COTS devices simply display a value
referred to as “HRV”without any further context (i.e., is it rMSSD
or SDNN or some other HRV metric?) thus forcing the end-user
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to find out for themselves. While the common HRV metric,
rMSSD, was the main focus of this study, future investigations
of COTS devices that extend their data reporting beyond rMSSD
are warranted.

CONCLUSIONS

As the wearable and health industry continues to expand,
end-users are allocating considerable amounts of resources
(e.g., time, finances) to stress related data tracking. Examples
include daily and/or nightly HRV assessments to ascertain
individual levels of readiness and fatigue as well as average
heart rates during sleep (Shaffer and Ginsberg, 2017; Bent
et al., 2020). These models have the capability to provide
objective, actionable insight to personalize stress mitigation
strategies through accurate obtention and analysis of HRV
and HR related metrics. Additionally, these metrics provide
significant insight into performance and recovery ramifications
across athletic and elite performing populations that are used
in training and workload outcomes. The consumer market
for COTS wearables is likely to continue its unprecedented
rate of expansion; thus, it is imperative that independent,
third-party evaluations for device accuracy are relentless and
expeditious in their efforts. Our study aimed to assess the
accuracy of numerous COTS devices and applications when
reporting rMSSD and HR, compared to mECG. Similar to
previous studies, devices performed with varying degrees of
veracity with MAPE ranging from 4 to 112%. The greatest
degrees of confidence are extended toHRV4TR/ECG andOURA,
as our data suggests they can most accurately report rMSSD
as both possessed MAPEs below 7% and CCCs above 0.90.
Contrarily, CAMHRV was the worst performer with a MAPE of
112% and CCC of 0.04%. Further, cECG based devices generally
outperformed PPGs, although there were a couple of exceptions.
The Oura smart ring (PPG) exhibited better accuracy than all
cECGs except for HRV4TR/ECG and the FSTBT (cECG) lacked
in rMSSD accuracy.

The COTS devices evaluated herein are presently retrievable
from the commercial market by general consumers, researchers,
practitioners, and clinicians. Due to the aforementioned varying
degrees in accuracy across these devices, we recommend steadfast
scientific efforts to routinely evaluate them as they are released for
purchase. Assessments of accuracy similar to the one presented
here provide critical information to the end-users such that
they are able to align their expectations with the inherent

limitations of COTS capabilities. Device purchasing comes
down to individual decision making, which is most effectively
executed and subsequently incorporated into daily living, clinical
monitoring, sports/military training, etc. when those persons are
presented with thorough and applicable analysis. Ultimately, a
decision is to be made as to what degree of accuracy is necessary
for the intent of the device, which may vary across populations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by West Virginia University Institutional Review
Board. The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

JS, HU, AT, MH, MS, VF, SG, AR, and JH: conceptualization.
JS, KT, AT, and JR: data curation. JS, HU, AT, JR, SG,
and JH: formal analysis. VF, SG, AR, and JH: funding
acquisition. JS, HU, KT, AT, SG, and JH: investigation. JS,
KT, AT, VF, SG, and JH: methodology. JS, VF, SG, AR, and
JH: project administration. JS, SG, and JH: resources. JS and
KT: software. JS, AT, VF, SG, and JH: supervision. JS and
KT: validation. JS, JR, and JH: visualization. JS, HU, KT, AT,
MH, JR, MS, VF, SG, AR, and JH: writing – original draft.
JS, HU, AT, MH, JR, MS, and JH: writing – review and
editing. All authors contributed to the article and approved the
submitted version.

FUNDING

This research did not receive external funding. This study was
funded internally by the Rockefeller Neuroscience Institute at
West Virginia University.

ACKNOWLEDGMENTS

All of the authors are grateful for the Rockefeller Neuroscience
Institute in supporting the data collection presented herein.

REFERENCES

Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., and Suri, J. S. (2006).

Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051.

doi: 10.1007/s11517-006-0119-0

Achten, J., and Jeukendrup, A. E. (2003). Heart rate monitoring. Sports Med. 33,

517–538. doi: 10.2165/00007256-200333070-00004

Allen, J. (2007). Photoplethysmography and its application in clinical physiological

measurement. Physiol. Meas. 28, R1–R39. doi: 10.1088/0967-3334/28

/3/R01

Aroganam, G., Manivannan, N., and Harrison, D. (2019). Review on wearable

technology sensors used in consumer sport applications. Sensors 19:1983.

doi: 10.3390/s19091983

Aubert, A. E., Seps, B., and Beckers, F. (2012). Heart rate variability in athletes.

Sports Med. 33, 889–919. doi: 10.2165/00007256-200333120-00003

Auguie, B. (2017). gridExtraMiscellaneous Functions for “grid” Graphics. R

package version. Available online at: https://github.com/kassambara/rstatix

Baek, H. J., and Shin, J. (2017). Effect of missing inter-beat interval data on

heart rate variability analysis using wrist-worn wearables. J. Med. Syst. 41:147.

doi: 10.1007/s10916-017-0796-2

Frontiers in Sports and Active Living | www.frontiersin.org 14 March 2021 | Volume 3 | Article 585870

https://doi.org/10.1007/s11517-006-0119-0
https://doi.org/10.2165/00007256-200333070-00004
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.3390/s19091983
https://doi.org/10.2165/00007256-200333120-00003
https://github.com/kassambara/rstatix
https://doi.org/10.1007/s10916-017-0796-2
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Stone et al. COTS Device Accuracy for HRV

Bánhalmi, A., Borbás, J., Fidrich, M., Bilicki, V., Gingl, Z., and Rudas, L. (2018).

Analysis of a pulse rate variability measurement using a smartphone camera. J.

Healthc. Eng. 2018:4038034. doi: 10.1155/2018/4038034

Bent, B., Goldstein, B. A., Kibbe, W. A., and Dunn, J. P. (2020). Investigating

sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med.

3, 1–9. doi: 10.1038/s41746-020-0226-6

Berntson, G. G., Lozano, D. L., and Chen, Y. J. (2005). Filter properties of root

mean square successive difference (RMSSD) for heart rate. Psychophysiology 42,

246–252. doi: 10.1111/j.1469-8986.2005.00277.x

Bhati, P., and Moiz, J. A. (2017). High-intensity interval training

and cardiac autonomic modulation. Saudi J. Sports Med. 17:129.

doi: 10.4103/sjsm.sjsm_2_17

Bland, J. M., and Altman, D. (1986). Statistical methods for assessing agreement

between two methods of clinical measurement. Lancet 327, 307–310.

doi: 10.1016/S0140-6736(86)90837-8

Bogdány, T., Boros, S., Szemerszky, R., and Köteles, F. (2016). Validation of

the firstbeat teambelt and bodyguard2 systems. Int. J. Hum. Mov. Sport. Sci.

3, 19–26.

Borresen, J., and Lambert, M. I. (2008). Autonomic control of

heart rate during and after exercise. Sports Med. 38, 633–646.

doi: 10.2165/00007256-200838080-00002

Bourdillon, N., Schmitt, L., Yazdani, S., Vesin, J.-M., and Millet, G. P. (2017).

Minimal window duration for accurate HRV recording in athletes. Front.

Neurosci. 11:456. doi: 10.3389/fnins.2017.00456

Buchheit, M. (2014). Monitoring training status with HR measures: do all roads

lead to Rome? Front. Physiol. 5:73. doi: 10.3389/fphys.2014.00073

Bunn, J., Navalta, J., Fountaine, C., and Reece, J. (2018). Current state of

commercial wearable technology in physical activity monitoring 2015-2017.

Int. J. Exerc. Sci. 11, 503–515.

Burns, A., Doheny, E. P., Greene, B. R., Foran, T., Leahy, D., O’Donovan, K.,

et al. (2010a). “SHIMMERTM: an extensible platform for physiological signal

capture,” in 2010 Annual International Conferences of the IEEE Engineering in

Medicine and Biology: IEEE (Buenos Aires). doi: 10.1109/IEMBS.2010.5627535

Burns, A., Greene, B. R., McGrath, M. J., O’Shea, T. J., Kuris, B., Ayer, S. M., et al.

(2010b). SHIMMERTM – a wireless sensor platform for noninvasive biomedical

research. IEEE Sens. J. 10, 1527–1534. doi: 10.1109/JSEN.2010.2045498

Cardinale, M., and Varley, M. (2017). Wearable training-monitoring technology:

applications, challenges, and opportunities. Int. J. Sports Physiol. Perf. 12,

55–62. doi: 10.1123/ijspp.2016-0423

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., and Nazeran, H. (2018).

A review on wearable photoplethysmography sensors and their potential

future applications in health care. Int. J. Biosens. Bioelectron 4, 195–202.

doi: 10.15406/ijbsbe.2018.04.00125

Datta, D. (2017). blandr: A Bland-Altman Method Comparison Package for

R. Zenodo. Available online at: https://cran.r-project.org/web/packages/blandr/

README.html

Dawson, R. (2011). How significant is a boxplot outlier? Stat. Educ. 19:2.

doi: 10.1080/10691898.2011.11889610

De Arriba-Pérez, F., Caeiro-Rodríguez, M., and Santos-Gago, J. (2016). Collection

and processing of data from wrist wearable devices in heterogeneous and

multiple-user scenarios. Sensors 16:1538. doi: 10.3390/s16091538

DeGiorgio, C. M., Miller, P., Meymandi, S., Chin, A., Epps, J., Gordon, S.,

et al. (2010). RMSSD, a measure of vagus-mediated heart rate variability, is

associated with risk factors for SUDEP: the SUDEP-7 Inventory. Epilepsy Behav.

19, 78–81. doi: 10.1016/j.yebeh.2010.06.011

Depner, C. M., Cheng, P. C., Devine, J. K., Khosla, S., De Zambotti, M.,

Robillard, R., et al. (2020). Wearable technologies for developing sleep and

circadian biomarkers: a summary of workshop discussions. Sleep 43, 1–13.

doi: 10.1093/sleep/zsz254

Drew, B., Califf, R., Funk, M., Kaufman, E., Krucoff, M., Laks, M., et al. (2004).

Practice standards for electrocardiographic monitoring in hospital settings.

Circulation 110, 2721–2746. doi: 10.1161/01.CIR.0000145144.56673.59

Dunet, V., Klein, R., Allenbach, G., Renaud, J., Dekemp, R. A., and Prior, J.

O. (2016). Myocardial blood flow quantification by Rb-82 cardiac PET/CT: a

detailed reproducibility study between two semi-automatic analysis programs.

J. Nucl. Cardiol. 23, 499–510. doi: 10.1007/s12350-015-0151-2

Esco, M. R., and Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes

at rest and post-exercise in athletes: evaluating the agreement with accepted

recommendations. J. Sports Sci. Med. 13, 535–541.

Fallow, B. A., Tarumi, T., and Tanaka, H. (2013). Influence of skin type and

wavelength on light wave reflectance. J. Clinic. Monit. Comput. 27, 313–317.

doi: 10.1007/s10877-013-9436-7

Flatt, A. A., and Esco, M. R. (2016). Heart rate variability stabilization in athletes:

towards more convenient data acquisition. Clin. Physiol. Funct. Imaging 36,

331–336. doi: 10.1111/cpf.12233

Galster, S. M., and Johnson, E. M. (2013). Sense-Assess-Augment: A Taxonomy

for Human Effectiveness. Wright-Patterson AFB, OH: Air Force Research

Laboratory. doi: 10.21236/ADA585921

Georgiou, K., Larentzakis, A. V., Khamis, N. N., Alsuhaibani, G. I., Alaska,

Y. A., and Giallafos, E. J. (2018). Can wearable devices accurately

measure heart rate variability? A systematic review. Folia Med. 60, 7–20.

doi: 10.2478/folmed-2018-0012

Gilgen-Ammann, R., Schweizer, T., andWyss, T. (2019). RR interval signal quality

of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J.

Appl. Physiol. 119, 1525–1532. doi: 10.1007/s00421-019-04142-5

Henriksen, A., Mikalsen, M. H., Woldaregay, A. Z., Muzny, M., Hartvigsen,

G., Hopstock, L. A., et al. (2018). Using fitness trackers and smartwatches

to measure physical activity in research: analysis of consumer wrist-worn

wearables. J. Med. Internet Res. 20:e110. doi: 10.2196/jmir.9157

Hernando, D., Garatachea, N., Almeida, R., Casajús, J. A., and Bailón,

R. (2016). Validation of heart rate monitor Polar RS800 for heart rate

variability analysis during exercise. J. Strength Cond. Res. 32, 716–725.

doi: 10.1519/JSC.0000000000001662

Hillman, C. H., Snook, E. M., and Jerome, G. J. (2003). Acute cardiovascular

exercise and executive control function. Int. J. Psychophysiol. 48, 307–314.

doi: 10.1016/S0167-8760(03)00080-1

Jiménez-Morgan, S., andMora, J. (2017). Effect of heart rate variability biofeedback

on sport performance, a systematic review. Appl. Psychophysiol. Biofeed. 42,

235–245. doi: 10.1007/s10484-017-9364-2

Kaewkannate, K., and Kim, S. (2016). A comparison of wearable fitness devices.

BMC Pub. Health 16, 1–16. doi: 10.1186/s12889-016-3059-0

Kassambara, A. (2019). rstatix: Pipe-Friendly Framework for Basic Statistical Tests.

Available online at: https://github.com/kassambara/rstatix

Kerdjidj, O., Ghanem, K., Amira, A., Harizi, F., and Chouireb, F. (2016). “Real ECG

signal acquisition with shimmer platform and using of compressed sensing

techniques in the offline signal reconstruction,” in 2016 IEEE International

Symposium on Antennas and Propagation (APSURSI): IEEE) (Fajardo, PR).

doi: 10.1109/APS.2016.7696297

Kher, R. (2019). Signal processing techniques for removing noise from ECG

signals. J. Biomed. Eng. Res. 3, 1–9.

Kinnunen, H. O., Rantanen, A., Kenttä, T. V., and Koskimäki, H. (2020). Feasible

assessment of recovery and cardiovascular health: accuracy of nocturnal HR

and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol

Meas. 41:04NT01. doi: 10.1088/1361-6579/ab840a

Kitamura, R. K., Morton, J. M., and Eisenberg, D. (2020). “Cardiac risk factor

improvement following bariatric surgery,” in The ASMBS Textbook of Bariatric

Surgery, eds N. T. Nguyen, S. A. Brethauer, J. M. Morton, J. Ponce, and R. J.

Rosenthal (Cham: Springer), 519–526. doi: 10.1007/978-3-030-27021-6_46

Lamkin, P. (2018). SmartWearables Market to Double by 2022: $27 Billion Industry

Forecast [Online]. Forbes. Available online at: https://www.forbes.com/sites/

paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-

billion-industry-forecast/#3a83bf632656 (accessed April 07, 2020).

Lee, C. M., and Zhang, Y. T. (2003). “Reduction of motion artifacts from

photoplethysmographic recordings using a wavelet denoising approach”, in

IEEE EMBS Asian-Pacific Conference on Biomedical Engineering: IEEE (Kyoto-

Osaka-Nara), 194–195.

Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate

reproducibility. Biometrics 45, 255–268. doi: 10.2307/2532051

Lischke, A., Jacksteit, R., Mau-Moeller, A., Pahnke, R., Hamm, A., and

Weippert, M. (2018). Heart rate variability is associated with psychosocial

stress in distinct social domains. J. Psychosom. Res. 106, 56–61.

doi: 10.1016/j.jpsychores.2018.01.005

Frontiers in Sports and Active Living | www.frontiersin.org 15 March 2021 | Volume 3 | Article 585870

https://doi.org/10.1155/2018/4038034
https://doi.org/10.1038/s41746-020-0226-6
https://doi.org/10.1111/j.1469-8986.2005.00277.x
https://doi.org/10.4103/sjsm.sjsm_2_17
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.2165/00007256-200838080-00002
https://doi.org/10.3389/fnins.2017.00456
https://doi.org/10.3389/fphys.2014.00073
https://doi.org/10.1109/IEMBS.2010.5627535
https://doi.org/10.1109/JSEN.2010.2045498
https://doi.org/10.1123/ijspp.2016-0423
https://doi.org/10.15406/ijbsbe.2018.04.00125
https://cran.r-project.org/web/packages/blandr/README.html
https://cran.r-project.org/web/packages/blandr/README.html
https://doi.org/10.1080/10691898.2011.11889610
https://doi.org/10.3390/s16091538
https://doi.org/10.1016/j.yebeh.2010.06.011
https://doi.org/10.1093/sleep/zsz254
https://doi.org/10.1161/01.CIR.0000145144.56673.59
https://doi.org/10.1007/s12350-015-0151-2
https://doi.org/10.1007/s10877-013-9436-7
https://doi.org/10.1111/cpf.12233
https://doi.org/10.21236/ADA585921
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.1007/s00421-019-04142-5
https://doi.org/10.2196/jmir.9157
https://doi.org/10.1519/JSC.0000000000001662
https://doi.org/10.1016/S0167-8760(03)00080-1
https://doi.org/10.1007/s10484-017-9364-2
https://doi.org/10.1186/s12889-016-3059-0
https://github.com/kassambara/rstatix
https://doi.org/10.1109/APS.2016.7696297
https://doi.org/10.1088/1361-6579/ab840a
https://doi.org/10.1007/978-3-030-27021-6_46
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/#3a83bf632656
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/#3a83bf632656
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/#3a83bf632656
https://doi.org/10.2307/2532051
https://doi.org/10.1016/j.jpsychores.2018.01.005
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Stone et al. COTS Device Accuracy for HRV

Makivic, B., Nikic, M., and Willis, M. (2013). Heart rate variability (HRV) as a tool

for diagnostic and monitoring performance in sport and physical activities. J.

Exerc. Physiol. Online 16, 103–131.

Markovics, Z., Lauznis, J., Erins, M., Minejeva, O., and Kivlenicks, R. (2018).

Testing and analysis of the HRV signals from wearable smart HRV. Int. J. Eng.

Sci. Technol. 7, 1211–1215. doi: 10.14419/ijet.v7i4.36.28214

Massin, M. M., Derkenne, B., and von Bernuth, G. (1999). Correlations between

indices of heart rate variability in healthy children and children with congenital

heart disease. Cardiology 91, 109–113. doi: 10.1159/000006889

Mayya, S., Jilla, V., Tiwari, V. N., Nayak, M. M., and Narayanan, R. (2015).

“Continuous monitoring of stress on smartphone using heart rate variability,”

in 15th International Conference on Bioinformatics and Bioengineering

(BIBE): IEEE (Belgrade), 1–5.

McCracken, K. E., Tat, T., Paz, V., and Yoon, J.-Y. (2017). Smartphone-based

fluorescence detection of bisphenol A from water samples. RSC Adv. 7,

9237–9243. doi: 10.1039/C6RA27726H

McLaughlin, P. (2013). Testing agreement between a new method and

the gold standard—How do we test? J. Biomech. 46, 2757–2760.

doi: 10.1016/j.jbiomech.2013.08.015

Medicine, A. C. o.S. (2017).ACSM’s Exercise Testing and Prescription. Indianapolis,

IN: Lippincott Williams and Wilkins.

Mensink, G. B. M., and Hoffmeister, H. (1997). The relationship between resting

heart rate and all-cause, cardiovascular and cancer mortality. Eur. Heart J. 18,

1404–1410. doi: 10.1093/oxfordjournals.eurheartj.a015465

Morgan, C. J., and Aban, I. (2016). Methods for evaluating the agreement between

diagnostic tests. J. Nucl. Cardiol. 23, 511–513. doi: 10.1007/s12350-015-0175-7

Müller, A. M., Wang, N. X., Yao, J., Tan, C. S., Low, I. C. C., Lim, N., et al.

(2019). Heart rate measures from wrist-worn activity trackers in a laboratory

and free-living setting: validation study. JMIR Mhealth Uhealth 7:e14120.

doi: 10.2196/14120

Nakano, N., Sakura, T., Ueda, K., Omura, L., Kimura, A., Iino, Y., et al.

(2020). Evaluation of 3D markerless motion capture accuracy using

OpenPose With multiple video cameras. Front. Sports Act. Living 2:50.

doi: 10.3389/fspor.2020.00050

Nelson, B. W., and Allen, N. B. (2019). Accuracy of consumer wearable heart

rate measurement during an ecologically valid 24-hour period: intraindividual

validation study. JMIR Mhealth Uhealth 7:e10828. doi: 10.2196/10828

Pai, A., Veeraraghavan, A., and Sabharwal, A. (2018). “CameraHRV: robust

measurement of heart rate variability using a camera,” in Optical Diagnostics

and Sensing XVIII: Toward Point-of-Care Diagnostics, ed G. L. Cote

(International Society for Optics and Photonics), 105010S. Available online at:

https://spie.org/Publications/Proceedings/Volume/10501?SSO=1

Pan, J., and Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE

Trans. Biomed. Eng. BME 32, 230–236. doi: 10.1109/TBME.1985.325532

Pereira, L. A., Flatt, A. A., Ramirez-Campillo, R., Loturco, I., and Nakamura,

F. Y. (2016). Assessing shortened field-based heart-rate-variability-data

acquisition in team-sport athletes. Int. J. Sports Physiol. Perf. 11, 154–158.

doi: 10.1123/ijspp.2015-0038

Perrotta, A. S., Jeklin, A. T., Hives, B. A., Meanwell, L. E., and Warburton, D. E.

(2017). Validity of the elite HRV smartphone application for examining heart

rate variability in a field-based setting. J. Strength Cond. Res. 31, 2296–2302.

doi: 10.1519/JSC.0000000000001841

Pevnick, J., Birkeland, K., Zimmer, R., Elad, Y., and Kedan, I. (2018). Wearable

technology for cardiology: an update and framework for the future. Trends

Cardiovas. Med. 28, 144–150. doi: 10.1016/j.tcm.2017.08.003

Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., and Laursen, P.

B. (2017). Comparison of heart-rate-variability recording with smartphone

photoplethysmography, Polar H7 chest strap, and electrocardiography. Int. J.

Sports Physiol. Perf. 12, 1324–1328. doi: 10.1123/ijspp.2016-0668

Redman, T. (2016). Bad Data Costs the U.S. $3 Trillion Per Year [Online]. Harvard

Business Review. Available online at: https://hbr.org/2016/09/bad-data-costs-

the-u-s-3-trillion-per-year (accessed April 07, 2020).

Schmitt, L., Regnard, J., and Millet, G. P. (2015). Monitoring fatigue status with

HRV measures in elite athletes: an avenue beyond RMSSD? Front. Physiol.

6:343. doi: 10.3389/fphys.2015.00343

Shaffer, F., and Ginsberg, J. P. (2017). An overview of heart rate variability

metrics and norms. Front. Public Health 5:258. doi: 10.3389/fpubh.2017.

00258

Smulyan, H. (2019). The computerized ECG: friend and foe. Am. J. Med. 132,

153–160. doi: 10.1016/j.amjmed.2018.08.025

Speer, K. E., Semple, S., Naumovski, N., and McKune, A. J. (2020). Measuring

heart rate variability using commercially available devices in healthy children: a

validity and reliability study. Eur. J. Investig. Health Psychol. Educ. 10, 390–404.

doi: 10.3390/ejihpe10010029

Stanley, J., D’Auria, S., and Buchheit, M. (2015). Cardiac parasympathetic activity

and race performance: an elite triathlete case study. Int. J. Sports Physiol. Perf.

10, 528–534. doi: 10.1123/ijspp.2014-0196

Statista (2019). Smartwatch devices unit sales in the United States from 2016 to 2020

[Online]. Consumer Technology Association. Available online at: https://www.

statista.com/statistics/381696/wearables-unit-sales-forecast-united-states-by-

category/ (Accessed April 07, 2020).

Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O.,

and Karjalainen, P. A. (2014). Kubios HRV–heart rate variability

analysis software. Comput. Methods Programs Biomed. 113, 210–220.

doi: 10.1016/j.cmpb.2013.07.024

Team, R. C. (2019). R: A Language and Environment for Statistical Computing.

Available online at: https://www.R-project.org/ (accessed June 8, 2020).

Teisala, T., Mutikainen, S., Tolvanen, A., Rottensteiner, M., Tuija, L., Kaprio,

J., et al. (2014). Associations of physical activity, fitness, and body

composition with heart rate variability- based indicators of stress and recovery

on workdays: a cross sectional study. J. Occup. Med. Toxicol. 9, 1–9.

doi: 10.1186/1745-6673-9-16

Tuovinen, L., and Smeaton, A. F. (2019). “Unlocking the black box of

wearable intelligence: ethical considerations and social impact,” in 2019 IEEE

Congress on Evolutionary Computation (CEC): IEEE) (Wellington), 3235–3243.

doi: 10.1109/CEC.2019.8790173

Wang, H.-M., and Huang, S.-C. (2012). SDNN/RMSSD as a surrogate for LF/HF:

a revised investigation. Model Simul. Eng. 2012, 1–8. doi: 10.1155/2012/9

31943

Watanabe, J., Thamilarasan, M., Blackstone, E. H., Thomas, J. D., and Lauer, M.

S. (2001). Heart rate recovery immediately after treadmill exercise and left

ventricular systolic dysfunction as predictors of mortality. Circulation 104,

1911–1916. doi: 10.1161/circ.104.16.1911

Waugh, W., Allen, J., Wightman, J., Sims, A. J., and Beale, T. A. (2018).

Novel signal noise reduction method through cluster analysis, applied

to photoplethysmography. Comput. Math. Methods Med. 2018, 1–10.

doi: 10.1155/2018/6812404

Weaver, L., Wooden, T., and Grazer, J. (2019). Validity of apple watch heart rate

sensor compared to polar H10 heart rate monitor [Georgia College and State

University]. J. Stud. Res. doi: 10.47611/jsr.vi.662

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François,

R., et al. (2019). Welcome to the tidyverse. J. Open Source Softw. 4:1686.

doi: 10.21105/joss.01686

Yousefi, R., Nourani, M., Ostadabbas, S., and Panahi, I. (2013). A motion-

tolerant adaptive algorithm for wearable photoplethysmographic biosensors.

IEEE J. Biomed. Health Inform. 18, 670–681. doi: 10.1109/JBHI.2013.22

64358

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Stone, Ulman, Tran, Thompson, Halter, Ramadan, Stephenson,

Finomore, Galster, Rezai and Hagen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Sports and Active Living | www.frontiersin.org 16 March 2021 | Volume 3 | Article 585870

https://doi.org/10.14419/ijet.v7i4.36.28214
https://doi.org/10.1159/000006889
https://doi.org/10.1039/C6RA27726H
https://doi.org/10.1016/j.jbiomech.2013.08.015
https://doi.org/10.1093/oxfordjournals.eurheartj.a015465
https://doi.org/10.1007/s12350-015-0175-7
https://doi.org/10.2196/14120
https://doi.org/10.3389/fspor.2020.00050
https://doi.org/10.2196/10828
https://spie.org/Publications/Proceedings/Volume/10501?SSO=1
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1123/ijspp.2015-0038
https://doi.org/10.1519/JSC.0000000000001841
https://doi.org/10.1016/j.tcm.2017.08.003
https://doi.org/10.1123/ijspp.2016-0668
https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
https://doi.org/10.3389/fphys.2015.00343
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1016/j.amjmed.2018.08.025
https://doi.org/10.3390/ejihpe10010029
https://doi.org/10.1123/ijspp.2014-0196
https://www.statista.com/statistics/381696/wearables-unit-sales-forecast-united-states-by-category/
https://www.statista.com/statistics/381696/wearables-unit-sales-forecast-united-states-by-category/
https://www.statista.com/statistics/381696/wearables-unit-sales-forecast-united-states-by-category/
https://doi.org/10.1016/j.cmpb.2013.07.024
https://www.R-project.org/
https://doi.org/10.1186/1745-6673-9-16
https://doi.org/10.1109/CEC.2019.8790173
https://doi.org/10.1155/2012/931943
https://doi.org/10.1161/circ.104.16.1911
https://doi.org/10.1155/2018/6812404
https://doi.org/10.47611/jsr.vi.662
https://doi.org/10.21105/joss.01686
https://doi.org/10.1109/JBHI.2013.2264358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles

	Assessing the Accuracy of Popular Commercial Technologies That Measure Resting Heart Rate and Heart Rate Variability
	Introduction
	Methods
	Subjects
	Experimental Design
	Commercial Off-The-Shelf Devices and Measuring HRV
	Validation Trials
	Data Analysis
	Statistical Analyses

	Results
	Evaluation of COTS Devices in Reporting Heart Rate
	Evaluation of COTS Devices in Reporting rMSSD

	Discussion
	Future

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


