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Understanding kinetic control of biological processes is as important
as identifying components that constitute pathways. Insulin signal-
ing is central for almost all metazoans, and its perturbations are
associated with various developmental disorders, metabolic dis-
eases, and aging. While temporal phosphorylation changes and
kinetic constants have provided some insights, constant or variable
parameters that establish and maintain signal topology are poorly
understood. Here, we report kinetic parameters that encode insulin
concentration and nutrient-dependent flow of information using
iterative experimental and mathematical simulation-based ap-
proaches. Our results illustrate how dynamics of distinct phosphor-
ylation events collectively contribute to selective kinetic gating of
signals and maximum connectivity of the signaling cascade under
normo-insulinemic but not hyper-insulinemic states. In addition to
identifying parameters that provide predictive value for maintain-
ing the balance between metabolic and growth-factor arms, we
posit a kinetic basis for the emergence of insulin resistance. Given
that pulsatile insulin secretion during a fasted state precedes a fed
response, our findings reveal rewiring of insulin signaling akin to
memory and anticipation, which was hitherto unknown. Striking
disparate temporal behavior of key phosphorylation events that
destroy the topology under hyper-insulinemic states underscores
the importance of unraveling regulatory components that act as
bandwidth filters. In conclusion, besides providing fundamental in-
sights, our study will help in identifying therapeutic strategies that
conserve coupling between metabolic and growth-factor arms,
which is lost in diseases and conditions of hyper-insulinemia.
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Signaling cascades are essential for regulating cellular pro-
cesses, and decades of work have unraveled molecular and

biochemical mechanisms that constitute them. However, kinetic
parameters that define emergent properties of signaling networks
and therefore predict regulatory nodes are poorly understood. While
independent experimental and mathematical approaches have pro-
vided valuable insights (1–6), studies that capture dynamics and
complexities of signaling architecture vis-à-vis physiological varia-
tions in input strengths are far fewer. Not only would these reveal
fundamental kinetic considerations that determine signal topology
but also inform about reactions/components that could emerge as
therapeutic targets.
Evolutionarily conserved insulin signaling (IS) is essential for

cellular/organismal metabolism and growth (7–9). Aberrant IS is
associated both causally and consequentially with growth abnor-
malities, inflammation, accelerated aging, and diseases including
metabolic disorders and cancer (10–13). Genetic perturbations
and omics-based studies have elucidated importance of key
phosphorylation events in response to insulin stimulation (14–16).
Recent reports have provided crucial insights into physical protein
interactome, temporal changes in phospho-proteome, and kinetic
constants, viz. half-maximal time to reach peak response and half-
maximal effective concentration (EC50) (17, 18). However, kinetic

parameters that govern network properties of IS as a function of
normo-insulinemic and hyper-insulinemic states, which could
collectively determine physiological and pathophysiological out-
comes, is still lacking.
Our current understanding largely stems from studies, which

have used either supraphysiological or static concentrations of in-
sulin (19–21). This is in contrast to the physiological setting
wherein circulating insulin concentrations vary drastically from
being low-pulsatile (∼0.1 nM) to high-biphasic (∼1.0 nM) in fasted
and fed states, respectively (22). Moreover, kinetic criteria that
either encode fasted-to-fed transitions or drive pathological man-
ifestations of IS, as in diabetes and obesity (23, 24), are unknown.
Since IS can be broadly divided into metabolic and growth-factor
arms (25), if/how the flow of information is stratified and main-
tained under normal and hyper-insulinemic states remains to be
unraveled.
Mathematical approaches to model cellular signaling have

gained traction in the recent past to understand the dynamics
and also to provide predictive parameters that define topology of
signaling network (26–29). Earlier such attempts to determine
kinetics of IS have largely employed “averaged” measures to
define the behavior of the system (3, 17). Notably, given the
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fluctuations in insulin levels and inherent noise in signaling, there
are no reports that have computed kinetic parameters, which cap-
ture emergent properties of IS. Specifically, while there have been
simulation-based approaches to define dose-to-duration effects and
kinetic insulation on synthetic signaling networks (30), such princi-
ples have not been applied to complex biological cascades.
In this current study, we unravel network properties of IS

under physiological concentrations of insulin and reveal kinetic
basis for emergence of memory and resistance. Our study utilizes
parameters such as kinetic barriers and connectedness in the
network to address how signaling topology is maintained. No-
tably, we describe the importance of dynamic range and pulsa-
tility in signaling, which generates memory as well as couples the
metabolic and growth-factor arms.

Results
Distinct Kinetics of Signaling in Response to Physiological and
Nonphysiological Concentrations of Insulin. We employed insulin
treatment regimens that mimic normo- and hyper-insulinemic
states to mirror in vivo conditions as nearly as possible. Spe-
cifically, for capturing phosphorylation dynamics under normo-
insulinemic states, we stimulated cells with 0.1 and 1.0 nM insulin,
which are usually associated with normal fed-fast cycles (22).
Furthermore, we wanted to assess the kinetics of signaling through
kinases, which are downstream and govern effector functions of
both the metabolic and growth-factor arms, and hence are con-
sidered nodal in the cascade (Fig. 1A).
Given the importance of liver in modulation of insulin action

and integration of whole-body physiology, we employed primary
hepatocytes isolated from mice livers. In order to mimic a fed
state, we assessed signaling in response to both glucose and in-
sulin inputs as described in Fig. 1B. Treating cells with low- or
high-glucose–containing media alone, in the absence of insulin,
did not elicit a significant response and therefore allowed us to
assess nutrient-independent but insulin-dependent changes in
signaling (SI Appendix, Fig. 1 A and B). Additionally, our para-
digm ensured that the kinetic evaluation did not have any
bearing from residual signals (SI Appendix, Fig. 1C), and we
assessed for phosphorylations until 120 min given the normal
dynamics of IS in vivo (31). Moreover, such analyses could be
confounded by differential specificities and affinities of anti-
bodies, and variations in the unstimulated phosphorylation signal
intensities across treatment regimes. We negated these by com-
paring and normalizing the phosphorylation signals at time zero
across multiple treatments and experimental trials (SI Appendix,
Fig. 1C). Furthermore, changes in the extent of phosphorylation
was computed as a fold change across regimes for the same
antibodies and not across antibodies.
One-nanomolar insulin treatment led to a rapid activation of

downstream AKT signaling, as anticipated for a fed response
(Fig. 1 C–E and SI Appendix, Fig. 1 D–G) and reported earlier
(3, 21, 32, 33). Expectedly, overall signal intensities (i.e., area
under the curve) for all the phosphorylation events scored in our
assay were positively correlated with increasing insulin concen-
tration from 0.1 to 100 nM (SI Appendix, Fig. 1H). We define
true discovery rate as a statistical measure to compare changes in
phosphorylations across time and insulin concentrations. This
parameter further validated the robustness of our measurements
(SI Appendix, Fig. 1I).
We found that temporal changes in phosphorylation of nodal

kinases, AKT and ERK, were markedly different across insulin
treatment regimens (Fig. 1 C–F and SI Appendix, Fig. 1 D–G),
which was consistent with similar observations by Humphrey et al.
(14). This posited nonlinear signal flow through metabolic and
growth-factor arms. Such nonlinear and nonmonotonic association
of signal intensities w.r.t insulin concentrations was seen for com-
ponents across the cascade, both in terms of extent of phosphory-
lation and temporal behavior. For example, activation–inactivation

kinetics was starkly different for AKT (T308 and S473) and ERK.
While the amplitude of AKT phosphorylation decayed by 120 min,
ERK phosphorylation showed a distinct second wave of activation
(Fig. 1 C–F and SI Appendix, Fig. 1 D–G). Similarly, initial induc-
tion of phosphorylation of GSK3β and S6K was phase-delayed in
response to 0.1 and 1.0 nM insulin treatments and continued to
remain elevated long after phosphorylation on AKT started to ex-
tinguish (SI Appendix, Fig. 1D–G and J). While delayed response by
GSK3β and S6K is consistent with their downstream functions, our
paradigms allowed us to delineate signaling kinetics under both
normo- and hyper-insulinemic conditions.
Furthermore, we found that maximal phosphorylation and its

sustenance varied drastically for the nodal kinases AKT and ERK
between normo- and hyper-insulinemic paradigms. While supra-
physiological concentrations of 10 and 100 nM insulin induced a
rapid, high amplitude peak for AKT phosphorylations at both T308

and S473, the signals seemed to extinguish faster (Fig. 1 D and E).
On the contrary, in response to normo-insulinemic treatments,
signal sustenance was longer despite lower peak amplitude. ERK,
on the other hand, displayed a flip vis-à-vis very-rapid increase in
phosphorylation under hyper-insulinemic states, which was not
observed in response to 0.1 and 1 nM insulin treatments (wherein
there was a decrease in pERK at very early time points) (Fig. 1F).
These indicated insulin concentration–dependent programming of
signaling kinetics and prompted us to investigate the parameters
that could define such behaviors. Therefore, we set out to eluci-
date kinetic determinants of signal architecture using both ex-
perimental and mathematical approaches.

Mathematical Modeling of Signaling Kinetics and Predictive Assessment
of Key Phosphorylation–Dephosphorylation Dynamics. We mathemati-
cally modeled the signaling cascade using our experimental results
with an aim to extract kinetic parameters that define the network.
The details of model construction, deduced parameters and their
validation are described in SI Appendix,Methods. Briefly, the model
was constructed based on the rationale of using minimum-free
parameters (Fig. 1G). Parameters for simulation were obtained by
comparing the experimentally measured kinetics of protein com-
ponents (termed as state variables): pAKTT308, pAKTS473,
pS6KT389, pGSK3βS9, and pERKT202/Y204 at time points 0, 5, 15, 30,
60, and 120 (min) (SI Appendix, Tables S1 and S2). Robustness of
the simulation trajectories was checked taking into account vari-
ables such as initial protein concentrations and loading deviations to
parameters across time points. As depicted in SI Appendix, Fig. S1 K
and L (SI Appendix, Table S3 and detailed in SI Appendix,Methods),
neither varying the initial protein concentration nor addition of
loading deviations to the parameters significantly alter the simulated
phosphorylation dynamics. We considered the IS network as a set of
coupled biochemical reactions and used ordinary differential
equations (ODEs) to describe the system (respective components
and biochemical reactions of the model are detailed in SI Appendix,
Methods). Optimized and fitted values (reaction rate constants and
initial concentrations of protein components) and predicted or
derived variables (dynamic range, peak intensities and noise) are
together termed as “kinetic parameters.”
As shown in Fig. 1 H–J and SI Appendix, Fig. S1 M and N, the

simulation results for pAKTT308, pAKTS473, pS6KT389, pGSK3βS9,
and pERKT202/Y204 were consistent and nearly overlapping with
the experimental data across insulin concentrations. Notably, the
differential between experimentally and mathematically derived
values was smaller or comparable to the inherent deviation among
experimental sets for most components assessed across time
points and insulin concentrations (SI Appendix, Fig. S1O). Fur-
thermore, the magnitude of error in simulations was also found to
be less than the experimental error (SI Appendix Fig. S1P). Taken
together, these showed a high degree of concordance between the
experimental and simulated phosphorylation dynamics.
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Fig. 1. Iterative experimental–mathematical approach reveals distinct IS kinetics. (A) Schematic of the insulin/IGF signaling pathway. Components involved in
metabolic and mitogenic arms are shown in blue and green, respectively. Phosphorylations measured in this study are highlighted in red. (B) Experimental
paradigm and workflow for assaying signaling in response to one-step stimulation. (C) Representative blots for levels of pAKTT308, pAKTS473, and
pERKT202/Y204 following insulin stimulation, as indicated. Total AKT/ERK and actin were used for normalization (SI Appendix, Fig. 1 D–G). (D–F) Quantitation
for temporal changes in pAKTS473 (D), pAKTT308 (E), and pERKT202/Y204 (F) from experimental data shown in C. (G) Schematic for simulation model for IS
pathway. Components colored green and pink are considered in the model. Refer to SI Appendix, Fig. 3 for ODEs corresponding to individual reactions (re 1
through 27) shown. (H–J) Quantitation for temporal changes in pAKTS473 (H), pAKTT308 (I), and pERKT202/Y204 (J) from mathematical simulations using dif-
ferential equations. (K) Quantitation for temporal changes in phosphorylations from mathematical simulations obtained without considering experimental
data for pGSK3βS9. Fits only shown for the time points indicated. Value for pS6KT389 scaled down by a factor of 100 for visualization. (L) Prediction of pGSK3βS9

kinetics from the parameters used to compute K. (M) Kinetic behavior of phosphorylated pAKTT308 and pAKTS473 molecules at 1 nM insulin from stochastic
simulations. The band represents SD. Fold changes in D through F for each insulin concentration are with respect to their own 0-min time point. All data
presented are mean ± SEM (n = 4, n = 4).
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To evaluate effectiveness of our parameters and their depen-
dence on insulin concentration, we simulated phosphorylation
dynamics by altering the input insulin concentrations but without
changing the parameters for any given concentration. As can be
seen in SI Appendix, Fig. S1Q, changing [Ins] (reaction 1 and 2,
as per SI Appendix, Table S1) led to significant deviations from
experimental data.
Next, we simulated the entire system of reactions without con-

sidering the experimental data for pGSK3βS9 as one of the ways to
check our mathematical model (detailed in SI Appendix,Methods).
This also now allowed us to independently predict the kinetics of
pGSK3βS9. We found that most of the parameters were compa-
rable (SI Appendix, Fig. S1R), and the simulated dynamics of all
the five components were consistently similar to the ones that
were obtained earlier (Fig. 1 D–F and H–K and SI Appendix, Fig.
S1 J, M, and N).
Additionally, we also used stochastic simulations to provide an

alternative approach to validate our mathematical predictions,
which qualitatively resembled the deterministic approach for
quantities as described in Fig. 1M. Apart from predicting the re-
sponse at a population level, this allowed us to determine the
fluctuations in the system and compare it with signaling topology
or cascade architecture (see Fig. 3 B–D).
Furthermore, using optimized parameters, obtained by com-

paring simulations with experiments as input, we mathematically
deduced the activation dynamics of mTORC1 and mTORC2
complexes (SI Appendix, Fig. S1S). Even though TOR is the
common kinase active component, mTORC1 and mTORC2
complexes seem to display distinct properties in terms of upstream
activatory cues, substrate specificity, and downstream effects (7,
8). Intriguingly, kinetics of mTORC1 and mTORC2 were starkly
different w.r.t each other and independent of the kinetics of
downstream phosphorylation events (pS6KT389 and pAKTS473) (SI
Appendix, Fig. S1 J and N and Fig. 1D).
Such analysis also allowed us to assess concordance (or lack of

it) between upstream primary kinase and downstream phosphor-
ylation. In the context of mTORC2, which is the primary kinase
for AKTS473 phosphorylation, we found discordant phosphoryla-
tion dynamics between the two components, which has been ob-
served earlier (34–37). This highlights the presence of additional
regulatory steps in controlling activation/inactivation of AKT
(Fig. 1D and SI Appendix, Fig. S1S). We found similar disparate
responses between mTORC1-kinase and its substrate S6K (SI
Appendix, Fig. S1 J and N) and AKT-GSK3β (described in
Fig. 2B), which were unexpected. These clearly indicated that
upstream and downstream phosphorylation dynamics are decou-
pled and hinted at the existence of kinetic gates (see Fig. 3A).

AKT-Dependent Responsivity to Insulin Is Determined by Phosphorylation
at S473. Several reports have highlighted the necessity of dual
phosphorylation of AKT at T308 and S473 for maximal activity
(32, 38, 39). Despite this, their relative contributions in terms of
gain in signal strength and response to dynamic changes in insulin
concentrations are still unclear. Thus, we computed percentage
gain in signal against physiological insulin concentrations of 0.1
and 1 nM for pAKTT308 and pAKTS473 (Fig. 2A). Comparatively,
dose responsiveness and temporal dynamics of pAKTS473 were
more pronounced than pAKTT308 (Fig. 2 A and B). However, it
was also intriguing to find that pAKTT308 showed a markedly high
response to hyper-insulinemic (10 nM) inputs (Fig. 2B). Together,
these illustrate differential regulation of phosphorylations at
AKTS473 and AKTT308 under normo- and hyper-insulinemic states.

Normo-insulinemic Inputs Follow Nonconcordant Activation and Decay
Kinetics of Nodal Signaling Events. Threshold of activation and dy-
namic range are key determinants of responsivity in signaling,
especially when the inputs are dynamic, as in the case of IS.
Hence, we wanted to determine 1) the relationship between peak

amplitude and decay kinetics and 2) dynamic range and threshold
activation, which collectively dictate the physiological output. A
phase diagram depicting peak amplitudes and decay time of
phosphorylation events highlighted nonconcordance between
these for AKT but not for downstream kinases GSK3β and S6K
(Fig. 2B).
Most experimental approaches in the past have assayed for

signaling in response to very-high insulin inputs, which is rarely
physiological. Such deterministic evaluation of signaling also
masks threshold kinetics, which is critical to encode biological
response. Toward this, we mathematically determined phos-
phorylation dynamics (including at peak and at 120 min post
insulin stimulation), across concentrations from 0.1 nM to 1.0
nM, using three independent simulation approaches (Fig. 2C and
SI Appendix, Fig. S2 A–C). With regards to peak intensities,
which contribute to threshold activation, we found parametric
scaling matched best with our experimentally determined levels
of phosphorylation for not only 0.1 and 1 nM insulin but also for
intermediate concentrations of insulin tested (SI Appendix, Fig.
S2 D–F). Notably, we found disparate dynamic ranges for peak
activation (Fig. 2 C and D). For example, despite showing a
difference in terms of extent of phosphorylation (peak intensi-
ties) (Fig. 2 A and C), pAKTS473 and pAKTT308 displayed large
and nearly overlapping dynamic range (Fig. 2D). On the other
hand, pS6KT389 and pGSK3βS9 reached saturation at lower
concentrations of insulin (Fig. 2 C and D).
Since our simulations predicted nonsaturation dynamics for

pAKT, we wanted to experimentally verify whether this was in-
deed the case. We specifically chose 0.3 nM and 0.6 nM, as the
response is linear at 0.3 nM and begins to plateau at 0.6 nM
insulin. As shown in SI Appendix, Fig. S2 E and F, our experimental
results were consistent with the mathematical predictions and
clearly indicated that pAKTS473 indeed displayed a large dynamic
range to insulin inputs. Furthermore, EC50 for pAKTS473 was
0.82 nM of insulin (SI Appendix, Fig. S2G) and consistent with
earlier reports (17). Now, we show that saturation dynamics (based
on peak amplitude) are distinct from EC50 (based on the total
signal intensity or area under the curve), highlighting the impor-
tance of temporal behavior of both the extent of phosphorylation
and signal persistence. Taken together, nonconcordance between
peak activation and decay kinetics across signaling components
raised the possibility of existence of 1) kinetic insulation of signals
and 2) memory of fasted-insulin inputs, which together would de-
fine the fed-insulin response.

Diverse Insulin Inputs Generate Differential Kinetic Gates and Signal
Noise. In a multicomponent and multistep signaling cascade, as in
IS, it is important to determine parameters that 1) exert control
over information flow through the network and thus define to-
pology and 2) those that maintain robustness of the network itself.
Kinetic insulation or gating, a selective temporal bias of phos-
phorylation, has been proposed as one of the key determinants of
nonuniform flow of information as inferred by mathematical ap-
proaches on synthetic cellular signaling cascades (1, 30). However,
it has not been applied to complex and dynamic signaling systems
such as IS under physiologically relevant states.
In this context, we used our experimental data and mathe-

matical simulations (SI Appendix, Methods) to deduce kinetic
gates that define architecture of IS. Simplistically, biased reten-
tion of specific phosphorylations could be achieved by altered
rates of appearance (KON) and decay (KOFF). Thus, to reveal
kinetic gating/insulation, we computed rate constants for phos-
phorylation events, which included known feed-forward and
feed-back regulatory inputs (Fig. 3A and SI Appendix, Fig. S3A).
Furthermore, we assume that very-high or -low ratios of KON/
KOFF would constitute kinetic “gates.” We identify a “gate” in a
reaction if the KON/KOFF ratio is very high or very low beyond a
factor of 10. This corresponds to the situation in which the
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effective free-energy/-chemical potential is more than twice
compared to the thermal energy (10 ∼ e2.3).
KON/KOFF ratios were determined for key phosphorylation

events in IS, labeled as events 1 through 12 to capture phos-
phorylation dynamics of key components and corresponding to
respective phosphorylation/de-phosphorylation reactions 1
through 27 as described in Fig. 3A and SI Appendix, Fig. S3A and
Table S1. Plotting KON/KOFF ratios clearly indicated distinct
kinetic barriers across insulin concentrations (Fig. 3A). The ex-
istence of input-dependent kinetic barriers was corroborated by
insulin concentration dependence of parameters that govern
phosphorylation dynamics (SI Appendix, Fig. S1Q).
Notably, at insulin concentration of 1 nM, which mimics a

physiologically fed state, most reactions were not gated and were
unlike the response to very-low and very-high insulin concen-
trations. We also observed a peculiar pattern between upstream
priming events {viz. events 1 [Ins+IR ⇄ p1IRC (phosphory-
lated insulin receptor complex 1)], 6 [ppAKT+mTORC1 ⇄
ppAKT+pmTORC1], 10 [ppAKT+GSK3β ⇄ ppAKT+pGSK3β],
and 11 [p1IRC+Raf ⇄ p1IRC+Raf*]} and their effector or
downstream phosphorylations {events 4 [p1IRC+pAKTS473 ⇄
p1IRC+ppAKT], 5 [pmTORC2+pAKTT308 ⇄ pmTORC2+
ppAKT], and 12 [Raf*+ERK ⇄ Raf*+ppERK]} vis-à-vis kinetic
gates specifically at 0.1 nM (Fig. 3A). While the reactions for
upstream priming events were associated with a positive gate, their
downstream targets have negative gates. Although speculative, such
low thresholds of activation at fasted-insulin concentrations of
0.1 nM can possibly ensure high sensitivity to limiting insulin doses
while a higher KOFF for effector kinases prevents a run-away re-
sponse. Conversely, we observed that there was a distinct uncoupling
between the metabolic and growth-factor arms at supraphysiological
concentrations of 10 nM with hyper-activation of cues for macro-
molecular synthesis (S6K activation and GSK3β inhibition, events 8

and 10, respectively), growth, and proliferation (pERK formation,
event 12).
Noise in biology is often considered as being important for

mounting a robust response in addition to generating functional
heterogeneity and flexibility (33, 40, 41). Since phosphorylation of
AKT is one of the central events that is used as surrogate for IS,
and given the differential dynamics of pAKTT308 and pAKTS473,
we wanted to assess their individual contributions to functional
flexibility. Therefore, we computed noise in their signaling (fluc-
tuations on mathematically determined concentrations; see Ma-
terials and Methods). As shown in Fig. 3B, we observed that lower
concentrations of insulin generate more noise than higher con-
centrations across time points assessed. This could be attributed to
a log normal distribution (for early time points) and stationary
distribution for later time points, when mean is saturated (SI
Appendix, Fig. S3B). While being in general agreement with sim-
ilar measurements of other biological parameters, this also indi-
cated that the differential phosphorylation dynamics of AKTT308

and AKTS473 were independent of noise. However, it was also
surprising to find that for lower insulin concentration of 0.1 nM,
noise associated with both pAKTT308 and pAKTS473 decreased
over time. Given that the activation profile of AKT at 0.1 nM is
slower and takes longer to peak, we speculate that this reduction
in noise is possibly due to stabilization of activated pAKT mole-
cules at later time points. Conversely, early peaking of signal for
higher insulin concentrations could stabilize the molecules much
earlier to cause an overall dampening of noise.

Robust IS Topology Is Achieved at Physiological Insulin Inputs. De-
gree of connectedness between components within a network is
used as one of the measures to assess topology and robustness,
and is defined by how correlated their responses are as a con-
tinuum. Therefore, we set out to ask whether supra/physiological
inputs of insulin had any bearing on signaling topology.
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Fig. 2. Continuous variable parameters and high-/low-pass filters determine concentration–dependent insulin response. (A) Extent of change in phos-
phorylation at pAKTT308 and pAKTS473 across time points between 0.1 and 1 nM insulin. (B) Phase diagram depicting relationship between peak intensity and
decay time from simulated data. For a few points, the error bars are smaller than the size of the symbols. (C) Estimated peak amplitude for signaling
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Considering the nonmonotonic and nonlinear nature of
phosphorylation dynamics, we employed multiple tests to com-
pute correlation matrices for different insulin concentrations
(Fig. 3C and SI Appendix, Fig. S3C). Despite potential caveats
associated with such correlations for a network that changes over
time, our findings do point out a better concordance between the
entities measured under physiologically relevant settings.
Next, we checked whether a high degree of correlation in re-

sponse to fed- (1 nM) and fasted- (0.1 nM) insulin inputs had any
impact on connectedness within the network. For a maximally
connected network of “n” nodes, the maximum number of edges
would be n(n-1)/2, while the minimum number of edges would be
(n-1). Applying this to a five-component system (as in our case)
gives a theoretical upper bound with 10 connections, although 34
undirected nonisomorphic graphs can be realized. We found that
when five nodes corresponding to quantities pAKTS473, pAKTT308,

pS6KT389, pGSK3βS9, and pERKT202/Y204 were used, maximum
connectivity was obtained at physiological concentrations of insulin
(at 0.1 nM and 1.0 nM) (Fig. 3D and SI Appendix, Table S4).
Distinctly, the degree of connectedness decreased at 10 nM

insulin and the node corresponding to pERK was disconnected.
More interestingly, this was associated with a flip in pERK dy-
namics between 0.1, 1, and 10 nM insulin concentrations (Fig. 1F).
In this context, deducing change in flux of pERK (in comparison
with pAKTT308 and S473) revealed a dramatic shift indicative of
altered phosphorylation/de-phosphorylation dynamics in response
to supraphysiological inputs of insulin (SI Appendix, Fig. S3D).
Together, these posited a decoupling of the metabolic and growth-
factor arms, which could have a bearing on pathophysiological
implications associated with hyper-insulinemia.
This prompted us to check which of the measured quantities

from hyper-insulinemic regimes perturb the degree of connectedness

0.1nM 1nM 10nM

1 2 3 4 5 6 7 8 9 10 11 12

106

K
O

N
/K

O
F

F

pERKT202/T204

pGSK3�S9

pS6KT389

pAKTT308

pAKTS473 1

-0.4

0.01
0.1

1
10

100

0 20 40 60 80 100 120

 V
ar

ia
ti

o
n

0.01

0.1

10

100

 V
ar

ia
ti

o
n

1

0.1nM
1nM
10nM

pAKTT308/AKT

pAKTS473/AKT

Time (min.)

pAKTS473

pAKTT308

pS6KT389

pERKT202/Y204

pGSK3�S9

pAKTS473

pAKTT308

pS6KT389

pERKT202/Y204

pGSK3�S9
pAKTS473

pAKTT308

pS6KT389 pERKT202/Y204

pGSK3�S9

A B

C E
Events

P
ea

rs
o

n
’s

 r

1 0.87 0.51 0.5 -0.18

0.87 1 0.39 0.24 -0.25

0.51 0.39 1 0.66 0.59

0.5 0.24 0.66 1 0.23

-0.18 -0.25 0.59 0.23 1

1 0.84 0.31 0.35 -0.13

0.84 1 0.43 0.45 -0.39

0.31 0.43 1 0.94 0.14

0.35 0.45 0.94 1 0.25

-0.13 -0.39 0.14 0.25 1

1 0.85 0.13 0.43 0

0.85 1 -0.32 0.07 0.1

0.13 -0.32 1 0.75 0.01

0.43 0.07 0.75 1 0.3

0 0.1 0.01 0.3 1

0.1nM 1nM 10nM

0.1nM 1nM 10nM

D

104

102

100

10-4

10-2

1

2

3

4

5

6

7

1 2 3 4 5 6

E
d

g
e

s

Nodes

pAKTS473

pAKTT308

pAKTS473 and T308

pERKT202/T204

pGSK3�S9

pS6KT389

Unperturbed 1nM

pAKTS473

pAKTT308

pS6KT389

pGSK3�S9

pAKTT308

pS6KT389

pERKT202/Y204

pGSK3�S9

F
(a) (b)

Su
b

st
it

u
te

d
 

w
it

h
 1

0
n

M
 fo

r

pERK
T202/T204

pGSK3�
S9

pS6K
T389

pAKTT308

pAKTS473

pERK
T202/T204

pGSK3�
S9

pS6K
T389

pAKTT308

pAKTS473

pERK
T202/T204

pGSK3�
S9

pS6K
T389

pAKTT308

pAKTS473

Fig. 3. Kinetic gates and maximum connectedness are associated with robust topology under normo-insulinemic states. (A) KON/KOFF ratios for phosphor-
ylations across the signaling cascade. Insulin concentrations of 0.1 to 10 nM are depicted separately. Events corresponding to numbers on x-axis are depicted
in the table along with the respective reactions they correspond to. Differential equations corresponding to individual events are detailed in SI Appendix, Fig.
S3A. The yellow band refers to the kinetic barrier applied between 0.1 and 10. (B) Noise in signal for phosphorylation at pAKTT308 and pAKTS473 in response to
different insulin concentrations, as indicated. (C) Correlation matrix depicts degree of relatedness between phosphorylation events and their evolution with
increasing insulin concentration. (D) Network analysis depicting degree of connectedness across insulin concentrations, as indicated. Dashed line represents
negative correlation. Significance in correlation: White (P < 0.05) < Blue (P < 0.005) < Green (P < 0.0005) < Yellow (P < 0.00001) as observed by Student’s t test.
(E) Number of edges and nodes in a 1 nM network substituted with 10 nM values, as indicated. (F) Network maps of 1 nM insulin perturbed with 10 nM
pAKTT308 (a) and pAKTS473 (b).

6 of 11 | PNAS Shukla et al.
https://doi.org/10.1073/pnas.2102560118 Continuous variable responses and signal gating form kinetic bases for pulsatile insulin

signaling and emergence of resistance

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://doi.org/10.1073/pnas.2102560118


in the network and impinge on coupled information flow under
pathological states. Toward this, we substituted values for each of the
nodes from 10 nM measurements in the 0.1 and 1 nM insulin net-
works. Perturbation of every component led to a reduction in both
the number of nodes as well as edges (Fig. 3E and SI Appendix, Fig.
S3 E–H and Table S5). Notably, while perturbation of pAKTS473

caused disappearance of some edges, perturbation of pAKTT308

brought down the connections drastically from 6 to 2 (Fig. 3 E and
F), indicative of a broken network.

Pulsatile-Fasting Insulin Rewires Response to Fed-Insulin Inputs Akin
to Memory. Uniquely, insulin is released in a pulsatile manner
during a fasted state (42, 43), which is followed by a biphasic
secretion in response to fed nutrient inputs. As mentioned earlier,
while most studies on signaling dynamics have used high con-
centrations of insulin, there are no reports that have investigated
kinetics and topology vis-à-vis pulsatile fasted-insulin inputs.
Moreover, if/how a low-dose, fasted-insulin input shapes signaling
architecture in response to a fed-state bolus insulin secretion has
not been addressed thus far.
To this end, we pulsed hepatocytes with 0.1 nM insulin and

then subsequently treated with 1 nM insulin as a proxy to
physiological dynamics of fasted- and fed-insulin inputs, as in-
dicated (Fig. 4A). Surprisingly, we found that there was neither
sustenance nor an enhanced response to consequent insulin
pulses for both pAKTT308 and pAKTS473 (Fig. 4 B and C and SI
Appendix, Fig. S4A), which was unanticipated. This striking loss
of pAKT signal by the end of fourth pulse (at 0’) was distinct
from a continuous step treatment as described earlier (Fig. 1 D
and E) and indicated a memory of signaling. This behavior was
not seen for pERK (Fig. 4D and SI Appendix, Fig. S4B). pAKT
levels also reached a new baseline following pulsatile insulin
stimulation (Fig. 4 B and C). This new reset point of pAKT also
changed the kinetics following 1 nM insulin treatment, which was
distinct from ERK, GSK3β, and S6K phosphorylations (Fig. 4D
and SI Appendix, Fig. S4 B–F). Pulsing with Earle’s Balanced Salt
Solution (EBSS) or low-glucose–containing medium, in the ab-
sence of insulin, acted as controls and allowed us to assess sig-
naling changes contributed by insulin (SI Appendix, Fig. S4 G–J).
These results clearly indicated that fasted-insulin pulses created
a memory to possibly enhance the response to fed-insulin inputs.
IS encodes a gene expression program via downstream tran-

scription factors with FOXO1 acting as one of the key mediators
(44). In this context, we used our simulation–experimental ap-
proach to predict the kinetics of this downstream-most component
and investigate the impact of repeat/pulsatile insulin inputs on its
subcellular localization. Simulated FOXO1 dynamics by including
two additional phosphorylation–dephosphorylation reactions in our
existing model did not change the parameters significantly com-
pared to our original predictions (SI Appendix, Fig. S4K). Further-
more, these simulated/predicted AKT-dependent phosphorylation
dynamics of FOXO1 and subsequent experimentally determined
pFOXO1S256 kinetics were nearly overlapping (Fig. 4E). Since
AKT-dependent nuclear exclusion of FOXO1 is well-established
in the field (45), we investigated whether kinetic memory of pulsatile
stimulation impacted FOXO1 localization. Change in FOXO1 lo-
calization in response to 1 nM insulin was significantly different in a
pulsed adapted system, wherein nuclear to cytoplasmic relocaliza-
tion was observed as early as 5 min when compared to 25 min in a
nonpulse adapted system (Fig. 4 F and G and SI Appendix, Fig.
S4L). Consistent with the phosphorylation dynamics, pulsing in the
absence of insulin did not have any bearing on FOXO1 localization
(SI Appendix, Fig. S4M–O). This clearly indicates that a memory of
0.1 nM pulsatile insulin stimulation either potentiates or sensitizes
the kinetics of FOXO1 nuclear exclusion.
Next, we assayed for the transcription of genes downstream to

IS (46). As shown in Fig. 4H, consistent with the memory

hypothesis, 0.1 nM insulin pulses reprogrammed the gene ex-
pression in response to 1 nM insulin stimulation.
These prompted us to check whether memory was associated

with a higher degree of connectedness and/or gating of signals in
the network. We indeed found that the network was more robust
following pulsatile-adapted 1 nM insulin stimulation (as compared
to 1 nM alone) (Fig. 4I and SI Appendix, Table S6). Furthermore,
in comparison to 1 nM insulin alone (Fig. 3A), pulse priming with
0.1 nM insulin caused selective gating of signals with significant
changes in KON/KOFF ratio for pAKTS473 (Fig. 4J, reactions 3
and 5).

Repeated Stimulation by Fed Insulin Abrogates the Synergy between
the Metabolic and Mitogenic Arms of Signaling. Although continu-
ous exposure to higher levels of circulating insulin is known to
cause resistance and thus metabolic diseases, the kinetic basis for
such signaling has not been investigated. In this context, we re-
peat stimulated hepatocytes with 1 nM insulin, as indicated in
Fig. 5A. This led to an anomalous response vis-à-vis both met-
abolic (AKT) and mitogenic (ERK) arms of signaling. While
pAKT levels decreased drastically, peak amplitudes of pERK
increased following repeated stimulation (RS1 and 2) of fed-
insulin inputs (Fig. 5 B–D and SI Appendix, Fig. S5A).
Aberrant nuclear retention of FOXO1 is associated with in-

sulin resistance (47). As expected, we found a rapid cytoplasmic
export of FOXO1 following a single-step stimulation with 1 nM
insulin (Fig. 5 E and F and SI Appendix, Fig. S5B). However,
consistent with a failure to induce AKT phosphorylation fol-
lowing 1 nM repeat stimulation (RS1 and RS2) (Fig. 5 B and C),
FOXO1 was retained in the nucleus (Fig. 5 E and F and SI
Appendix, Fig. S5B). This abnormal retention was comparable
with its localization that was observed following decay in IS in
our single-step stimulation paradigm and together indicated re-
sistance in the repeat stimulation paradigm. Moreover, we also
observed that repeated stimulation of 1 nM insulin led to altered
gene expression profiles, which seemed uncorrelated vis-à-vis
genes associated with cellular growth and metabolism (Fig. 5G).
Network analysis following this paradigm showed complete

loss of connections among signaling components (Fig. 5H and SI
Appendix, Table S6). This was also apparent with the dynamics of
pGSK3β and pS6K, which remain up-regulated despite a down-
regulation in AKT signaling (SI Appendix, Fig. S5 A, C, and D).

Discussion
Coupling nutrient inputs to cellular metabolism, survival, and
growth is intrinsically dependent upon IS. Hypo- and hyper-
activation of IS leads to various patho-physiologies including dia-
betes, accelerated aging, and cancer, which are attributed to under-
or overphosphorylation of certain IS components (10–13). In this
study, using mathematical and experimental approaches, we provide
fundamental insights into kinetic parameters that dictate emergent
properties of IS, govern its architecture, and couple the metabolic
and mitogenic arms under various physiological contexts.
Even though recent phospho-proteomic analyses have unrav-

eled the temporal changes (17, 18), the extent to which phos-
phorylation dynamics encode information as a function of insulin
concentration and/or time is still unclear. We have elucidated the
dynamic range of key phosphorylation events under physiologi-
cally relevant insulin concentrations (0.1 to 1 nM) as in during
fed-fast cycles. This is significant, since in addition to net gain in
specific phosphorylations and EC50 (17), dynamic range has been
proposed to be a better predictor of cellular response.
Our results based on phosphorylation dynamics at 0.1 and 1 nM

insulin also raised the possibility of pAKTT308 and pAKTS473

acting as low-pass and high-pass filters with one of them being a
permissive cue, despite having overlapping dynamic ranges. Spe-
cifically, while the gain in peak response and kinetics of pT308 was
independent of input strength, that of pS473 correlated well with
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(B), pAKTS473 (C), and pERKT202/Y204 (D) following insulin treatment as in A) (E) pFOXO1S256 dynamics in response to 1 nM insulin treatment, as predicted by
mathematical simulation (blue) and subsequent experimental validation (green; refer to Western blots in SI Appendix, Fig. S4L). (F) Representative images for
immunofluorescence staining of FOXO1 localization following a single-step stimulation with 1 nM or following adaption with 0.1 nM insulin pulses as shown
in A. (Scale bar, 50 μm.) Representative cells and respective nuclei are marked with dotted line. (G) Quantitation of FOXO1 from (F) (n = 2, n = 25 to 30 cells for
each time point). Inset in G depicts time taken for Nuclear/Cytoplasmic ratio to become less than 50% of 0-min time point. P value is as observed by Student’s
t test. (H) Heat maps for changes in gene expression downstream to IS in response to constant 0.1 nM and 1 nM and 1 nM insulin following fasted-insulin
inputs (1 nM adapted, as in A) (n = 2, n = 3). Asterisk depicts P values (*P < 0.05, **P < 0.005, and ***P < 0.0005) as observed by Student’s t test. Global color
scale depicts fold change with respect to unstimulated cells at 0-min time point. (I) Network analysis showing connectivity among signaling components after
treatment with 1 nM insulin following fasted-insulin inputs, as in A. Significance in correlation is White (P < 0.05) < Blue (P < 0.005) < Green (P < 0.0005) <
Yellow (P < 0.00001) as observed by Student’s t test. (J) KON/KOFF ratios for phosphorylations across the signaling cascade post 0.1 nM pulsatile insulin ad-
aptation. Numbers on the x-axis represent phosphorylation events as detailed in Fig. 3A and SI Appendix, Fig. S3A. The yellow band refers to the kinetic
barrier applied between 0.1 and 1.0. Fold changes in B through E for each concentration are with respect to their own 0-min time point. Data presented are
mean ± SEM (n = 4, n = 4).

8 of 11 | PNAS Shukla et al.
https://doi.org/10.1073/pnas.2102560118 Continuous variable responses and signal gating form kinetic bases for pulsatile insulin

signaling and emergence of resistance

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2102560118/-/DCSupplemental
https://doi.org/10.1073/pnas.2102560118


change in ligand concentration under normo-insulinemic ranges
but not for hyper-insulinemic concentrations. These results also
raise the possibility that while phosphorylation at pT308 may serve
to prime AKT, pS473 may determine the extent of overall activa-
tion, which could be elicited differentially across insulin concen-
trations. It is important to note that although Fujita et al. (48) had
proposed AKT as a low-pass filter, we now delineate the differ-
ential kinetic contributions of phosphorylations at T308 and S473.
Noise in biology is generally regarded to be beneficial for

regulating functional flexibility and has been well studied in the

context of gene transcription. Given limited knowledge in this
regard for signaling cascades (especially for IS), we checked for input
versus variance in signal response for the nodal kinase AKT. It was
interesting to note that noise in signaling was apparent at physiological
concentrations of insulin (0.1 to 1 nM) while it was substantially
diminished in hyper-insulinemic regimes. This hinted toward re-
duced plasticity in signaling under hyper-insulinemic states.
Signal stratification is crucial for sustenance of downstream

information even upon input extinction. We discovered that
signals are stratified with differential gating in an insulin
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concentration–dependent manner. These bring to the fore the
need to address mechanisms that contribute to these kinetic
barriers by affecting KON/KOFF ratios of phosphorylation events, in
the future. Emergence of both positive and negative barriers, which
are sensitive to changes in flux, posits respective de-/phosphoryla-
tion events as key regulatory nodes, especially in response to hyper-
insulinemic inputs and during 0.1 to 1 nM insulin transitions (pul-
satile regime). Furthermore, we propose that such components
would be very attractive candidates for therapeutic interventions to
regulate IS and maintain network properties differentially.
Besides kinetic gating, connectedness between signaling com-

ponents is one of the key determinants of network topology. De-
spite several studies on signaling cascades across biological systems,
little is known about whether/how these parameters contribute to
topology, except in cases in which simulations have been carried
out for artificial signaling systems. Our study illustrates that
maximum connectivity between the signaling nodes, which is often
used as a measure of network robustness, is achieved at physio-
logical concentrations of insulin. Conversely, the degree of con-
nectedness is low under hyper-insulinemic states. Importantly, we
also underscore the significance of each of the phosphorylations
in maintaining the robustness of the topology under normo-
insulinemic states. For example, our results suggest that pT308

is a key predictor of network topology.
Others and we have found that metabolic cues under fasting

conditions elicit anticipatory molecular mechanisms to mount an
efficient fed response (49–51). In this context, we have unraveled
that pulsatile 0.1 nM insulin rewires signaling dynamics in re-
sponse to 1 nM inputs. It was striking to find enhanced net gain
in phosphorylation of some (pAKTT308 and S473 and pGSK3βS9)
but not all components, akin to memory or anticipation. Con-
versely, insulin resistance is associated with repeated insulin/
nutrient inputs and hyper-insulinemia. In this context, our study
also describes kinetic changes in IS dynamics, which can be either
causal or consequential to reduced sensitivity under these condi-
tions. Notably, we found that repeated stimulation with 1 nM in-
sulin dampened the AKT response while inducing pERK
indicating a disbalance between metabolic and mitogenic arms.
This is important because over-activation of either metabolic and/
or the mitogenic arm has been described in literature as a driver of
metabolic diseases and cancer (52–54). Here, we would like to
specifically highlight that the signaling cascade is most robust in
response to fed-insulin inputs, which is pulse primed by fasting
insulin. Our findings posit that repeated and/or high insulin inputs,
including in a clinical setting (inappropriate dosing), could lead to
perturbed networks with possible pathological manifestations.
While the paradigms used in our study were designed to

capture IS dynamics in primary hepatocytes in vitro, given the
complex interplay of IS with other signaling cascades/inputs, ki-
netics in vivo may well be different. Our study also does not take
into consideration dynamics of early phosphorylation events and
the endocytosis-based regulation of IS. Even though this is a
caveat, it is consistent with current efforts in the field, which is
limited by reagents/tools to capture extremely rapid or very early
phosphorylation/de-phosphorylation reactions in an endogenous
context. Despite advances in the field (such as optogenetic tools
used in other signaling cascades), investigating upstream most

phosphorylation events remains challenging in an endogenous
context. Nonetheless, this study provides insights into insulin
concentration–dependent nonmonotonic changes in phosphory-
lation of nodal effector kinases, besides providing a framework
to access the kinetic complexity of information flow in signaling
cascades, also in vivo.
In conclusion, our results unravel hitherto unknown kinetic

constraints that exert control over components of IS. Notably, we
illustrate that these kinetic parameters vary starkly during normo-
and hyper-insulinemic states. Given that a discordant signal flow
between metabolic and growth-factor arms is associated with
diseases, our findings provide fundamental insights into factors
that govern this coupling. Our study also raises the possibility of
impaired biological outputs in the context of therapeutic inter-
ventions using insulin, which have been largely guided by glycemic
control. We highlight the importance of discovering regulatory
parameters and nodes to complete our understanding of signaling
cascades under both normal and pathological conditions.

Materials and Methods
Insulin Treatments. At 24 h post-plating, the hepatocyte medium was
changed to 5% fetal bovine serum containing Dulbecco’s modified Eagle
medium (DMEM)–high glucose for 11 h. In order to obtain unstimulated
phosphorylation signal (0 min), cells were serum-starved and grown in EBSS for
6 h. Cell culture grade insulin (Catalog No. I0516) with stock concentration of
10mg/mL was serially diluted in EBSS tomakeworking stocks of 0.02 to 20 nM,
such that finally, 10 μL diluted insulin was added per 2 mL culture medium
(DMEM–low glucose/high glucose) to obtain concentrations of 0.1, 1, 10, and
100 nM, respectively. For one-step insulin stimulation experiments, 0.1 to
100 nM insulin in DMEM–high glucose was added to the hepatocytes, and cells
were collected at time points as described in the results. For pulsatile insulin
treatments and repeated insulin stimulation, paradigm modifications are
mentioned in Figs. 4A and 5A. Every media change was preceded with a
phosphate-buffered saline wash to remove residual contamination.

Data Availability. Cytoscape file data have been deposited in Network Data
Exchange (NDEx). The CYS files have been deposited in online repository
NDEx, which is associatedwith Cytoscape. Each file has a unique identification
[UUID]. Each of these UUIDs and the link to access respective files are provided in SI
Appendix and NDEx, https://ndexbio.org/#/network/ [respective UUID]. For Fig. 3 E
and F, 1) a6e0e183-0c82-11ec-b666-0ac135e8bacf and 2) f4bfe0e5-0c82-11ec-
b666-0ac135e8bacf. For SI Appendix, Fig. S3 E–H, 1) 2db61afb-0c87-11ec-b666-
0ac135e8bacf, 2) 8c51773d-0c87-11ec-b666-0ac135e8bacf, 3) d914312f-0c87-11ec-
b666-0ac135e8bacf, and 4) 1b416a51-0c88-11ec-b666-0ac135e8bacf. For SI Ap-
pendix, Fig. S3G, 1) 6e35b943-0c89-11ec-b666-0ac135e8bacf and 2) bdcc2ca5-
0c89-11ec-b666-0ac135e8bacf. For SI Appendix, Fig. S3H, 1) 3f9e4659-0c8a-11ec-
b666-0ac135e8bacf, 2) a1b311eb-0c8a-11ec-b666-0ac135e8bacf, 3) e622c0fd-0c8a-
11ec-b666-0ac135e8bacf, and 4) 3306706f-0c8b-11ec-b666-0ac135e8bacf). All
other study data are included in the article and/or SI Appendix.
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