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ABSTRACT The detection of circulating free DNA (cfDNA) has transformed the field
of oncology and prenatal diagnostics. Clinical application of cfDNA for disease diag-
nosis and monitoring, however, is relatively recent in the field of infectious disease.
The potential of cfDNA as a noninvasive diagnostic and monitoring tool is especially
promising for tuberculosis (TB), as it enables the detection of both pulmonary and
extrapulmonary TB from easily accessible urine and/or blood samples from any age
group. However, despite the potential of cfDNA detection to identify TB, very few
studies are described in the literature to date. A comprehensive search of the litera-
ture identified 15 studies that report detecting Mycobacterium tuberculosis DNA in
the blood and urine of TB patients with nongenitourinary disease, but in only six of
them were the methodological steps considered suitable for cfDNA isolation and
detection. The sensitivities and specificities for the diagnosis of pulmonary and ex-
trapulmonary TB cases reported in these six studies are highly variable, falling in the
range of 29% to 79% and 67% to 100%, respectively. While most studies could not
meet the performance requirements of the high-priority target product profiles (TPP)
published by the World Health Organization (WHO), the study results nonetheless
show promise for a point-of-care detection assay. Better designed prospective stud-
ies, using appropriate samples, will be required to validate cfDNA as a TB biomarker.
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Circulating cell-free DNA (cfDNA) in human blood was first discovered in 1948 (1) but
did not attract much interest for infectious disease diagnosis and monitoring until

decades later, when technologies had evolved to harness the potential of cfDNA for a
noninvasive, rapid, and sensitive approach to diagnosis.

cfDNA comprises fragments of nucleic acids found in the acellular fraction of blood
and other biological fluids (2). These nucleic acids are believed to derive from dying
human cells and microorganisms that release their contents into the blood as they
break down. cfDNA is much smaller than genomic DNA and more than 70% of plasma
cfDNA is smaller than 300 bp, with an average size of 170 bp (3–5). It is hypothesized
that the small size allows cfDNA to cross the kidney barrier and appear in the urine (6).
The cfDNA concentration in the blood of healthy individuals varies widely, from less
than 10 ng/ml to more than 1,500 ng/ml, which corresponds to approximately 1,400 to
200,000 DNA copies/ml of a diploid human genome split into �170-bp fragments
(assuming that the size of a diploid human genome is 6,469.66 Mbp and 650 dalton/bp)
(5). Considerable differences in the size distribution and quantity of cfDNA in the urine
and blood were described between different individuals and even within the same
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individual under certain disease conditions (e.g., cancer and infectious diseases) and
physiological states (e.g., pregnancy) (2, 7).

The detection of cfDNA is currently used in a range of clinical applications to guide
clinical decisions. The main areas where cfDNA is used include noninvasive prenatal
testing, oncology, and transplantation (2, 7). In the cancer field, circulating tumor DNA
(ctDNA) present in frequencies as low as 0.00025% of the total cfDNA in circulation is
accurately detected using a targeted next-generation sequencing (NGS) approach
(called cancer personalized profiling by deep sequencing) (8–11). Targeted techniques,
including digital PCR (dPCR) and beads, emulsions, amplification, and magnetics
(BEAMing), allow the detection of ctDNA present in frequencies in the range of 1% to
0.001% of the total cfDNA in circulation (8–11). Presumably, such detection limits
should be achievable for other diseases as well.

cfDNA has also been applied for the diagnosis of infectious diseases. For several
decades, the use of cfDNA has been reported for the detection of Epstein-Barr virus for
nasopharyngeal carcinoma screening and more recently for the diagnosis of invasive
fungal infection (12, 13). Some specific examples of infectious agents reported to be
detected using cfDNA include Plasmodium, Trypanosoma, Leishmania, Schistosoma,
Leptospira, and HIV (2, 14). Interest in cfDNA for the diagnosis of infectious diseases is
growing, especially for those diseases and/or specific cases for which no appropriate
tests on easily accessible samples (blood or urine) are available on the market.

Tuberculosis (TB) is a good example of an infectious disease for which cfDNA would
be especially promising. Of the estimated 10.4 million active TB cases occurring
worldwide in 2016, it is estimated that 40% of the cases remained either undiagnosed
or unreported, in large part due to inadequate diagnostics (15, 16). Currently, most tests
for TB diagnosis require a sputum sample, with sputum microscopy being the most
widely used test. Unfortunately, the current sputum-based diagnostics have limited
accuracy and have limited applicability in population groups who have difficulty
providing sputum (e.g., children, patients with HIV-associated TB, or extrapulmonary TB
cases). Most blood-based assays that are in development lack specificity as they rely on
host markers (17, 18). cfDNA indicates the presence of the pathogen, and as such, it is
an attractive biomarker for TB detection and treatment monitoring of M. tuberculosis for
pulmonary as well as extrapulmonary TB in any age group using noninvasive samples,
such as urine (4). Figure 1 is a schematic drawing of the origin, release, and potential
diagnostic use of M. tuberculosis cfDNA.

At the first World Health Organization Global Ministerial Conference on Ending
Tuberculosis, Anthony Fauci and colleagues highlighted that “we need to think about
TB in modern terms and use cutting-edge technologies,” in order to start thinking
about ending TB (19). cfDNA-based tests have the potential to improve TB diagnosis
and be a true “game-changer.” The intention of the manuscript is to (i) review the
current evidence and potential of blood and urinary cfDNA as a biomarker for TB, and
(ii) describe the main challenges for the development of an appropriate in vitro
diagnostic (IVD) test for cfDNA-based TB detection for use in limited resource settings.

The case of tuberculosis. In this section, we describe the state of the art cfDNA TB
detection and treatment monitoring and present the results and limitations of the
published literature, as well as the desired characteristics for future studies in this area.
A comprehensive search of the literature identified 15 studies that describe the
detection of M. tuberculosis DNA in the blood and urine of TB patients with nongeni-
tourinary tuberculosis using nucleic acid amplification.

Detection in blood. We identified five studies detecting M. tuberculosis DNA in the
blood. Three of these studies assessed peripheral blood mononuclear cells (PBMCs) (7,
20–22) and were not further discussed, as they mainly targeted genomic DNA in the
cellular fraction rather than cfDNA (4). The methodological characteristics from these
three studies are summarized in Table S1 in the supplemental material. The remaining
two studies report the detection of M. tuberculosis cfDNA in plasma, which is considered
the blood sample type that provides the most consistent and accurate results for cfDNA
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analysis (23, 24). Tables 1 and 2 summarizes the accuracy results and main method-
ological steps used to isolate cfDNA described in these studies. Ushio et al. used digital
PCR and reported a sensitivity/specificity of 65%/93% and 29%/100% depending on the
threshold set; while Click et al. showed a sensitivity and specificity of 43% and 67%,
respectively (23, 24).

Detection in urine. Regarding urinary cfDNA studies, in 2008 Cannas et al. first
demonstrated the presence of short DNA fragments, smaller than 200 bp, of M.
tuberculosis-specific DNA in the acellular fraction of urinary samples of pulmonary TB
patients from either degraded or metabolically active bacteria that had crossed the
kidney barrier (25). Until then, all studies targeting M. tuberculosis in urine performed a
centrifugation step, extracted DNA from the urine sediment, and concentrated high-
molecular-weight amplicons (approximately 500 bp) (26–31). However, urinary cfDNA is

FIG 1 Schematic drawing of the origin, release, and potential diagnostic use of M. tuberculosis cfDNA within the human host. M. tuberculosis within the lungs
or in extrapulmonary sites release cell-free DNA into the blood circulation, which then may be redistributed in some other biological fluids that can serve as
a sample for in vitro diagnostic (IVD) tests (2, 9, 56–62).

TABLE 1 cfDNA isolation methodology of studiesa on blood- and urine-based cfDNA detection of M. tuberculosis by nucleic acid
amplification techniques in which the methodological steps are a priori considered suitable for cfDNA isolation and detectionb,c

Publication’s
first author Yr

Sample
type

Centrifugation, urine
supernate collection

Preservative/
storage DNA extraction method Test type Target(s)

Amplicon target
size(s) (bp)

Ushio 2016 Plasma NA EDTA/NR Qiagen DNeasy blood and
tissue kit

Digital PCR IS6110, gyrB 71

Click 2018 Plasma NA EDTA/NR QiaAmp circulating nucleic
acid kit

qPCR IS6110 106

Cannas 2008 Urine Yes EDTA/NR Manual/resin Nested PCR IS6110 67 and 129
Fortun 2014 Urine NR NR/NR NR TMA 16S rRNA NR
Labugger 2017 Urine Yes EDTA/NR Manual/resin PCR IS6110 38
Patel 2017 Urine NR EDTA/NR Manual/resin PCR DR region 38
aSee references 23, 24, 25, 32, 33, and 34.
bTwo additional studies reported one case report (63, 64). Both studies describe the identification of urinary M. tuberculosis cfDNA in extrapulmonary TB cases; the first
refers to a disseminated TB case while the second to a pediatric tubercular otitis media case. Sample preanalytical steps were performed as reported in the Ushio
et al. study and Cannas et al. study, respectively (63, 64). Data from these studies were not included here given that only samples from an individual patient were
available.

cNR, not reported; NA, not applicable; TMA, transcription-mediated amplification; DR, direct repeat.
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expected to be found in the acellular fraction due to its size (�170 bp) (3–5), and
consequently, these studies primarily detected M. tuberculosis genomic DNA instead of
cfDNA. The results reported, therefore, were considered to be irrelevant for this review
(25). The methodological characteristics corresponding to these studies are summa-
rized in Table S1.

In total, we identified only four studies focusing on urinary cfDNA and cfRNA for TB
done after 2008 in which the methodological steps seem a priori suitable for cfDNA/
cfRNA isolation and detection (25, 32–34). The amplicon size in these studies was small,
mostly lower than 100 bp, and cfDNA/cfRNA was extracted using the cell-free urinary
fraction. A summary of the performance and methodology of these studies is also
presented in Tables 1 and 2. Sensitivities and specificities achieved in these studies fall
in the range of 43% to 79% and 89% to 100%, respectively, for pulmonary and
extrapulmonary TB cases. Figure 2 shows the sensitivities, specificities, and 95% con-
fidence intervals of the plasma and urinary studies which followed a priori acceptable
methodology for cfDNA/cfRNA isolation. Confidence intervals were calculated accord-
ing to the Wilson score method (35).

Considering that the TB target product profile (TPP) prioritized by the WHO stipu-
lates a performance of 65%/98% as minimally acceptable and 80%/98% (sensitivity/
specificity) as optimal for a nonsputum biomarker detection test (36), the performance

TABLE 2 Performance estimates of studiesa on blood- and urine-based cfDNA detection of M. tuberculosis by nucleic acid amplification
techniques in which the methodological steps are a priori considered suitable for cfDNA isolation and detectionb

Publication
first author Yr

Sample
type TB presentation HIV positive (%)

Smear
positive (%)

Method of TB
confirmation

% (no./total no. of
samples) of indicating:

Sensitivity Specificity

Ushio 2016 Plasma Pulmonary 0 100 Culture 65 (21/33) 93 (18/19)
29 (10/33) 100 (19/19)

Click 2018 Plasma Pulmonary 64 100 Culture and/or Xpert 45 (18/40) 67 (2/3)
Cannas 2008 Urine Pulmonary 5 95 Sputum smear or culture 79 (34/43) 100 (23/23)
Fortun 2014 Urine Pulmonary 12 NR Culture 18 (5/28) NR

Extrapulmonary 29 NR 70 (57/82) NR
Labugger 2017 Urine Pulmonary 0 60 Culture 64 (7/11) 100 (8/8)
Patel 2017 Urine Pulmonary 38 33 Culture 43 (75/175) 89 (210/237)
aSee references 23, 24, 25, 32, 33, and 34.
bNR, not reported; Xpert, Xpert MTB/RIF assay.

o: TPP optimal target 
m:   TPP minimal target 
Cannas et al.

Ushio et al. (2)
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FIG 2 Performance (sensitivity versus specificity) of studies on blood and urine-based cfDNA detection
of M. tuberculosis by nucleic acid amplification techniques in which the methodological steps are a priori
considered suitable for cfDNA isolation and detection. Studies reporting only the sensitivity or specificity
are excluded (23–25, 32–34). TPP, target product profile.
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results for plasma and urinary cfDNA studies (summarized in Table 2) appear potentially
promising for TB detection tests. However, all of these studies have methodological
limitations, and the lack of methodological consistency between studies make com-
parisons almost impossible (7, 37). First, they lack standardized methodology for
sample collection, sample storage, and cfDNA extraction, especially in the urinary
cfDNA studies, and some of them do not even describe the methodology followed (32,
38). Second, only three studies were performed in high TB burden countries (China,
South Africa, and Kenya) (23–25, 32–34). Third, the number of patients enrolled in these
studies was small except in the case study of Patel et al. (34). The Patel study enrolled
a representative patient population with over 400 pulmonary TB suspects. The study
reports a low sensitivity (43%) and moderately high specificity (89%) and proposes its
use in combination with smear microscopy since the sensitivity achieved when both
tests are used together is considerably higher (83.8%) than for each test alone (smear
microscopy alone: 75.1%). This study hypothesizes that the low sensitivity observed
could be due to the preanalytical steps followed (34).

Although it used only a few samples, the Labugger et al. study should be mentioned
specifically, as it analyzed the correlation between cfDNA and the time to positivity in
cultures or acid-fast bacillus (AFB) microscopy scores at the onset of treatment and no
correlation was observed (33). However, maximal cfDNA levels correlated well with a
radiological score. In this study, the assay results were not correlated with renal
function parameters and general inflammatory status shown by the absence of signif-
icant correlation between maximal cfDNA and creatinine, urea, and cyclic AMP receptor
protein (CRP) levels. (33).

Determining the cfDNA concentration present. From the studies summarized in
Tables 1 and 2, we aimed to estimate the concentration of M. tuberculosis cfDNA
present in plasma and urine. Two of the six studies provided sufficient information (23,
33). Both studies used the repetitive insertion element IS6110 as a target, and the
cfDNA concentrations are referred to as IS6110 targets rather than M. tuberculosis
genomes. The Labugger et al. study provides concentration values for urinary and
blood samples, while the Ushio et al. study focused on blood.

Based on the Labugger et al. study, the median urinary M. tuberculosis cfDNA
concentration in treatment-naive patients was 6.3 copies/ml. One week after treatment
initiation, the median value rose to 25 copies/ml but decreased to 2.5 copies/ml at week
11. The highest urinary cfDNA value measured in a TB patient was 1,000 copies/ml. The
minimum concentration measured with the reported PCR assay was 3 copies/ml (33). In
order to achieve high sensitivity given the very low number of copies/ml in urine, the
authors collected a large volume of urine (4 ml), and isolated and concentrated the
cfDNA in 50 �l. The PCR sample input volume of 100 �l was also large, of which 20 �l
was concentrated cfDNA. The plasma concentration reported range was very similar to
the urinary cfDNA range (33).

In the Ushio et al. study, the estimated median concentration of M. tuberculosis
cfDNA was 110 copies/ml, with mean � standard deviation (SD) of 7,200 � 29,150
copies/ml in blood plasma of patients with active TB. These numbers differed signifi-
cantly from those observed for healthy control subjects, whose median concentration
was 0 copies/ml and mean � SD was 22 � 24 copies/ml. The minimum concentration
measured with the reported digital PCR assay was approximately 50 copies/ml of
plasma. The authors extracted cfDNA from 200 �l of plasma, eluted it in 40 �l, and
performed PCR using 4 �l of the concentrated cfDNA sample (23).

Future research necessary. To shed further light on the potential role of cfDNA for
TB diagnosis in the future, well-curated biorepositories are necessary. Samples should
be characterized based on a combination of quantitative microbiology from multiple
sputum and nonsputum samples (including an assessment of time to positivity on
culture and cycle threshold on molecular assays) and ideally also with positron emission
tomography (PET) as a way to identify subclinical or incipient TB (39). The bioreposi-
tories should collect matched plasma and urine samples. Additionally, reference ma-
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terials for M. tuberculosis cfDNA are highly needed as quality controls for validating
different cfDNA methods and ultimately for clinical management of patients based on
absolute standard values (40).

The evaluation of the concentration range of M. tuberculosis cfDNA in biological
samples should be an important goal in the TB cfDNA research agenda. Estimating total
M. tuberculosis body burden is key not only for diagnosis but also for treatment
monitoring (41). cfDNA may identify disease anywhere in the body and potentially
detect disease states that are currently not identifiable with classical microbiological
methods. The correlation of M. tuberculosis cfDNA concentration with other nonsputum
biomarkers (e.g., TB antigens such as lipoarabinomannan) should also be assessed.
Preclinical studies assessing novel chemical entities for treatment could be used to
calculate terminal CFU/lesion or lung and correlate with immediate premortem cfDNA
copies/ml, ideally with PET computed tomography (CT) (a nonhuman primates study),
as well as a longitudinal analysis of cfDNA. Estimating the M. tuberculosis cfDNA
concentration in biological samples is also salient for assay development, including
sample preparation (sample collection volume, cfDNA isolation method, and concen-
tration volume), and for the detection platform development (assay limit of detection).
Based on the cfDNA concentrations estimated in plasma and urine samples (median,
6.3 copies/ml) from the Labugger et al. study, we recommend, for a nucleic acid
amplification-based test with a limit of detection of 10 copies/�l, collecting at least 5-ml
samples and applying a concentration step prior to cfDNA detection. Given the large
volume of sample required, urinary collection would be preferred in pediatric patients.

More studies are also required on HIV-positive and pediatric patients. A limited
number of studies are currently available for TB cfDNA-based diagnosis of HIV patients,
but no studies were identified for pediatric patients. These population groups would be
the ones who would benefit the most from a cfDNA-based assay given the difficulty
they have to produce sputum. Most studies are also inadequate in that they include a
very high proportion of persons with TB (especially smear-positive TB) and few controls.
This may limit the ability to extrapolate performance characteristics from these studies
to populations that have a much lower prevalence of disease and likely more pauc-
ibacillary disease.

Beyond the identification of M. tuberculosis, cfDNA analysis would permit us to gain
a deeper understanding of infections. Burnham et al. used sequencing techniques for
cfDNA analysis and reported cfDNA for quantification of bacterial growth, identification
of antimicrobial resistance genes, and evaluation of the host response to infection on
the cellular and tissue level for urinary tract infections (42). The same should be
explored for TB. cfDNA analysis also has the potential to assess the response to drug
therapy and provide information regarding disease state. Provided detection technol-
ogies allow for sufficiently low sensitivity (not possible with current tools), cfDNA could
be used to identify incipient TB. The impact of such tests would be substantial. However,
it is still unclear whether M. tuberculosis burden, or the burden of its products such as
cfDNA, is directly correlated with the progression from latent to active disease (41).

Challenges in the development of a cfDNA-based IVD test. In the following
section, the main challenges for the development of an IVD test are described. One of
the main challenges for the development of a cfDNA assay is performing appropriate
sample pretreatment (i.e., sample processing prior to the amplification and detection
step), given the low cfDNA concentration in biological fluids. Unfortunately, despite the
large number of research studies in the field of cfDNA, there is a lack of standardization
in preanalytical methodology according to numerous reviews in the field (7, 37, 43–45).
The preanalytical factors which might affect cfDNA concentration and fragmentation
include (i) sample collection, (ii) sample storage, (iii) cfDNA extraction, and (iv) storage
of cfDNA extracts. Blood is the matrix that has been most widely studied since it is the
matrix of choice for cancer and prenatal analyses, but few preanalytical studies are
available regarding cfDNA in urine. Table 3 presents a summary of some research gaps
identified relating to preanalytical factors for cfDNA. More information about preana-

Minireview Journal of Clinical Microbiology

April 2019 Volume 57 Issue 4 e01234-18 jcm.asm.org 6

https://jcm.asm.org


lytical factors for cfDNA can be found in studies and reviews about this topic (7, 37,
46–50). To guarantee conclusive results, the standardization of sample collection to
ensure uniform preanalytical handling of a sample will be critical. This is of particular
importance when pathways from sample collection to processing are long, as is often
the case in resource-limited settings. To summarize, universal cfDNA standards and
reference materials are needed to harmonize results and methods across time, and they
should be made available to test developers and researchers (40).

Another challenging feature for the development of a cfDNA assay is integrating
sample pretreatment and a detection technology within a single sample-to-answer
device. The setting where the test is expected to be used, as well as the concentration
of target cfDNA in the sample, will guide the selection of appropriate test platforms.
Costly techniques, such as sequencing, digital PCR (dPCR), and mass spectrometry,
mostly used in resource-rich contexts have to date limited applicability in low-resource
settings, unless cost and complexity can be reduced substantially (as is expected for
sequencing) (2). More affordable technologies that are readily applicable and already in use
in resource-limited settings, such as PCR, isothermal amplification, or line-probe assays, are
better suited. Nucleic acid-detection techniques bypassing amplification and based on
hybridization of sequence-specific probes (such as fluorescence in situ hybridization [FISH])
are probably unsuitable due to the low concentration of cfDNA in biological samples.
Typical limits of detection of these platforms are 0.5 to 5 copies/�l for PCR and �10
copies/reaction for isothermal amplification (51, 52). New diagnostic techniques that are
worth mentioning in this context are those based on clustered regularly interspaced short
palindromic repeats (CRISPR) technology, such as specific high-sensitivity enzymatic re-
porter unlocking (SHERLOCK) and DNA endonuclease-targeted CRISPR trans reporter
(DETECTR) (53–55). They both use isothermal amplification and Cas-mediated collateral
cleavage of a reporter RNA, allowing for detection of the target.

To the best of our knowledge, no cfDNA assays for infectious diseases based on PCR
or isothermal amplification, which integrate sample pretreatment, are currently avail-
able. Many of the existing nucleic acid tests (NATs) for infectious diseases, which use
PCR or isothermal amplification, use a concentration of the pathogen, cell or viral lysis,
and an extraction of the genomic material followed by amplification. NATs for cfDNA
have different requirements for sample preparation. The main differences include (i) no
infectious agent enrichment or cell lysis, (ii) emphasis on enrichment of short DNA
fragments instead of genomic DNA, and (iii) amplification of short amplicons.

In summary, the field of cfDNA as a TB biomarker is still in its infancy; however, its
high potential is driving more attention to this area. Most papers about this topic were
published in the last 3 years and more promising results are expected in the near
future. Once cfDNA is validated as a TB biomarker with sufficient performance for
diagnosis, more efforts need to be directed toward the development of an affordable
platform ideally able to detect this infectious disease at the point of care.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JCM

.01234-18.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.

TABLE 3 Research gaps for the development of a cfDNA-based IVD test related to
preanalytical factors

Research gaps: lack of standard operating procedures for cfDNA preanalytical steps, especially
for urinary samples

Which is the best extraction kit/method for different sample types?
How rapidly do samples need to be processed to avoid degradation with and without

preservatives?
Which urine preservative works best to avoid cfDNA degradation?
How long can plasma samples and urinary samples with preservatives be stored?
How long can cfDNA extracts be stored at �20°C and �80°C?
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