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ABSTRACT

The c-myc mRNA coding region determinant-
binding protein (CRD-BP) has high affinity for the
coding region determinant (CRD) of c-myc mRNA.
Such affinity is believed to protect c-myc CRD from
endonucleolytic attack. We have recently purified
a mammalian endoribonuclease which can cleave
within the c-myc CRD in vitro. The availability of
this purified endonuclease has made it possible to
directly test the interaction between CRD-BP and
the endonuclease in regulating c-myc CRD RNA
cleavage. In this study, we have identified the
coding region of MDR-1 RNA as a new target for
CRD-BP. CRD-BP has the same affinity for c-myc
CRD nts 1705–1886 and MDR-1 RNA nts 746–962
with Kd of 500nM. The concentration-dependent
affinity of CRD-BP to these transcripts correlated
with the concentration-dependent blocking of
endonuclease-mediated cleavage by CRD-BP.
In contrast, three other recombinant proteins
tested which had no affinity for c-myc CRD did not
block endonuclease-mediated cleavage. Finally,
we have identified RNA sequences required for
CRD-BP binding. These results provide the first
direct evidence that CRD-BP can indeed protect
c-myc CRD cleavage initiated by an endoribonu-
clease, and the framework for further investigation
into the interactions between CRD-BP, c-myc
mRNA, MDR-1 mRNA and the endoribonuclease
in cells.

INTRODUCTION

The c-Myc protein is an important transcription factor.
It influences cell proliferation, differentiation and
apoptosis via the activation of a multitude of target
genes (1). It has been estimated that c-Myc can influence

the expression of �10% of all genes in humans (1).
c-Myc is implicated in human cancers, and overexpression
of c-Myc at the protein and/or mRNA levels has
been observed in virtually all types of cancers (2).
These observations highlight the significance of under-
standing c-myc gene regulation.
c-Myc expression is regulated at multiple levels includ-

ing the level of mRNA stability (3–5). By using a cell-free
mRNA decay assay as well as in vivo analysis, it has been
shown that c-myc mRNA can be degraded by two
different pathways. One pathway involves rapid removal
of the poly(A) tail which is then followed by 30–50

decay accomplished by 30–50 exoribonuclease(s) (6,7).
The second decay pathway involves endonucleolytic
cleavage within the coding region of c-myc mRNA, a
region termed the coding region determinant (CRD) (5).
Several studies have subsequently confirmed that the
coding region of c-myc mRNA, including the CRD,
is involved in the regulation of c-myc mRNA stability
in cells (3,8–11).
A cell-free mRNA decay assay involving polysome

extracts and a 180 ntRNA sense strand corresponding to
the c-myc CRD was found to induce endonucleolytic
cleavage within the c-myc CRD and destabilized the
transcript 8-fold (5). The effect was highly specific because
competitor RNA corresponding to other regions of the
c-myc transcript failed to destabilize c-myc mRNA (5).
Based on these observations, Ross and co-workers (5)
postulated the following model: (i) c-myc mRNA is
susceptible to attack by a polysome-associated endoribo-
nuclease; (ii) a protein can interact with and protect the
CRD from attack by an endoribonuclease; (iii) the
addition of competitor CRD RNAs titrate the protein
off c-myc mRNA, leaving the CRD unprotected and
susceptible to endonuclease attack. A protein that binds
with high affinity in vitro to the c-myc CRD has been
purified (12) and cloned (13). This protein termed the
c-myc mRNA coding region determinant-binding protein
or CRD-BP, was later found to be identical to the IGF-II
mRNA-binding protein 1 (IMP-1) (14).
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The following observations supported CRD-BP being
an oncofetal protein. CRD-BP has been shown to be
abundantly expressed in fetal tissues but not in adult
tissues (15). CRD-BP-deficient mice exhibited dwarfism,
impaired gut development and increased perinatal mor-
tality (16), providing further support that CRD-BP plays
a critical role in developmental processes. De novo
expression studies on CRD-BP have shown it to be
overexpressed in breast cancer (17), colorectal cancer (18),
brain tumors (19) and non-small cell lung tumors (19).
Further evidence to associate CRD-BP with breast cancer
are the observations that �30% of human breast cancer
cases exhibited amplification of the CRD-BP gene (20),
and transgenic mice carrying targeted expression of the
protein developed mammary tumors (21).
To date, CRD-BP and its orthologs have been shown to

bind to several RNAs, and depending on the RNA in
question, multiple functions for these proteins have been
proposed. CRD-BP binds to the 50-untranslated region of
IGF-II mRNA and influences its subcellular localization
and translation (14,22). CRD-BP also binds to H19 RNA
(23) and neuron-specific tau mRNA (24) to influence their
localization in cells. The zipcode-binding protein binds
to b-actin mRNA and localizes it to the leading edge
of fibroblast lamellipodia (25). The IMP binds to the
30-untranslated region of CD44 mRNA and stabilizes
the transcript (26). A recent study has identified CRD-BP
as the protein that interacts with the coding region of
bTrCP1 mRNA and stabilizes the transcript in response to
the b-catenin signaling pathway (27). Finally, as indicated
above, CRD-BP has been shown to bind to and is believed
to shield the c-myc CRD from endonucleolytic attack
thereby prolonging its cytosolic half-life (5).
Three observations support the CRD-BP-c-myc CRD

shielding hypothesis. First, overexpression of CRD-BP
in colorectal cancer correlates with a modest elevation of
c-myc mRNA levels (18). Second, decreased expression
of c-myc mRNA subsequent to knockdown of CRD-BP
was observed in MCF-7 (28) and colorectal cells (27).
Finally, addition of sense RNA corresponding to the
CRD resulted in enhanced decay of c-myc mRNA in cells
(29). However, the following two recent observations do
not support the CRD-BP-c-myc CRD shielding hypoth-
esis: (i) transgenic mice over-expressing CRD-BP in
mammary tissues did not exhibit elevated levels of c-myc
mRNA (21); and (ii) targeted knockdown of CRD-BP in
K562 cells had no effect on c-myc mRNA levels (30). Such
unexpected results or discrepancies may in part be due
to the role of the third party molecule, namely an
endoribonuclease that can cleave the c-myc CRD.
The availability of an identified endoribonuclease should
permit systematic testing of the CRD-BP-c-myc CRD
shielding hypothesis in vitro and in vivo, and may help
clarify some of the contradictory reports.
We have recently purified a mammalian endoribonu-

clease from rat liver based on its ability to cleave within
the c-myc CRD (31). Several biochemical properties
distinguished the enzyme from previously described
vertebrate endonucleases and supported it being a novel
mammalian endoribonuclease (31). The enzyme preferen-
tially cleaves between the dinucleotides UA, CA and UG,

and it is capable of cleaving other RNAs including
MDR-1 and b-globin RNAs (31). With the availability of
purified mammalian endoribonuclease and recombinant
CRD-BP, we sought to directly test the CRD-BP-c-myc
CRD-shielding hypothesis. In this study, we show
that CRD-BP is able to dose-dependently bind to c-myc
CRD RNA and MDR-1 RNA with Kd of �500 nM.
This interaction correlates with its ability to dose-
dependently inhibit cleavage of c-myc CRD and MDR-1
RNA by the mammalian endoribonuclease.

MATERIALS AND METHODS

Expression and purification of recombinant CRD-BP,
Rpp20, Rpp21, Rpp25 and Rpp40

The plasmid pET28b(þ)-CRD-BP which contains mouse
CRD-BP cDNA was a generous gift from Dr Jeffrey Ross,
University of Wisconsin and was prepared as previously
described (13). Plasmids pHTT7k-p20, pHTT7k-p21,
pHTT7k-p25 and pHTT7k-p40 which contain the
Rpp20, Rpp21, Rpp25 and Rpp40 cDNAs were generous
gifts from Dr Sidney Altman, Yale University and were
prepared as previously described (32–34). All His6-tagged
proteins were purified from Escherichia coli BL21(DE3)
using the QIAexpress Ni-NTA metal affinity spin kit
(QIAGEN) under denaturing conditions. Proteins eluted
from the column at either pH 5.4 or 4.5 were subjected to
a series of dialysis steps (3 h at each step) pH 5/6Murea,
pH 5.5/4Murea, pH 6/2Murea, pH 6.7/1Murea and
pH 7.4/0Murea in a buffer containing 200mMKCl,
1mMEDTA, 10% (v/v) glycerol, 1mMreduced
glutathione, 0.1mMoxidized glutathione, 0.01% (v/v)
Triton X-100, 20mMtriethanolamine (13) and EDTA-
free protease inhibitor tablets (Roche). Following dialysis,
samples were spun at 13,200 rpm for 30min to remove any
precipitated proteins. The purified protein solutions were
then quantified and analyzed for purity using Coomasie
blue-stained 12% SDS-PAGE.

Purification of the mammalian endoribonuclease

Purification of the mammalian endoribonuclease from
rat livers has been previously described (31). One unit of
the purified enzyme from the last step of column
chromatography, the heparin-sepharose column, was
used in all experiments described in this study.

In vitro transcription and labeling of 50 ends of RNA

To synthesize c-myc CRD RNA, plasmids
pUC19-CRDmyc-1705-1792 (31) and pUC19-CRDmyc-
1705-1886 were linearized with EcoRI and transcribed
with SP6 RNA polymerase using SP6 Megascript kits
(Ambion, TX, USA). To make human b-globin RNA
corresponding to nts 1–145, the plasmid SPkbc (35) was
linearized with FokI and transcribed with SP6RNA
polymerase using SP6 Megascript kit. To make human
MDR-1 RNA corresponding to nts 746–962, the plasmid
pGEM7Z-MDR-1-V2 was linearized with ApaLI
and transcribed with T7 RNA polymerase using T7
Megascript kit (Ambion, TX, USA). For 50-32P-end
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labeling of RNA, 5 mg of in-vitro transcribed RNA was
first dephosphorylated with 10 units of calf alkaline
phosphatase (GE Healthcare) for 30min at 378C in a
100-ml reaction according to the manufacturer’s instruc-
tions. Dephosphorylated RNA was purified by phenol/
chloroform extraction and ethanol precipitation. About
2.5 mg of dephosphorylated RNA was incubated in a 25-ml
reaction with 30–50mCi of [g-32P] ATP at 378C for 1 h
with 40–50 units of T4 polynucleotide kinase (New
England Biolabs). The entire sample was then run on
a 6% polyacrylamide/7Murea gel and the band contain-
ing 50-labeled 32P-RNA was excised and eluted with
elution buffer (0.5M ammonium acetate, 1mMEDTA,
0.2% SDS) at 378C for 6 h. The purified radiolabeled
RNA was then concentrated by ammonium acetate/
isopropanol precipitation. Specific activity of the RNA
was determined by scintillation counting.

Electrophoretic mobility shift assays

Electrophoretic mobility shift assay (EMSA) binding
buffers (5mMTris-Cl pH 7.4, 2.5mMEDTA pH 8.0,
2mMDTT, 5% glycerol, 0.1mg/ml bovine serum albu-
min, 0.5mg/ml yeast tRNA, 5 units RNasin) (13) were
prepared on ice prior to each experiment. In order to
facilitate RNA denaturation and renaturation, the [32P]
RNA sample was heated to 508C for 5min and cooled
to room temperature before being added to the EMSA-
binding buffer. EMSA-binding buffer containing radiola-
beled RNA was then incubated with purified recombinant
protein in a 20-ml reaction volume at 308C for 10min and
transferred to ice for 5min. The reaction was again
incubated at 308C for 10min and transferred to ice for
an additional 5min. Heparin (Sigma) was then added to
a final concentration of 5mg/ml and the reaction was
incubated on ice for a final 5-min period. A total of
2 ml EMSA loading dye (250mMTris-Cl pH 7.4, 0.2%
bromophenol blue, 0.2% xylene cyanol, 40% sucrose) was
added to each reaction and 10 ml of the EMSA reaction
was loaded onto an 8% native polyacrylamide gel and
resolved at 25mA for 90min. Following electrophoresis,
the gel was dried and subjected to autoradiography using
the Cyclone PhosphorImager and Optiquant Software.

All EMSA saturation-binding experiments were carried
out as described above and the dissociation constant (Kd)
for CRD-BP against MDR-1 and c-myc CRD was
determined by fits to the Hill equation:

bound

Total
¼

1
kd

� �
L½ �

n

1þ 1
kd

� �
L½ �

� �n

where Kd is the dissociation constant and [L] is the
concentration of CRD-BP and n is the Hill coefficient.
All saturation-binding data was analyzed by densitometry
of the autoradiograph using the Cyclone Storage
Phosphor-System and Optiquant software. For each
reaction the total activity in each lane was determined;
this involved summing the total activity in bound
complexes with the total activity present in the unbound
fraction. It should be noted that in lanes in which both

Complex I and Complex II were present, their total
activity was added together and therefore represented
the total bound fraction. This analysis allowed for
the calculation of the percentage of RNA bound to the
protein. The percentage of bound RNA and the protein
concentration (nM) were inserted into the Hill equation
and the results were expressed graphically.
For EMSA competition assays, 50-[32P] radiolabeled c-myc

CRD RNA nts 1705–1886 and unlabeled in vitro
transcribed competitor RNA were prepared as described
above. EMSA-binding buffers and EMSA reaction
mixtures were prepared and 350 nM of CRD-BP
was added to the reactions containing one of the
following unlabeled competitors: c-myc-CRD-1705-1885,
c-myc-CRD 1705-1792, MDR-1 or b-globin RNA. EMSA
competition assays involved the pre-incubation between
competitor RNA and CRD-BP for 10min at 308C.
Following the pre-incubation, 40 nM [32P] c-myc CRD
RNA was added to the reaction. This was followed by
the standard EMSA protocol as described above.
The concentrations of unlabeled competitor RNA
employed were 1-, 2-, 5-, 10- and 50-fold greater than
the 40 nM [32P] c-myc-CRD RNA used.

In vitro endonuclease shielding assay

The first step of this assay involved the binding
between one of the [32P] RNA constructs (c-myc CRD-
1705-1886, MDR-1 or b-globin) and one of the purified
recombinant proteins (CRD-BP, Rpp20, Rpp21, Rpp25
or Rpp40). Binding was facilitated using the standard
EMSA protocol. Immediately following the final
EMSA step, one unit of the heparin-sepharose purified
mammalian endoribonuclease was added to the binding
reaction, mixed and incubated at 378C for 3min. As a
positive control, the dialyzed mammalian endoribonu-
clease was added to the EMSA buffer in the absence of
recombinant protein and incubated at 378C for 3min.
All reactions were terminated by heating at 1008C for
3min followed by the addition of 1 ml phenol and 3 ml
formamide loading dye (80% formamide, 0.05mg/ml
bromophenol blue, 0.05mg/ml xylene cyanol,
0.01MEDTA pH 8.0). Aliquots containing �30000 c.p.m.
were loaded onto 8% denaturing polyacrylamide gel and
resolved at 30mA until the bromophenol blue reached the
bottom of the gel plate. Gels were fixed in 10% acetic acid,
10%methanol for 15min and subjected to autoradiography.
In some experiments, higher amounts (three units) of the
purified endoribonuclease were used. In such cases, similar
blocking effects of CRD-BP on endonuclease-mediated
cleavage were observed.
RNase T1 digestion and alkaline hydrolysis of

radiolabeled c-myc CRD RNA were performed to
generate sequencing ladders for cleavage site identification
purposes. Alkaline ladders were generated by combining
100 000 c.p.m. [32P] c-myc CRD-1705-1886 RNA and 1�
alkaline hydrolysis buffer (50mMNaHCO3/Na2CO3

pH 9.2, 1mMEDTA, 3 mg yeast tRNA) in a total reaction
volume not exceeding 15 ml. The reaction was incubated
at 958C for 10min, transferred to ice and combined with
20 ml of formamide loading dye and stored at �208C
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until required. RNase T1 digests were generated by
incubating 100 000 c.p.m. [32P] c-myc CRD-1705-1886
RNA in EMSA-binding buffer with 1 unit of RNase T1
(Ambion). The RNA/EMSA binding buffer mixture was
heated to 558C for 5min and cooled to room temperature
prior to the addition of RNase T1. The T1 cleavage
reaction was incubated at room temperature for 10min
and was terminated by phenol/chloroform extraction.
The RNA was extracted using ammonium acetate/
isopropanol precipitation and was resuspended in 15 ml
of formamide loading dye.

Mapping of CRD-BP-binding sites using
hydroxyl radical foot-printing

The Fe(II)/EDTA cleavage complex (36) was used to map
the CRD-BP-binding sites on c-myc CRD-1705-1886.
Initially, binding between c-myc CRD (�45 nM;
100 000 c.p.m./reaction) and CRD-BP (1500 nM) was
facilitated using the standard EMSA buffer and reaction
conditions as described above. Immediately following the
binding reaction, 6 ml of Fe(II)/EDTA cleavage reagent
(0.4mMFe(II)(NH4)2(SO4)2, 0.8mMEDTA pH 8.0,
20mML-ascorbic acid sodium salt, 0.35% H2O2) was
added to the 20 ml binding reaction. The cleavage reaction
was incubated at room temperature for 10min and was
terminated by the addition of 5 ml 0.1M Thiourea (Sigma).
The RNA was extracted by ammonium acetate/
isopropanol precipitation and the pellet was resuspended
in 15 ml formamide loading dye. About 5 ml of the
reaction was run on an 8% denaturing polyacrylamide-
sequencing gel.

RESULTS

Purified recombinant His6-tagged CRD-BP binds to
the full-length c-mycCRDRNA nts 1705–1886
andMDR-1 RNA nts 746–962

In an effort towards testing the CRD-BP-c-myc CRD
shielding hypothesis, it was imperative to demonstrate
that purified recombinant His6-tagged CRD-BP could
bind avidly to the CRD. The plasmid pET28b(þ)-CRD-
BP was used to generate the recombinant mouse CRD-BP
containing a His6-tag at the C-terminus of the protein.
CRD-BP fractions eluted from the Ni-NTA column
contained an enriched band at �68 kDa when visualized
by SDS-PAGE, (refer to lane 3, Figure 1) which is
consistent with the predicted and reported molecular
weight of recombinant mouse CRD-BP (13). The recom-
binant His6-tagged CRD-BP of �95% purity was
consistently obtained and an example of this is shown in
lane 3, Figure 1. Additional recombinant proteins, Rpp20,
Rpp21, Rpp25 and Rpp40, were used as controls in this
investigation. Rpp20, Rpp21, Rpp25 and Rpp40 are
protein subunits of human RNase P (32–34) and were
chosen on the basis of their ability or inability to bind to
nucleic acids. The criteria used to determine if these
recombinant proteins possessed this binding potential was
based on the presence of putative nucleic-acid-binding
domains in their sequence and known RNA–protein
interactions. Purity of the recombinant proteins was

assessed by visualization using Coomasie blue-stained
SDS-PAGE. As shown in Figure 1, the purity of all
the recombinant proteins was greater than 95% and their
observed molecular weights were consistent with their
predicted molecular weights (lanes 2, 4, 5, 7).

EMSA was performed to determine whether the
purified and dialyzed recombinant proteins were capable
of binding to c-myc CRD RNA nts 1705–1886. About
500 nM recombinant CRD-BP was incubated with c-myc
CRD [32P]RNA and RNA–protein complexes were
visualized following non-denaturing gel electrophoresis.
As shown in lane 2, Figure 2, two clear bound complexes
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Figure 1. Analysis of purified recombinant His6-tagged proteins by
SDS-PAGE. Recombinant His6-tagged mouse CRD-BP was purified
using Ni-NTA spin column and dialyzed prior to separation (2mg)
(lane 3) on 12% SDS-PAGE and visualization by Coomasie blue
staining. Recombinant His6-tagged human Rpp20 (lane 2), Rpp21
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were observed. In contrast, no bound complexes were
observed when 500–750 nMRpp20 (lanes 3–5), Rpp21
(lanes 6–8) or Rpp40 (lanes 12–14) were incubated with
c-myc CRD [32P]RNA. Three low-activity binding com-
plexes were observed when Rpp25 was incubated with
c-myc CRD [32P]RNA (lanes 9–11). The ability of Rpp25
to bind to the c-myc CRD was not surprising given the
fact that it possesses an Alba RNA-binding motif (37,38)
and it is known to bind to several RNA targets including a
71-nt segment of H1 RNA, M1 RNA and E. coli tRNAtyr

(34). It should be noted that the intensity of the Rpp25-
binding complexes is significantly less than CRD-BP-
binding complexes at the same concentration. Further
study would be required to determine if Rpp25 has in fact
lower affinity than CRD-BP for c-myc CRD or yeast
tRNA present in the EMSA reaction actually competed
with Rpp25 for binding to the transcript. The inability of
Rpp40 to bind with the c-myc CRD was supported by the
previous suggestions that this protein in isolation does not
play a role in nucleic acid binding (37,38).

To further determine if the recombinant CRD-BP-
c-myc CRD [32P] RNA nts 1705–1886 association was
specific, we chalenged the interaction with unlabeled
competitor RNA. Our EMSA competition assays revealed
that up to 50X molar excess of unlabeled b-globin
competitor RNA was unable to dilute the binding between

CRD-BP and [32P] c-myc CRD (lanes 15–18, Figure 3A;
lanes 7–8, Figure 3B). The inability of unlabeled b-globin
competitor to dilute the CRD-BP-c-myc CRD interaction
in conjunction with the saturation-binding experiment
shown in Figure 4C support the observation that the
145-nt b-globin RNA fragment is not a bona fide CRD-BP
target in vitro. The b-globin results from this investigation
are also supported by the two earlier reports (12,13).
Similar to unlabeled c-myc CRD nts 1705–1886

(compare lane 3 to lane 2, Figure 3A), at 1� molar
excess, the MDR-1 RNA nts 746–962 was capable
of diluting the CRD-BP-[32P] c-myc CRD interaction
(compare lane 11 to lane 2, Figure 3A) and at 5�, 10� and
50� molar excess it diluted the interaction completely
(compare lanes 13–14 with lane 2, Figure 3A; compare
lanes 9–10 with lane 2, Figure 3B). Similar results were
observed when the unlabeled competitor c-myc
CRD-1705-1886 RNA was used (compare lanes 5–6 with
lane 2, Figure 3A; compare lanes 3–4 with lane 2,
Figure 3B). The unlabeled competitor c-myc CRD nts
1705–1792 was also observed to dilute the interaction
when a minimum of 2� molar excess was added (compare
lane 8 to lane 2, Figure 3A) and even at 50� molar excess,
the CRD-BP-[32P] c-myc CRD interaction was still visible
(compare lanes 5–6 with lane 2, Figure 3B). This result is
consistent with previous observation that c-myc CRD nts
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1705–1792 has indeed reduced affinity for CRD-BP as
compared to the full-length c-myc CRD nts 1705–1886
(13). It is possible that the secondary structure of the
c-myc CRD-1705-1886 contains the full complement
of recognition and binding elements that facilitate
high-affinity-binding interactions with CRD-BP.

Characterizing the binding of CRD-BP to c-myc
CRDRNA andMDR1 RNA

Although CRD-BP is known to bind to the c-myc CRD
(12,13), the binding characteristics between the two

components has not been previously determined.
With the availability of purified recombinant CRD-BP
as well as MDR-1 RNA, we decided to further character-
ize and compare the nature of the binding interactions.
Saturation-binding experiments were carried out using the
standard EMSA conditions and employed a wide range of
CRD-BP concentrations. The saturation-binding experi-
ments were conducted three times, using three different
purified CRD-BP preparations. A representative result
for the binding of CRD-BP to c-myc [32P] CRD RNA nts
1705–1886 is shown in Figure 4A. It was determined
experimentally that the minimum concentration of
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CRD-BP required to generate Complex I (binding of
one molecule of CRD-BP, see below for discussion) was
about 15 nM (data not shown). At concentrations above
100 nM, the slower migrating Complex II (binding of
two molecules of CRD-BP, see below for discussion)
was frequently observed (lanes 3–20, Figure 4A).
In many instances, at higher concentrations of CRD-BP
(e.g. 500–750 nM), Complex I was absent and it would
appear that the bound RNA shifted exclusively to
Complex II (compare lanes 8–20 to lanes 2–7,
Figure 4A). When the saturation-binding data from
Figure 4A was fit to the Hill equation and expressed
graphically, a sigmoidal curve was generated as shown in
Figure 4B (Kd of 500 nM). It is important to point out
that the concentration of CRD-BP at which formation of
Complexes I and II would take place was highly
dependent upon the age of the dialyzed protein and the
number of freeze–thaw cycles subjected to the protein.
However, the actual dissociation constant may be lower
than 500 nM because it cannot be assumed that 100%
of the CRD-BP molecules were present in a conformation
suitable for binding.

Keeping in mind the limitation of the EMSA, we also
performed saturation-binding experiments to determine
if CRD-BP could bind with other radiolabeled RNA
substrates. When challenged with [32P] b-globin RNA,
CRD-BP up to 3070 nM was unable to form an observable
RNA–protein complex (Figure 4C). However, when
CRD-BP was challenged with [32P] MDR-1, two
RNA–protein complexes that exhibited a similar profile
to that of the CRD-BP-c-myc CRD interaction were
observed; Kd¼ 500 nM (Figure 5). The analysis of the
combined binding data from three separate experiments
revealed a level of cooperativity was present between
the formation of the first and second binding complexes
(Figure 5B). The cooperativity observed is also reflected
in the Hill coefficient, which for CRD-BP versus c-myc
CRD (Figure 4B) was 2.06, and 2.6 when challenged
with MDR-1 RNA (Figure 5B). The Hill coefficients in
both cases suggest that two molecules of CRD-BP bind
with one molecule of c-myc CRD RNA or with one
molecule of MDR-1 RNA at identical or non-identical
sites. Evidence to support a two RNA-binding site model
is provided by the kinetic analysis of the interactions
between IMP-1 and IGF-II RNA (39). In this study,
IMP-1 was shown to bind through a cooperative,
sequential mechanism via two binding sites within the
IGF-II transcript (39). Interestingly, dissociation constant
of about 2 nM was reported for the interaction between
IMP-1 and IGF-II RNA (39). The significantly higher
dissociation constant determined in this study could
reflect the inefficiency of renaturation of CRD-BP and
c-myc CRD RNA as discussed above, or/and the use of
His6-tagged CRD-BP since it has been previously reported
that tagged-IMP-1 exhibited poor RNA binding (14).

CRD-BP protects the c-mycCRD andMDR-1 RNA
from cleavage by the mammalian endoribonuclease

Having established that recombinant CRD-BP can bind
c-myc CRD and MDR-1 RNA, we then sought to

determine if the binding of CRD-BP to RNA could
directly protect these transcripts from degradation by an
endoribonuclease recently discovered in our lab (31).
50-End labeled c-myc CRD nts 1705–1886 was incu-

bated with one unit of the purified endonuclease in the
presence or absence of recombinant CRD-BP. As shown
in Figure 6A, the typical ten distinct cleavage sites at nts
1742, 1747, 1751, 1757, 1768, 1771, 1773, 1775, 1845 and
1855 were generated upon incubation with the purified
endonuclease (lanes 3, 8 and 13) (31). For ease in
quantification and categorization, we have named the
separate cleavage sites as Region I (1845, 1855), Region II
(1768, 1771, 1773, 1775) and Region III (1742, 1747, 1751,
1757) (Figure 6). Incubation of the transcript with
recombinant CRD-BP at 500 nM (lane 2), 750 nM
(lane 7) and 1500 nM (lane 12) alone had no effect, indi-
cating that CRD-BP lacks RNase activity. It was
anticipated that c-myc cleavage would be reduced using
CRD-BP concentrations equal to the measured dissocia-
tion constant because 50% of c-myc CRD would be
bound at 500 nM (Figure 4A and B). This prediction was
confirmed by the reduction in cleavage fragments
observed in all three regions indicated in Figure 6A
(compare lanes 4–5 with lane 3). At 500 nM, CRD-BP was
responsible for a 43% reduction in Region I, a 72%
reduction in Region II and a 77% reduction in Region III.
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Figure 5. CRD-BP binding affinity for MDR-1 RNA. (A) An electro-
mobility shift assay showing binding to [32P] MDR-1 RNA nts 746–962
by an increasing amount of purified recombinant His6-tagged CRD-BP
(0–4000 nM). (B) Binding activity in (A) was quantified using the
PhorphorImager to compare the relative amount of radiolabeled
unbound RNA shifted into slower-migrating Complex I and Complex
II. Data obtained from three separate experiments was then used to
plot the saturation binding curve as shown.
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It was predicted that cleavage reductions would
increase at concentrations above the measured dissocia-
tion constant because at 750 and 1500 nM, �75 and 90%
of c-myc CRD were bound by CRD-BP respectively
(Figure 4A and B). At 750 nM, (lanes 9–10, Figure 6A)
CRD-BP was responsible for a 45% reduction in
Region I, a 75% reduction in Region II and a 80%
reduction in Region III. As shown in lanes 14–15 in
Figure 6A, at 1500 nM, CRD-BP was responsible for the
95% cleavage reductions observed in all three regions.
To determine if the blocking effect was due to specific

binding interactions, we incubated c-myc CRD RNA with
Rpp20, Rpp21 and Rpp40 which had been shown to
have no affinity for the transcript (Figure 2). Figure 6B
shows that at 1500 nM, Rpp20, Rpp21 and Rpp40 were
unable to block endonucleolytic cleavage of CRD RNA

by the native mammalian endoribonuclease (compare
lanes 4, 6 and 8 to lane 2).

CRD-BP was shown to bind with considerable affinity
and specificity to MDR-1 RNA (Figure 5) and we have
previously shown that the endonuclease is capable of
cleaving MDR-1 RNA (31). It was therefore anticipated
that CRD-BP would also be capable of blocking MDR-1
cleavage by the mammalian endoribonuclease. As pre-
dicted, CRD-BP was observed to shield MDR-1 RNA
from endonucleolytic attack in a concentration-dependent
manner (Figure 7A), and the most significant cleavage
reductions were observed at 1500 nM (lane 3, Figure 7A).
The consistent reduction observed in all regions suggests
that the entire MDR-1 RNA was protected via CRD–BP
interactions. We have also tested the ability of CRD-BP
to block cleavage of b-globin RNA by the endonuclease.
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Figure 6. CRD-BP shields the c-myc CRD RNA from endonucleolytic attack by a mammalian endoribonuclease. (A) One unit of the purified
mammalian endoribonuclease was incubated with [32P] c-myc CRD RNA nts 1705–1886 as described in the Materials and methods section, with
(lanes 4, 5, 9, 10, 14, 15) or without (lanes 3, 8 and 13) the presence of 500, 750 or 1500 nM of purified recombinant His6-tagged CRD-BP as shown.
(B) As in (A), the purified endoribonuclease was incubated with the radiolabeled c-myc CRD RNA in the absence (lane 2) or presence of 1500 nM of
Rpp20 (lane 4), Rpp21 (lane 6) and Rpp40 (lane 8). Lanes 3, 5 and 7 had the purified recombinant proteins only. Numbers on the right indicate the
cleavage sites generated by the mammalian endoribonuclease on the CRD RNA substrates.

1216 Nucleic Acids Research, 2007, Vol. 35, No. 4



As expected, CRD-BP that had no affinity for b-globin
RNA (Figure 4C) did not effectively block the endo-
nuclease from cleaving this transcript (Figure 7B).

Taken together, our overall results suggest that
CRD-BP was capable of shielding both c-myc CRD and
MDR-1 RNAs in a dose-dependent manner from the
cleavage activities of a mammalian endoribonuclease via
specific RNA–protein interactions. In addition, the results
suggest that CRD-BP binds to a considerable portion
of both MDR-1 and c-myc RNAs and at 1500 nM,
both RNA transcripts appeared to be entirely protected.

Mapping the CRD-BP-binding sites on c-mycCRDRNA

To map the CRD-BP-binding sites on c-myc CRD,
we used the hydroxyl radical foot-printing method (36).
The chemical cleavage reagent chosen was the Fe(II)/
EDTA complex. The Fe(II)/EDTA complex is a nega-
tively charged species and does not interact electro-
statically with the RNA molecule thereby limiting its
interference with RNA–protein interactions (36).
The complex is known to generate hydroxyl radicals
from the reduction of hydrogen peroxide in a reaction
known as the Haber–Weiss reaction (36). The hydroxyl
radical is thought to cleave the RNA backbone by
attacking ribose moieties (36). Regions of the RNA
backbone that are occluded by protein are cleaved with
decreased efficiency by the radical and the result is a series
of cleavage fragments exhibiting reduced intensity (36).

Figure 8A shows a typical CRD-BP-c-myc CRD
foot-printing experiment. Lane 3 depicts the Fe(II)/
EDTA cleavage profile characteristic of [32P] c-myc
CRD-1705–1886 in the absence of CRD-BP. The alkaline

hydrolysis ladder (lane 2) exhibited a uniform cleavage
profile with the exception of two enriched fragments
located between nts 1794 and 1842; which were also
observed in lanes 4–9. RNase T1 digest of [32P] c-myc
CRD-1705–1886 shown in lane 1 provided mapping
for cleavage site identification. The cleavage pattern
observed as a result of Fe(II)/EDTA-treatment of c-myc
CRD was hallmarked by several enriched fragments
which have been mapped and are indicated in
Figure 8A. When compared to cleavage reactions contain-
ing 1500 nM CRD-BP (lanes 4–7), it is apparent that
several regions of cleavage were significantly reduced.
The cleavage fragments corresponding to nts 1741 and
1748 (lane 3) were reduced by 75%. An equivalent
reduction was also observed at discrete fragments in the
nucleotide region spanning 1765–1775 (compare lane 3
with lanes 4–7). At positions 1787 and 1791, a 50%
reduction in cleavage intensity was observed and a 75%
reduction was also observed at positions 1843, 1855 and
1864 (compare lane 3 with lanes 4–7). Figure 8B shows the
identified CRD-BP-binding sites in comparison with the
putative CRD-BP-binding sites previously determined
using antisense oligonucleotides (29). Six of the binding
sites (1765, 1767, 1771, 1773, 1775, 1787) identified in
this study were in good agreement with those identified
by Coulis et al. (29). Six identified CRD-BP-binding
sites (1747, 1767, 1771, 1773, 1855) are within the
direct cleavage sites of the mammalian endonuclease
and five (1741, 1765, 1787, 1791, 1843) are within one
to two nucleotides away from the enzyme cleavage sites
(Figure 8B). Such observation is consistent with the
notion that CRD-BP is capable of shielding c-myc CRD
RNA from attack by the endonuclease.
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Figure 7. CRD-BP is capable of shielding MDR-1 RNA from endonucleolytic attack by the mammalian endoribonuclease. (A) One unit of the
purified mammalian endoribonuclease was incubated with [32P] MDR-1 RNA nts 746–962 as described in the Materials and methods section, without
(lane 2) or with the presence of 500 nM (lane 5), 750 nM (lane 4) or 1500 nM (lane 3) of purified recombinant His6-tagged CRD-BP. Lane 2 had the
input RNA only. (B) As in (A), the purified endoribonuclease was incubated with [32P] b-globin RNA nts 1–145 without (lane 3) or with the presence
of 750 nM (lane 4) or 1500 nM (lane 5) of purified recombinant His6-tagged CRD-BP. Lane 1 had the input RNA only.
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DISCUSSION

CRD-BP belongs to the VICKZ family of RNA-binding
proteins that influence various aspects of cellular physiol-
ogy such as cell growth and differentiation (40). CRD-BP
was initially discovered (5) and eventually purified (12)
based on its ability to bind to the c-myc CRD.
The working model for CRD-BP function is that it

binds to and protects the c-myc CRD from endonucleo-
lytic cleavage, resulting in enhanced transcript half-life
and expression (5). This hypothesis is supported by
evidence from in vitro mRNA decay studies (5,12)
as well as studies in cells (3,28). Although this hypothesis
has been proposed for a number of years, it has not been
directly tested. That is CRD-BP has not been directly
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Figure 8. Mapping of CRD-BP-binding sites on c-myc CRD RNA using the hydroxyl radical-mediated cleavage reaction. (A) 45 nM [32P] c-myc
CRD RNA nts 1705–1886 was subjected to Fe(II)/EDTA cleavage reaction in EMSA-binding buffer in the absence (lane 3) or presence (lanes 4–7)
of 1500 nM purified recombinant His6-tagged CRD-BP. Reaction samples were run on a 8% denaturing polyacrylamide gel, fixed, dried and
subjected to autoradiography as described in the Materials and methods section. Lane 8 is the input RNA. Lanes 1 and 2 represent RNase T1 digest
and alkaline hydrolysis of the radiolabeled c-myc CRD RNA respectively. Regions highlighted by rectangles showed significant reductions in
cleavage. Numbers on the left indicate guanosine cleavage sites of RNase T1 digest and numbers on the right indicate the hydroxyl radical-
mediated cleavage sites. (B) Identified CRD-BP-binding sites on sequences of c-myc CRD RNA nts 1705–1886. Underlined sequences indicate the
CRD-BP-binding sites as determined by the hydroxyl radical foot-printing in (A). Bolded sequences indicate the putative CRD-BP-binding sites as
previously determined using antisense oligonucleotides competition method (29). Arrows indicate cleavage sites generated by the purified
endoribonuclease (31).
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shown to block CRD cleavage by an endoribonuclease.
This is in part due to the unavailability of a candidate
endoribonuclease that can cleave within the c-myc CRD.
In this study, we show that recombinant CRD-BP can
dose-dependently inhibit cleavage of c-myc CRD and
MDR-1 RNA by a mammalian endoribonuclease.
This blocking effect correlates with CRD-BP’s dose-
dependent affinity for c-myc CRD and MDR-1 RNAs.

Specificity of recombinant CRD-BP for the CRD was
demonstrated in two ways. First, while three other
recombinant proteins, Rpp20, Rpp21 and Rpp40, had
no affinity for c-myc CRD, CRD-BP was shown to bind
strongly to the transcript (Figure 2). Second, consistent
with previous findings (12,13), c-myc CRD competitor
RNAs were effective in competing with [32P]c-myc CRD
in binding to CRD-BP, with nts 1705–1886 being more
effective than nts 1705–1792 (Figure 3). On the contrary,
at 50� molar excess, b-globin RNA could not compete
with [32P]c-myc CRD in binding to CRD-BP.
Unexpectedly, we found that the coding region of MDR-
1 RNA nts 746–962 was as effective as c-myc CRD nts
1705–1886 in competing for binding to CRD-BP
(Figure 3). This result is consistent with the observed
saturating-binding profile upon incubation of excess
CRD-BP with [32P]MDR-1 RNA (Figure 5).

The Kd for the CRD-BP-c-myc-1705–1886 interaction
was significantly lower than that of CRD-BP-c-myc-1705–
1792 interaction. It is apparent that one of the proposed
CRD-BP-binding sites (nts 1843–1864) is absent from
the 1705–1792 CRD region, and may attributed to the
differences in specificity and stability observed in
the RNA–protein interactions. The binding profiles
exhibited by the CRD-BP-c-myc CRD and CRD-
BP–MDR-1 interactions were hallmarked by the presence
of two binding complexes. These RNA–protein interac-
tions are believed to occur via a sequential, cooperative
binding mechanism. The formation of the faster migrating
Complex I at low concentrations of CRD-BP, the
emergence of the slower migrating Complex II at
intermediate concentrations of CRD-BP and the predo-
minance of Complex II at concentrations greater than (or)
equal to the calculated Kd are suggestive of a sequential
binding mechanism. It is possible that the formation
of Complex I may represent an intermediate state in
which one molecule of CRD-BP is bound to one RNA
molecule. The emergence of Complex II suggests that
a second molecule of CRD-BP engages in interactions
with a Complex I species in a concentration-dependent
manner. We propose that Complex II may function
to increase the stability and specificity of the RNA–
protein interaction. Such interactions have also been
observed and proposed for IMP-1-IGF-II RNA (39) and
Vg1RBP-VLE 30-UTR RNA (41).

Our data demonstrated that the blocking of endonu-
clease-mediated c-myc CRD cleavage by CRD-BP is
concentration dependent and this correlated with concen-
tration-dependent binding of CRD-BP to the transcript.
We propose that at 500 nM CRD-BP, most c-myc CRD
RNA molecules are bound by only one molecule of
CRD-BP. At 1500 nM CRD-BP, c-myc CRD RNA is
likely to be bound by two molecules of CRD-BP as

observed by the formation of Complex II. In this scenario,
it is highly likely that the entire transcript is bound and
protected by CRD-BP as evidenced by the hydroxyl
radical foot-printing experiments (Figure 8). Our observa-
tions that CRD-BP binds to larger stretches of nucleotides
rather than to specific positions is supported by evidence
that members of the VICKZ family bind to larger
elements rather than to individual nucleotides (40).
Further evidence to support this came from a study
using complementary oligonucleotides to map the CRD-
BP-binding sites within the c-myc CRD (29). Our findings
of the presence of CRD-BP-binding sites within the
regions targeted by the mammalian endoribonuclease
support the hypothesis that CRD-BP serves as a stabiliz-
ing factor for c-myc in vitro. The evidence provided in
this study confirms that CRD-BP is in fact capable
of blocking a mammalian endoribonuclease from cleaving
c-myc CRD via specific interactions with RNA sequences.
To our knowledge, this is the first study to demonstrate

the ability of CRD-BP to directly protect c-myc CRD
cleavage by an endoribonuclease. This is a critical first step
towards directly testing the interaction between CRD-BP
and endoribonuclease in regulating c-myc CRD cleavage
in cells. As indicated in the Introduction, four studies
indirectly supported this hypothesis (18,27,28,29).
However, two recent observations on the lack of changes
in c-myc mRNA and protein levels upon changes in
CRD-BP expression (21,30) are inconsistent with this
working model. As previously suggested (21,30),
the known multilevel regulation of c-myc gene expres-
sion could contribute to these observations. Alternatively,
the absence of the responsible endoribonuclease may
in part explain these unexpected findings. The latter
hypothesis can be investigated upon availability of
identified endoribonucleases that can cleave within the
c-myc CRD.
Our finding that CRD-BP has high affinity for MDR-1

RNA was totally unexpected and has important implica-
tions. MDR-1 is a plasma membrane drug-transporter
protein and is associated with multidrug resistance
phenotypes in cultured cells as well as in human cancers
(42). Enhanced mRNA stability for MDR-1 and c-myc
mRNA has been reported in liver cancer (43) and MDR-1
mRNA decay intermediates corresponding to nts 746–962
of MDR-1 have been detected in the normal liver but not
liver cancer (44). Although CRD-BP expression has
not been studied in liver cancer, results to date are
consistent with the model that c-myc and MDR-1 mRNAs
are short-lived in normal adult tissues (43) because CRD-
BP is absent or present at low levels. However,
in cancerous liver cells, enhanced MDR-1 and c-myc
mRNAs (43) are observed because CRD-BP may be
overexpressed.
In conclusion, our data provides direct evidence that

CRD-BP can indeed protect c-myc mRNA from cleavage
by an endoribonuclease, and supports its proposed role
in regulating mRNA stability in cells. We have also
identified MDR-1 RNA as a new target for CRD-BP,
and the transcript can also be protected from endo-
nucleolytic cleavage by CRD-BP. These findings provided
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further support for the significant and global roles that
CRD-BP play in regulating mRNA stability in cancer.
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