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Abstract

We demonstrate the application of non-gated laser induced breakdown spectroscopy (LIBS) for characterization and
classification of organic materials with similar chemical composition. While use of such a system introduces substantive
continuum background in the spectral dataset, we show that appropriate treatment of the continuum and characteristic
emission results in accurate discrimination of pharmaceutical formulations of similar stoichiometry. Specifically, our results
suggest that near-perfect classification can be obtained by employing suitable multivariate analysis on the acquired spectra,
without prior removal of the continuum background. Indeed, we conjecture that pre-processing in the form of background
removal may introduce spurious features in the signal. Our findings in this report significantly advance the prior results in
time-integrated LIBS application and suggest the possibility of a portable, non-gated LIBS system as a process analytical
tool, given its simple instrumentation needs, real-time capability and lack of sample preparation requirements.
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Introduction

One of the major objectives of Process Analytical Technologies,

conceptualized by the U.S. Food and Drug Administration in the

last decade, is the development of novel sensor devices that can be

incorporated in the manufacturing process loop to enable in-

process material characterization [1]. Such a method can assist in

better monitoring each step of the formulation development and

manufacturing process and, therefore, in real-time control of the

process itself. However, there is a lack of analytical tools that can

perform rapid on-line determination of the consistency of the drug

constituents (especially the active pharmaceutical ingredient, API)

in order to ensure the potency, purity and bioavailability of the

final product. Laser-induced breakdown spectroscopy (LIBS) is an

emerging instrument in the analytical toolkit, as it can provide

real-time analysis with minimal or no sample preparation [2–5]. In

LIBS, the emission from the plasma plume, induced by laser

photons, forms the basis for extraction of analytical information

about the material under investigation [6]. The deionization

radiation is primarily characteristic of the elemental composition,

although emission from molecular fragments may also be observed

[7]. Because of its real-time diagnostic capability, LIBS can be

potentially used for testing a larger number of samples in

comparison to existing analytical tools (e.g. high performance

liquid chromatography (HPLC)), with the additional possibility of

high-resolution surface mapping and depth profiling. However,

despite these intrinsic advantages, LIBS systems have hitherto not

been employed for online process monitoring [4,6]. The primary

bottlenecks towards more extensive usage, particularly for

screening applications, is the lack of robustness and resource-

intensive, unwieldy nature of the conventional LIBS spectrometers

that use gated intensified detectors (primarily intensified charge-

transfer devices (ICCD)) for spectral recording. This is further

compounded by the large spatial footprint and weight of these

systems as well as the considerable maintenance and technical

expertise required for its routine use.

Application of gated detection is based on the prevailing view

that discrimination against the early ‘‘uncharacteristic’’ continuum

signal (from radiative recombination and Bremsstrahlung emis-

sion) is critical for quantitative analysis [8]. As a consequence,

most of the reports have focused on a suitable time window of

acquisition where the condition of local thermodynamic equilib-
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rium (LTE) is satisfied [9]. While this perspective is largely justified

for trace element analysis as well as suppression of matrix effects in

certain specimen [10], such gating may not be necessary for

classification applications even when dealing with samples of

similar chemical composition. We have suspected that it is possible

to obtain similar levels of performance without gated detection by

appropriately utilizing the features across the entire spectral

window of collection. In fact, the distinctiveness of the plasma

produced by different samples may result in subtle differences in

the broad continuum signals, which in turn could positively aid

performance of the classification models. Classical ratiometric

analysis based on a study of a few channel (wavelength) traces has

limited capability of dealing with segmenting such spectral datasets

due to the overlap of the continuum and characteristic emission

signals and to the impossibility of detecting interfering species in

the measured signal. Our prior experience with analysis of Raman

spectra acquired from biological samples in the presence of

substantive luminescence backgrounds [11] further strengthens

our belief that multivariate classification of non-gated LIBS spectra

can be successfully implemented despite the presence of the

continuum background signals. Here, we seek to investigate the

capability of non-gated LIBS for differentiation of pharmaceutical

samples of similar elemental composition by concomitant treat-

ment of continuum and characteristic emission. This work extends

the recent efforts in understanding the role of continuum radiation

in LIBS [12] and its application in metal alloy identification [13]

to analysis of organics (e.g. API) of similar composition.

In this article, we report the application of LIBS measurements

to classify pharmaceutical formulations in solid dosage forms,

without employing gated detectors or echelle spectrographs. Our

non-gated LIBS measurements reveal that despite the presence of

substantive continuum emission, the acquired signals exhibit

subtle, but consistent, changes in spectral features. By correlating

the spectra with the corresponding class of samples, we have

developed predictive models based on soft independent modeling

of class analogy (SIMCA), artificial neural networks (ANN) and

partial least squares discriminant analysis (PLSDA). Our multi-

variate analysis shows very high diagnostic power with correct

classification accuracy levels in excess of 90% with SIMCA and

100% with ANN and PLSDA, even when measurements are

performed under ambient air conditions. Taken together with our

recent development of a sensitive and robust support vector

machine platform [14], these results provide a powerful toolkit in

the minimally perturbative process monitoring (on-line and at-line)

and quality control domains in the pharmaceutical industry. While

this report provides a proof of concept demonstration of the latent

diagnostic power of a simple portable LIBS system, we are

currently in the process of validating our results on a larger matrix

of samples including specimen spiked with trace foreign elements

to mimic the scenario of counterfeit drugs. Ultimately, we envision

that the substantive advantages of using non-gated detection in

LIBS in terms of cost, maintenance and simpler instrumentation

will enable its ready translation to compact devices tailored for the

pharmaceutical and food industries as well as for forensic and

biological specimen analysis.

Materials and Methods

The details of the experimental methods, instrumentation and

data analysis steps are provided in File S1. Briefly, a set of

pharmaceutical samples (namely Cetirizine dihydrochloride,

Metformin hydrochloride, Cipro pure and Ciprofloxacin hydro-

chloride) was acquired from the local drug manufacturer in

powder form. To simulate the in-line testing of tablets, the fine

powder material was pressed into ca. 1 cm diameter pellets by a

die-hydraulic press combination. The LIBS system used a

frequency-doubled Nd:YAG laser (lex = 532 nm, 7 ns pulse width,

Spit light 1200, InnoLas LaserGmbH, Germany) for excitation

and the emission signal was recorded using a non-gated

spectrometer (Ocean Optics, MAYA 2000). Notably, the detector

unit comprised of a conventional Czerny-Turner spectrograph for

dispersion instead of the higher resolution echelle spectrograph

allowing us to assess a lower bound for the classification

performance. The samples were subjected to ca. 6 mJ of laser

energy. All of the LIBS spectra were collected under ambient

conditions. The data can be found in Data S1. A motorized XY

stage was employed to enable a fresh portion of the sample to be

interrogated after acquiring multiple spectra from a single

location.

Subsequent to acquisition and pre-processing of the spectral

data, principal component analysis (PCA) was employed as a data

exploration and dimensionality reduction step. For quantifying the

classification ability of the LIBS dataset, we selected SIMCA, PLS-

DA and ANN as representative methods. Chemometric calcula-

tions, including dendrogram analysis-based outlier detection and

subsequent classification, were conducted using MatlabR2010b

(Math Works, Natick, MA). Following removal of outliers, a total

of 403 LIBS spectra were used in the classification analysis, with

more than 90 spectra from each of the four pharmaceutical

formulations.

Results

Figure 1 shows representative spectra acquired from the

Cetirizine dihydrochloride, Cipro pure, Metformin hydrochloride,

and Ciprofloxacin hydrochloride pellets. The discontinuity in the

wavelength axis is due to the omission of a 30 nm wide band

surrounding the 532 nm laser line, which otherwise causes

significant interference in the non-gated signal. The corresponding

intensity values are disregarded from the ensuing analysis. From

Fig. 1, it is notable how similar the LIBS spectra from each of the

pharmaceutical samples are, due to the relatively similar

formulation of the API. Further, any differences that may exist

(for example, the absence of oxygen in metformin hydrochloride)

are obviated by the presence of the corresponding element(s) in air.

A complete listing of the prominent peaks in Fig. 1 is provided in

Table S1. Evidently, the early continuum emission (present as

broad featureless background) constitutes a substantive component

of the acquired spectra. Despite the apparent featureless nature,

however, it is possible that the subtle differences in the continuum

emission signals may provide discriminatory power – particularly

when viewed in light of the similarity of the characteristic emission

lines in Fig. 1.

To systematically investigate the presence of subtle differences

between the LIBS spectra of each type of pharmaceutical sample,

principal component analysis (PCA) was used. The principal

components are linear combinations of the acquired signals and

capture the spectral variance in a reduced dimensional space.

Figure 2 shows the first three principal components, which

together account for 96.5% of the net variance in the spectral

dataset. In particular, the first two PCs explain 93% of the

variance present in the dataset, with the first one contributing

84.3%. Expectedly, the subsequent PCs after the first three are

mostly dominated by noise. We observe that PC1 shows only a

single dominant hydrogen emission line at ca. 657 nm on a broad

background that can be ascribed to the early continuum emission.

PC2 and PC3 exhibit mostly characteristic emission lines including

those at ca. 479.45 nm (chlorine), 500 nm (nitrogen), 567 nm

Classification of Materials Based on Nongated LIBS
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(nitrogen), 747 nm (nitrogen), 777 nm (oxygen) and 868 nm

(oxygen). The primary differences between PC2 and PC3 are in

the relative intensities of these lines and also in the presence of a

small background for PC2, especially in the lower wavelength

region.

The corresponding scores plot for PC 1, PC 2 and PC 3 is

provided in Fig. 3(A). From the figure, it is evident that the

Figure 1. Representative LIBS spectra acquired from the pharmaceutical formulation investigated in this report. (a) Cetirizine
dihydrochloride; (b) Cipro pure; (c) Metformin hydrochloride; (d) Ciprofloxacin hydrochloride. Intensity on the y-axis is normalized with respect to the
characteristic hydrogen emission peak at 656 nm.
doi:10.1371/journal.pone.0103546.g001

Figure 2. Plot of the first three principal components corresponding to the entire spectral dataset acquired for all classes. These
three principal components, combined, explain 96.5% of the net variance in the dataset.
doi:10.1371/journal.pone.0103546.g002
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samples of each class tend to form a cluster and in general appear

to show good separation from the other classes. In particular,

Cetirizine dihydrochloride, Cipro pure and Ciprofloxacin hydro-

chloride are clearly distinguishable based on the PC scores

obtained from the acquired LIBS spectra. However, the scatter in

the PC scores for the Metformin hydrochloride spectra makes its

separation more challenging, particularly from the Cetirizine

dihydrochloride cluster. The scatter in the PC scores arises

primarily from the inhomogenity of the fabricated pellets as well as

the potential non-sample specific variance introduced by non-

gated detection. Additionally, the overlap in the the Metformin

hydrochloride and the Cetirizine dihydrochloride clusters can also

be attributed to the absence of any distinguishing element between

the two formulations, i.e. both formulations in ambient air

conditions exhibit emission lines of carbon, hydrogen, oxygen,

nitrogen and chlorine. This is in contrast to the Cipro pure and

Ciprofloxacin hydrochloride samples that contain fluorine in their

corresponding API. Nevertheless, in totality, this exploratory data

analysis of the non-gated LIBS data reveals that the chemical basis

in the form of PCs gives rise to a substantive degree of separation

of the data points corresponding to a particular pharamceutical

formulation – which is promising for the development of models

for classifying and screening these and similar pharmaceutical

tablets.

To ensure suitable quality of the data for the development of

classification algorithms, hierarchical clustering by means of

dendrogram analysis was first pursued. In this case, we exploit

the grouping of the objects in a dendrogram to detect outliers

Figure 3. Discrimination of pharmaceutical samples based on their LIBS spectra. (A) Scores plot corresponding to principal components 1,
2 and 3 for the spectral dataset acquired from the four samples. The data points corresponding to Cetirizine dihydrochloride, Cipro pure, Metformin
hydrochloride and Ciprofloxacin hydrochloride are indicated by green squares, blue circles, black asterisks and yellow inverted triangles, respectively.
(B) Hierarchical clustering using the dendrogram representation for LIBS spectra acquired from the 4 sets of pharmaceutical samples.
doi:10.1371/journal.pone.0103546.g003

Table 1. SIMCA classification results obtained from the test samples over 100 iterations.

Average rate of… Correct classification Misclassification Unclassification

Cetirizine dihydrochloride 1.00 0.00 0.00

Cipro pure 0.86 0.00 0.14

Metformin hydrochloride 0.82 0.00 0.18

Ciprofloxacin hydrochloride 0.96 0.00 0.04

Average 0.91 0.00 0.09

doi:10.1371/journal.pone.0103546.t001

Classification of Materials Based on Nongated LIBS

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e103546



based on the presence of isolated branches. Moreover, dendro-

gram analysis was also used to obtain class similarity between the

different pharmaceutical formulations. In this case, the mean

spectrum for each formulation was computed from all the spectra

acquired from that formulation barring the detected outlier

spectra. Figure 3(B) shows the resultant dendrogram obtained by

analyzing the mean spectrum of the four formulations. This

corroborates the PCA findings as one clearly observe that the

Metformin hydrochloride exhibits spectral similarity to Cetirizine

dihydrochloride in comparison to the other formulations.

In order to evaluate the suitability of the non-gated LIBS data

for classification purposes, SIMCA was chosen to develop the

discrimination algorithm. Specific to the SIMCA model develop-

ment, 70% of the samples were designated as training data while

the rest of the samples (30%) were held out of the model building

and served as the test set. It was ensured that the spectra

corresponding to each pharmaceutical formulation were split as

per these representative percentage values. In order to obtain a

representative estimate of the rates of correct classification,

misclassification and unclassification, 100 independent iterations

were performed by re-splitting the entire data into training and test

sets. Here, the model is judged to be sensitive if the correct

classification rate is high and the unclassification rate is low.

Table 1 gives the results of the classification analysis for the

SIMCA-derived discrimination model for the four pharmaceutical

formulations, based on the 3s unclassification threshold (Sup-

porting information). The misclassification rate is observed to be

0%, irrespective of the pharamceutical formulation in question.

The correct classification accuracy varies from 82% (Metformin

hydrochloride) to 100% (Cetirizine dihydrochloride). Based on the

PCA and dendrogram analysis, the relatively lower classification

accuracy (and correspondingly, the higher unclassification rate) of

the Metformin hydrochloride sample is not surprising. The

inherent scatter of the sample data seems to be the predominant

factor in the relatively inferior performance of the SIMCA model

for Metformin hydrochloride and Cipro pure classification with

unclassification rates observed to be 18% (Metformin hydrochlo-

ride) and 14% (Cipro pure), respectively. On average, the SIMCA-

derived model provides a correct classification rate of 91%, which

suggests that the non-gated LIBS spectral measurements, even

under ambient air conditions, provides sufficient information for

sensitive discrimination of the studied formulations. It is worth

mentioning that these results are comparable to our previous

results obtained from gated LIBS spectra of similar pharmaceu-

tical samples [14,15] - indicating that the presence of the

continuum emission signals does not hinder the statistical

performance, especially on application of suitable multivariate

algorithms. To the best of our knowledge, this provides the first

experimental demonstration of the suitability of non-gated data for

classification of complex samples with the principal constituents

(i.e. the APIs) having similar composition.

Finally, to more comprehensively examine the classification

capability of the acquired non-gated data, PLS-DA and ANN

models were also constructed. For PLS-DA, a single ‘‘global’’

model is obtained for classification, in contrast to the independent

PCA submodels developed for SIMCA analysis. Using this single

global PLS-DA model, we were able to obtain 100% correct

classification accuracy for all formulations (Table 2). While the

underlying principle of PLS-DA to obtain maximum separation

between classes (as opposed to modeling the maximum variance in

each individual class in SIMCA) may be partially responsible for

the improvement, the presence of dataset-specific factors cannot

be neglected. For example, we had previously observed for the

corresponding gated data that SIMCA was marginally more

sensitive, even though PLS-DA was significantly more robust in

classifying unknown samples [14]. Furthermore, application of

ANN also yields no misclassification or unclassification (Table 3).

Given the nonlinear nature of the ANN algorithm and the

potential interferent sources in the non-gated data, the enhanced

performance in this case, with respect to SIMCA, is not wholly

unexpected (e.g. application of support vector machine (SVM)

derived segmentation model greatly improved the sensitvity and

robustness metrics in our gated data [14]. Variability in the

continuum emission, plasma self-absorption and matrix effects

Table 2. ANN classification results obtained from the test samples over 100 iterations.

Average rate of… Correct classification Misclassification Unclassification

Cetirizine dihydrochloride 1.00 0.00 0.00

Cipro pure 1.00 0.00 0.00

Metformin hydrochloride 1.00 0.00 0.00

Ciprofloxacin hydrochloride 1.00 0.00 0.00

Average 1.00 0.00 0.00

doi:10.1371/journal.pone.0103546.t002

Table 3. PLSDA classification results obtained from the test samples over 100 iterations.

Average rate of… Correct classification Misclassification Unclassification

Cetirizine dihydrochloride 1.00 0.00 0.00

Cipro pure 1.00 0.00 0.00

Metformin hydrochloride 1.00 0.00 0.00

Ciprofloxacin hydrochloride 1.00 0.00 0.00

Average 1.00 0.00 0.00

doi:10.1371/journal.pone.0103546.t003
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could contribute towards such nonlinear changes in intensity ratios

in the features of interest.

Discussion

In addition to quantifying the classifier performance based on

non-gated LIBS spectra, it is imperative to precisely understand

the impact of the continuum emission background. As alluded to

above, the prevailing thought in the LIBS community has centered

around the uncharacteristic nature of the continuum emission, as

it emanates from radiative recombination and Bremsstrahlung

emission that do not depend on the identity of the element/ion

[16]. Considerable contemporary attention has been focused on

the choice of a proper delay time when the ratio of line emission to

background (continuum) emission is very high, since ‘‘only the

lines emission from the plume is important for the compositional

analysis of the sample target’’ [6].

To test this hypothesis, we have compared the aforementioned

results using non-gated LIBS spectra to those where the

continuum background is removed using a lower order polyno-

mial. Since the continuum background is broad and featureless,

previous investigators have employed several numerical post-

processing schemes to approximate and remove it from the

acquired spectral data [17,18]. Here, the background of the LIBS

spectra was removed by application of an iterative least squares-

based curve-fitting algorithm that uses a polynomial (6th order for

our dataset) with non-negativity constraints [19]. This algorithm

(and its variants) have been extensively used for addressing broad

backgrounds in similar spectroscopic data featuring small charac-

teristic peaks and large backgrounds [20,21]. Representative

background-removed LIBS spectra from each pharmaceutical

formulation are shown in Fig. S1. Subsequent to background

removal, all the spectra were subjected to the same protocol as

described above, namely dendrogram analysis for outlier removal

and SIMCA for development of the discrimination algorithm.

Using 100 iterations on the partitioned test sets (30%), we observe

that, in this case, the SIMCA-derived models provide an average

correct classification rate of 88% with a corresponding misclassi-

fication and unclassification rates of 0% and 12%, respectively.

Based on the average correct classification rates and the

corresponding standard deviations for the non-gated LIBS data

with and without background removal, the two-tailed p-value is

computed to be less than 0.0001. By conventional criteria (i.e.
rejection of null hypothesis at p-value less than 0.01), this

difference can be considered to be extremely statistically signifi-

cant. It is also observed that the reduction in correct classification

rate relative to Table 1 is consistent for all the pharmaceutical

formulations. The difference in correct classification rate on

application of SIMCA on the two datasets could be attributed to:

(A) the presence of diagnostic information in the continuum

background; and/or (B) introduction of artifacts due to the

background removal procedure that results in deterioration of

model performance. Further experiments with a range of time

delays (currently underway in our laboratories) are necessary to

elucidate whether the continuum background may indeed aid

specific classification analyses.

Finally, it is worth analyzing the influence of the additional

noise component incorporated in the non-gated LIBS data due to

the continuum emission background. Overall, the relative root-

mean-square noise in a spectrum has two contributions, namely

the constant fixed-pattern noise characterizing the non-uniform

response of the CCD pixels and the shot noise. Given the high

signal levels of LIBS data, the latter has lesser significance and can

always be reduced relative to the signal level by acquiring for

longer time periods. The better signal-to-noise characteristics of

the CCD detectors employed for non-gated detection in relation to

the ICCD used for gated detection also alleviates this problem.

Additionally, employing a suitable flat-field correction scheme can

eliminate the more relevant fixed-pattern noise for high intensity

LIBS data. Recently, researchers have detailed a promising fixed-

pattern noise removal approach that focuses on subtraction of

spectra acquired before and after shifting of spectrometer grating

[22], which can be suitably employed in future non-gated LIBS

studies to enhance classifier performance.

Concluding Remarks
In summary, we have proposed and demonstrated the potential

of non-gated LIBS for identification and classification of pharma-

ceutical formulations with similar elemental compositions. It is

observed that the non-gated spectra shows high efficacy in

discrimination with an average correct classification rate of 91%.

Importantly, from a scientific standpoint, we observe that the

presence of the continuum background in the non-gated LIBS

dataset does not impede the classification performance. We

envision that the significant advantages of this detection method

in terms of cost, maintenance and system portability, coupled with

its sensitivity, will ideally complement the existing analytical

technologies for determination of surface and internal distribution

of API and excipients [23], in addition to verification of the drug

content in the finished dosage form. This will enable its ready

translation to compact devices tailored for various industrial

applications like food, pharmaceutical, biological and forensic.

The sensitivity of this LIBS approach can be further enhanced by

implementing hybrid classification schemes, which feature a range

of (linear and non-linear) chemometric strategies [24]. With

further refinements in the classification methodologies as well as

development of a hand-held LIBS monitor, the approach

presented here can be extended for sensitive identification in

other critical applications including detection of high energy and

hazardous materials [25].

Supporting Information

Figure S1 Background corrected LIBS spectra acquired
from the pharmaceutical formulation investigated in
this report. (a) Cetirizine dihydrochloride; (b) Cipro pure; (c)

Metformin hydrochloride; (d) Ciprofloxacin hydrochloride. Inten-

sity on the y-axis is normalized with respect to the characteristic

hydrogen emission peak at 656 nm. The continuum background is

approximated and removed using a least squares-based polyno-

mial curve-fitting algorithm.

(TIF)

Table S1 Elemental assignments of the major emission
lines observed in the LIBS spectra acquired from the
pharmaceutical samples used in this study.

(DOC)

Data S1 Supplementary data.

(XLS)

File S1 Supplementary Materials and Methods.

(DOC)
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