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Accumulation of saturated fatty acids contributes to lipotoxicity-related insulin resistance and atrophy in skeletal muscle.
Conversely, unsaturated fatty acids like docosahexaenoic acid were proven to preserve muscle mass. However, it is not known if
the most common unsaturated oleate will protect skeletal myotubes against palmitate-mediated atrophy, and its specific
mechanism remains to be elucidated. Therefore, we investigated the effects of oleate on atrophy-related factors in palmitate-
conditioned myotubes. Exposure of myotubes to palmitate, but not to oleate, led to an induction of fragmented nuclei, myotube
loss, atrophy, and mitochondrial superoxide in a dose-dependent manner. Treatment of oleate to myotubes attenuated
production of palmitate-induced mitochondrial superoxide in a dose-dependent manner. The treatment of oleate or
MitoTEMPO to palmitate-conditioned myotubes led to inhibition of palmitate-induced mRNA expression of proinflammatory
(TNF-α and IL6), mitochondrial fission (Drp1 and Fis1), and atrophy markers (myostatin and atrogin1). In accordance with the
gene expression data, our immunocytochemistry experiment demonstrated that oleate and MitoTEMPO prevented or
attenuated palmitate-mediated myotube shrinkage. These results provide a mechanism indicating that oleate prevents palmitate-
mediated atrophy via at least partial modulation of mitochondrial superoxide production.

1. Introduction

The loss of skeletal muscle mass and integrity is associated
with the development of a variety of diseases, including type
2 diabetes, obesity, and sarcopenia [1–4]. Skeletal muscle is a
highly organized tissue with tremendous plasticity, respond-
ing and adapting to nutritional challenges by regulating its
mass and metabolic properties [5–7]. The process of skeletal
muscle synthesis and degradation is modulated by various
lipid-related factors [8, 9]. Since skeletal muscle is embedded
with abundant mitochondria utilizing lipid as a substrate
greatly, the roles of excess lipids are under active research
in the field of muscle physiology. An increased level of
plasma-free fatty acids is linked with insulin resistance in
skeletal muscle [10, 11]. The exposure of differentiated skele-
tal myotubes to saturated palmitic acid leads to lipotoxicity-
mediated myofiber loss [12]. Specifically, reactive oxygen
species (ROS) from mitochondria overburdened with lipids

induces apoptosis [13, 14]. Due to the nature of high levels
of skeletal muscle locomotion, mitochondria within myofi-
bers require a constant supply of oxygen to produce ATP
via fatty acid-mediated oxidative phosphorylation, which
confers myofibers susceptible to mitochondrial ROS [15].

Several lines of evidence proved that the chemical struc-
ture of intracellular fatty acid is an important factor if it is
detrimental to skeletal muscle function. Palmitate, the most
common saturated fatty acid, is coupled with the expression
of inflammatory cytokines leading to insulin-resistant states
[16–20], while oleate, the most abundant unsaturated fatty
acid, improves metabolic properties via deacetylation of
PGC1α, a master regulator of mitochondrial biogenesis [21,
22], suggesting a possibility of the protective role of oleate
in palmitate-induced muscle atrophy. Although a study dem-
onstrated that an omega-3 unsaturated fatty acid, docosahex-
aenoic acid (DHA), preserves skeletal myotube integrity [23],
the mechanisms by which unsaturated fatty acid protects
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myotube against palmitate-induced atrophy remain elusive.
Moreover, since a previous relevant study was tested in a con-
dition of high dose of palmitate, which induced significant
loss of myotubes during the experiment [23], an optimal con-
centration of palmitate for induction of atrophy without loss
of myotubes is warranted to unravel saturated fatty acid-
mediated atrophy mechanisms.

In skeletal muscle, increased flux of fatty acids contrib-
utes to the production of mitochondrial ROS [24]. Multiple
studies suggested evidences that overproduced mitochon-
drial superoxide from electron transport chain is a significant
initiator in the induction of canonical Nf-κB pathway-
mediated TNF-α production, coupled with a variety of
muscle-related pathogenesis [25, 26]. In line with this,
oxidative stress induces mitochondrial dysfunction in skele-
tal muscle in a vicious and positive feedback loop manner
[27, 28]. Based on a previous study that the mitochondrial
redox state is tightly coupled with skeletal muscle-related
pathogenesis [29], it is hypothesized that fatty acid-
mediated modulation of mitochondrial ROS is a critical
factor in the regulation of skeletal muscle size. Although the
protective effect of oleate against mitochondrial dysfunction
and inflammation was identified in palmitate-conditioned
neuronal cells [30], it remains still elusive as to whether oleate
would protect myotubes against palmitate-induced atrophy.
Therefore, the main purpose of this study is twofold: to inves-
tigate if oleate would attenuate or prevent palmitate-
mediated muscle atrophy and if oleate mediated-inhibition
of mitochondrial ROS would reduce palmitate-induced
atrophy via modulation of mitochondrial fission and proin-
flammatory cytokines.

2. Materials and Methods

2.1. Free Fatty Acid Preparation. Palmitate-containing
medium was prepared by incubation of palmitate with
DMEM supplemented with 2% FFA-free BSA as described
previously with a minor modification [31].

Briefly, sodium palmitate (Sigma-Aldrich) was dissolved
to make a 500mM stock solution in 50% ethanol and was
incubated in a water bath at 50°C for 1 hour. The tubes con-
taining sodium palmitate were inverted every 10 minutes for
complete dissolution. Before application to the myotubes,
palmitate was conjugated to bovine serum albumin (BSA)
at 37°C by diluting with differentiation medium containing
2% fat-free BSA (Bovogen). Premade oleic acid solution free
of ethanol was purchased from Sigma-Aldrich. All experi-
ments were performed in medium containing 0.1% ethanol.

2.2. Cell Culture and Treatment Condition. C2C12 myoblasts
(ATCC) were seeded onto collagen-coated 6-well plates and
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (Welgene,
Korea), 100 units/mL penicillin, and 100mg/mL streptomy-
cin (Welgene, Korea) in a humidified atmosphere of 95%
air and 5% CO2 at 37°C. When myoblasts were confluent
(95%), growth medium was changed to differentiation
medium (DM) supplemented with 2% horse serum,
100 units/mL penicillin, and 100mg/mL streptomycin

(Welgene, Korea) and was incubated for 96 hours for myo-
genic differentiation. As indicated in each figure, dose- and
time-dependent responses of palmitate and oleate were
tested from 0.1 to 1mM, respectively. In subsequent experi-
ments, 0.3mM palmitate or a mixture of 0.3mM palmitate
and 0.5mM oleate was incubated for 30hours to test the pre-
ventive effect of oleate. A subset of the palmitate-conditioned
myotubes was treated with 25nM of MitoTEMPO (Sigma-
Aldrich) to scavenge mitochondrial superoxide 1 h prior to
palmitate treatment.

2.3. Immunocytochemistry. Myotubes were fixed and perme-
abilized by incubating in ice-cold methanol for 10 minutes.
After rehydration in DPBS three times, the myotubes were
incubated in blocking solution for 30 minutes at room tem-
perature, followed by incubation in 2% BSA solution con-
taining anti-sarcomeric myosin antibody MF-20 conjugated
with Alexa Fluor 488 (eBioscience). After myonuclei were
stained with DAPI (Molecular Probes), micrographs were
acquired under a fluorescence microscope (Axioimager,
Zeiss). The cells with a minimum number of three myonuclei
were counted as differentiated myotubes.

2.4. MitoSOX Staining. Mitochondrial superoxide was
stained with MitoSOX (Molecular Probes). The staining
was performed according to the manufacture’s protocol.
Briefly, at the indicated time points, live myotubes were
washed with DPBS twice and were incubated with 500nM
MitoSOX red for 30 minutes at 37°C. After washing with
DPBS twice, the stained myotubes were maintained with
MEM without Phenol red during the experimental period.
The fluorescence intensity was analyzed and quantified using
the ImageJ software (NIH).

2.5. MitoTracker Green Staining. Mitochondria were stained
with MitoTracker Green (Molecular Probes). The staining
was performed according to the manufacturer’s protocol
with minor modification. Briefly, at the indicated time points,
live myotubes were washed with DPBS and were incubated
with 200nM of MitoTracker Green for 30 minutes in pre-
warmed buffer in a 37°C cell culture incubator. The fluores-
cence intensity was analyzed and quantified using the
ImageJ software (NIH).

2.6. qRT-PCR. Differentiated myotubes were washed with
cold DPBS and lysed with TRIzol reagent. Chloroform was
added for the separation of RNA from DNA and protein
fractions. RNA fraction was precipitated by the addition of
isopropanol, followed by centrifugation at 12,000g for 8
minutes at 4°C. The RNA pellet was washed with 75% etha-
nol and centrifuged at 12,000g for 5 minutes at 4°C. After
removal of ethanol, RNA pellets were air dried before resus-
pending with RNAse-free water. The RNA concentration was
quantified using a NanoDrop spectrophotometer. Reverse
transcription was performed with a cDNA synthesis kit
according to manufacturer’s instruction (Bioneer, Korea).
Following cDNA synthesis, RT-qPCR was performed in a
Rea-Time PCR system (Applied Biosystems) using a SYBR
Green master mix (Bioline, Korea) and primer pair sets
described in Table 1. Cycle threshold (Ct) values were
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Table 1: Primer sets for qRT-PCR.

Gene Primer sequence Gene Primer sequence

Pgc-1α Forward TGATGTGAATGACTTGGATACAGACA Opa1 Forward GGTCACCACGAGAAATCTCAG

Reverse GCTCATTGTTGTACTGGTTGGATATG Reverse TCTTCCATTCCGTCTCTAGGTT

Ncor1 Forward GACCCGAGGGAAGACTACCATT Drp1 Forward CGGGACAAGTTAATTCAGGACA

Reverse ATCCTTGTCCGAGGCAATTTG Reverse GTTCTCGGGCAGACAGTTTTC

Nrf1 Forward GAACGCCACCGATTTCACTGTC TNF-α Forward CACAAGATGCTGGGACAGTGA

Reverse CCCTACCACCCACGAATCTGG Reverse TCCTTGATGGTGGTGCATGA

Nrf2 Forward GGCACAGTGCTCCTATGCGTG IL6 Forward CCACGGCCTTCCCTACTTC

Reverse CCAGCTCGACAATGTTCTCCAGC Reverse TTGGGAGTGGTATCCTCTGTGA

Tfam Forward CTGATGGGTATGGAGAAGGAGG IL1-β Forward GCTCATCTGGGATCCTCTCC

Reverse CCAACTTCAGCCATCTGCTCTTC Reverse CCTGCCTGAAGCTCTTGTTG

Fis1 Forward GCTCTAAAGTATGTGCGAGGG Atrogin-1 Forward CGTGCCGCCTGGAGAAAC

Reverse TGCCTACCAGTCCATCTTTCTT Reverse TGGGAGTTGCTGTTGAAGTCG

Mfn1 Forward TTGATCGAATAGCATCCGAGGA Murf1 Forward TGAGGTGCCTACTTGCTCCT

Reverse CACAGCATTGCATTGATGACAG Reverse TCACCTGGTGGCTATTCTCC

Mfn2 Forward GTGGGCTGGAGACTCATCG Myostatin Forward TAACCTTCCCAGGACCAGGA

Reverse CTCACTGGCGTATTCCGCAA Reverse CACTCTCCAGAGCAGTAATT
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Figure 1: The effects of palmitic and oleic acid on morphological features of myotubes. Differentiated C2C12 myotubes were treated with 0.1,
0.3, 0.5, and 1mM palmitate or oleate for 36 h. (a) Differentiated myotubes were stained with MF20 antibody and were visualized by
florescence microscope (magnification =×20). (b) Myotube number, (c) width, and (d) length were quantified. Bar graph represented
means± SE. Scale bar = 100 μm. The data were analyzed using two-way ANOVA followed by Tukey’s post hoc test. ∗p < 0 05 versus NT.
NT: nontreatment.

3Oxidative Medicine and Cellular Longevity



normalized to the housekeeping gene (HPRT1-F: 5′-
GACTTGCTCGAGATGTCATG -3′, HPRT1-R: 5′- TACAG
TCATAGGAATGGACC -3′).

2.7. Statistics. The results were presented as mean± SE for a
minimum of three independent experiments. One-way or
two-way ANOVA was followed by Tukey’s post hoc test to
present statistical difference among groups. The statistical
significance was set at P < 0 05.

3. Results

3.1. The Effects of Palmitate and Oleate on Myotube
Morphology. Dose-response experiments were conducted to
determine the effects of different doses of palmitate and ole-
ate on differentiated myotube morphology (Figure 1). Immu-
nocytochemistry experiments demonstrated that treatment
of palmitate led to a decrease in number, width, and length
of myotubes in a dose-dependent manner while oleate has
no significant effect on myotube morphology in a 30-hour
incubation. Especially, the treatment of 0.3mM palmitate
led to reduction of width and length in myotubes in the
absence of significant myotube loss.

3.2. The Effects of Palmitate and Oleate on Myonucleus
Number and Fragmentation. Myonuclei in the process of
condensation are considered as a significant apoptotic sign
of cells. The treatment of palmitate induced an increase in
fragmented myonuclei in a dose-dependent manner when
the concentration exceeded 0.3mM (Figure 2). Therefore, a
standard palmitate concentration was determined at
0.3mM for further experiments to induce myotube atrophy
in the absence of significant apoptosis. Oleate had no signif-
icant effects on myonucleus number and fragmentation.

3.3. The Effects of Oleate on Palmitate-Induced Mitochondrial
Superoxide. Mitochondrial superoxide was stained with
MitoSOX in live myotubes and observed under florescence
microscopy (Figure 3). Myotubes were treated with 0.3mM
palmitate and oleate. When incubated in 0.3mM palmitate,
the staining intensity was increased on an 18-hour incuba-
tion. The increased staining intensity persisted at the end of
experiment. On the contrary, the staining intensity was not
changed in myotubes treated with 0.3mM oleate. To identify
if the treatment of oleate was sufficient to mitigate palmitate-
induced mitochondrial ROS, different doses of oleate were
applied to myotubes conditioned in 0.3mM palmitate for
30 hours. The addition of oleate to the palmitate treatment
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Figure 2: The effects of palmitic and oleic acid onmorphological features of myonuclei. Differentiated C2C12myotubes were treated with 0.1,
0.3, 0.5, and 1mM palmitate or oleate for 36 h. (a) Myonuclei were stained with DAPI and were visualized by florescence microscope
(magnification =×64). (b) Total myonucleus number, (b) fragmented myonuclei, and (c) fragmented myonuclei (%) were quantified. Bar
graph represented means± SE. Scale bar = 20 μm. The data were analyzed using two-way ANOVA followed by Tukey’s post hoc test.
∗p < 0 05 versus NT. NT: nontreatment.
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attenuated MitoSOX staining in a dose-dependent manner.
The protective effect of oleate was pronounced when the
concentration exceeded 0.5mM. Therefore, 0.5mM oleate
was used to test the protective effect of oleate against palmi-
tate in subsequent experiments.

3.4. The Effects of MitoTEMPO and Oleate on Mitochondrial
Mass and Gene Expression of Mitochondrial Biogenesis and
Dynamics in Palmitate-Treated Myotubes. Mitochondrial
biogenesis and dynamics are known to be an important
regulator in skeletal muscle remodeling and atrophy. To
determine the possible protective role of oleate in
palmitate-treated myotubes, 0.3mM palmitate along with
different doses of oleate was applied to myotubes. Palmitate
treatment decreased mitochondrial mass compared to the

NT group, as evidenced by MitoTracker Green. The
palmitate-mediated mitochondrial mass reduction was
attenuated by cotreatment with oleate in a dose-dependent
manner (Figures 4(a) and 4(b)). To determine if reduced
mitochondria mass was related with the expression of
mitochondrial biogenesis, fusion, and fission, relevant genes
were tested using qRT-PCR. Palmitate increased the expres-
sion of mitochondrial fission markers (Drp-1 and Fis1) while
the cotreatment with mitochondrial antioxidant Mito-
TEMPO or oleate attenuated all of these to the NT group
(Figure 4(c)). The gene expressions of mitochondrial biogen-
esis (Pgc1-α, Ncor1, Nrf1, Nrf2, and Tfam) and fusion
(Mfn1, Mfn2, and Opa1) were unaltered in all groups tested
(Figures 4(d) and 4(e)). These results implicate a possibility
that a palmitate-mediated reduction in mitochondrial mass
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Figure 3: The effects of palmitic and oleic acid on mitochondrial superoxide production. (a) Differentiated C2C12 myotubes were
treated with 0.3mM palmitate or 0.3mM oleate at the indicated time points. Differentiated myotubes were stained with MitoSOX.
(b) Differentiated myotubes were cotreated with 0.3mM palmitate and different doses of oleate (0.1, 0.3, 0.5, and 1mM) for 30 h and were
visualized by florescence microscope (magnification =×20). (c) Dose effects of palmitic and oleic acid and (d) protective effects of oleic
acid in palmitic acid-treated myotubes were quantified. Bar graph represented means± SE. Scale bar = 100 μm. The data were analyzed
using one or two-way ANOVA followed by Tukey’s post hoc test. ∗p < 0 05 versus NT. NT: non-treatment.
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originates from an increase in mitochondrial fission, not a
decrease in mitochondrial biogenesis.

3.5. The Effects of MitoTEMPO and Oleate on
Proinflammatory Cytokines in Palmitate-Treated Myotubes.
Since several proinflammatory cytokines are tightly related
with mitochondrial fission, the expression of TNF-α, IL6,
and IL-β was quantified. Palmitate increased the expression
of TNF-α and IL6 while the cotreatment with mitochondrial
antioxidant MitoTEMPO or oleate attenuated all of these to
the NT group. The gene expression of IL-β was unaltered
in all groups tested (Figure 5).

3.6. The Effects of MitoTEMPO and Oleate on Morphological
Changes and the Expression of Atrogenes in Palmitate-
Treated Myotubes. Immunocytochemistry was performed
to investigate myotube morphology. Exposure to palmi-
tate induces a reduction in myotube width, which is
attenuated by the coincubation with MitoTEMPO or
oleate (Figures 6(a) and 6(b)). And myotube length
was not different among all groups tested (data not
shown). The exposure of myotubes to palmitate induced
the expression of myostatin and atrogin1 while the
cotreatment with MitoTEMPO or oleate attenuated these
to the NT group. Murf1 expression was unaltered in all
groups tested (Figure 6(c)).
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Figure 4: The effects of oleic acid and MitoTEMPO on mitochondrial biogenesis and dynamics in PA-treated myotubes. (a) Differentiated
myotubes were cotreated with 0.3mM palmitate and different doses of oleate (0.1, 0.3, 0.5, and 1mM) for 30 h. The myotubes were visualized
by florescence microscope after MitoTracker staining. (b) Florescence intensity of MitoTracker was quantified. (c) Gene expressions of
mitochondrial fission, (d) fusion, and (e) biogenesis were quantified. Differentiated myotubes were cotreated with 0.3mM palmitate
and/or 0.5mM oleate for 30 h. For some cells, 25 nM of MitoTEMPO was treated 1 h prior to palmitate treatment. Bar graph represented
means± SE. Scale bar = 100 μm. The data were analyzed using one-way ANOVA followed by a Tukey’s post hoc test. ∗p < 0 05 versus NT.
NT: nontreatment; PA: palmitic acid; PA+OA: palmitic acid with oleic acid; PA+MitoT: palmitic acid +MitoTEMPO.
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4. Discussion

The maintenance of skeletal muscle integrity is important for
proper functioning of the musculoskeletal system, which is
significantly affected by the nutritional status [8, 32]. Recent
studies showed that various fatty acids are significantly linked
with skeletal muscle functional properties [33, 34]. In the
study, two most abundant fatty acids, palmitate and oleate,
were investigated to unravel a mechanism by which these
two fatty acids affect skeletal myotube atrophy. The major
findings of this study were that oleate was protective against
the negative effects of palmitate on skeletal myotube atrophy
and this phenomenon was mediated via modulation of
mitochondrial ROS, as further evidenced by mitochondrial
fission, proinflammatory cytokines, and atrogenes.

In contrast to no observed effect of oleate, a high concen-
tration of palmitate treatment (>0.5mM) induced significant
myotube loss and myonucleus fragmentation in a dose-
dependent manner (Figures 1 and 2), supporting previous
studies that saturated fatty acid, palmitate, is detrimental to
skeletal muscle integrity [12, 21] while oleate has no effect
on myotube morphology [35]. Since the treatment of
0.3mM palmitate to myotubes for 30 hours led to an induc-
tion of sufficient atrophy in the absence of significant myonu-
cleus fragmentation (Figures 1 and 2), 0.3mM palmitate was
used in subsequent experiments to avoid significant myotube
loss, which is considered necessary for in vitro atrophy study
with a minimal effect on the viability of the myotubes.

To determine if the fatty acid-mediated changes in myo-
tube morphology were coupled with mitochondrial ROS pro-
duction, the level of mitochondrial ROS was measured by

MitoSOX staining in both oleate- and palmitate-
conditioned myotubes (Figures 3(a) and 3(b)). In line with
our previous results, mitochondrial ROS production was
increased following palmitate incubation in a time-
dependent manner while there was no effect of oleate on
the mitochondrial redox state. Interestingly, the coincubation
of oleate attenuated palmitate-induced mitochondrial
superoxide production in a dose-dependent manner. This
suggests that oleate modulates the mitochondrial redox
system, which is further evidenced by a previous study show-
ing that oleate conditioning prevents palmitate-induced
mitochondrial superoxide production in neuronal cells [30].

Mitochondrion is a dynamic subcellular organelle modu-
lating its size and mass via biogenesis, fusion, and fission as
necessary [36, 37]. Since reduced mitochondrial functional
properties are coupled with skeletal and diaphragmatic
muscle atrophy [38], the markers of mitochondrial mass,
biogenesis, and dynamics were measured. Palmitate
decreased mitochondrial mass while the cotreatment with
oleate or MitoTEMPO inhibited the negative effect of palmi-
tate (Figures 4(a) and 4(b)). In line with this, palmitate led to
an induction of mitochondrial fission expressions (Drp-1,
Fis-1) while the coincubation with oleate or MitoTEMPO
normalized these to the basal level (Figure 4(c)). Mitochon-
dria are accounted for more than 20% volume density in
myofibers, which play a critical role in muscle’s functional
properties [39–41]. In response to overburden metabolic
environment, mitochondria undergo morphology transitions
modulated by dynamic processes of membrane fission,
fusion, and biogenesis [42, 43]. These events of dynamics
mediated by mitochondrial ROS are considered to be central
regulators of the whole cellular activity [44]. Specifically,
increased mitochondrial ROS is a critical inducer to mito-
chondrial fission in skeletal muscle [45], which is linked with
atrophy [46]. Furthermore, the inhibition of Drp1-mediated
mitochondrial fission prevents the loss of the mitochondrial
membrane potential, inducing a cell survival mechanism
[47]. Since the preventive effect of oleate on the expression
of Drp-1 and Fis1 was observed in palmitate-conditioned
myotubes, it is suggested that oleate inhibited mitochondrial
fission through the prevention of mitochondrial ROS
overproduction. In the study, the gene expressions of mito-
chondrial biogenesis (Pgc1-α, Ncor1, Nrf1, Nrf2, and Tfam)
and fusion (Mfn1, Mfn2, and Opa1) were unaltered by
palmitate treatment (Figure 4(e)). These results suggest that
the reduced mass of mitochondria was mainly induced by
increased mitochondrial fission, but not by reduction of their
biogenesis under our experimental condition. It was
originally hypothesized that the treatment of palmitate
would decrease mitochondrial biogenesis-related factors
because a previous study proved negative effects of a high
concentration of palmitate (0.75mM) on mitochondrial
function in skeletal muscle [21]. On the contrary, a study
also suggested that a low concentration of palmitate
(0.1mM) increased mitochondrial functional properties
[48]. These discrepant results suggest that palmitate might
possess a concentration-dependent biphasic effect on mito-
chondrial functional properties, which warrants a future
study to unveil a mechanism to link palmitate the
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concentration-dependent mitochondrial state to skeletal
muscle atrophy.

It is documented that proinflammatory activation is a
prelude to mitochondrial fission and skeletal muscle atrophy
[49–51]. Thus, the experiment was conducted to identify if
the gene expression patterns of proinflammatory cytokines
coincided with our mitochondrial fission data. Palmitate
increased the expressions of TNF-α and IL6 while the
cotreatment with oleate or MitoTEMPO prevented the effect
of palmitate (Figure 5), which indeed suggests that oleate has
an anti-inflammatory effect in palmitate-conditioned myo-
tubes [52]. Contrary to our hypothesis, the expression level
of IL1-β was unchanged by the palmitate treatment. Based
on previous studies showing that 0.75mM palmitate induces
IL1-β-mediated apoptosis in mouse skeletal muscle [53, 54],
it is conceivable that IL1-β might be involved in severe atro-
phy condition, but not in a condition causing mild atrophy
without affecting the viability of myotubes.

Lastly, our data led us to investigate if the measured gene
expression patterns would correspond to atrophy factors.
Although Murf1 did not reach statistical significance, the
expression levels of myostatin and atrogin1, known atro-
genes, were increased in palmitate-conditioned myotubes,
which were prevented by the coincubation of oleate or Mito-
TEMPO (Figure 6(c)). In line with this, our immunocyto-
chemistry results revealed the complete prevention of
palmitate-mediated myotube atrophy under the treatment

of oleate. Although significant attenuation of myotube atro-
phy was observed, the treatment of MitoTEMPO proved
not as effective as oleate (Figures 6(a) and 6(b)), which raises
a possibility that mitochondrial ROS might not be a sole
contributor to oleate-mediated atrophy prevention. With
regard to muscle physiology, even potent proinflammatory
molecule such as TNF-α alone is not sufficient to induce
protein loss [55–57]. This suggests that skeletal muscle
atrophy is orchestrated by a plethora of signaling molecules
in a complicated and multifactorial manner. Therefore, we
cannot rule out a possibility that other unknown factors are
involved in oleate-mediated prevention of atrophy. Another
possible reason explaining this discrepancy is the biphasic
nature of ROS. It is well documented that excessive and pro-
longed sources of oxidant production promote oxidative
damage to myofibers, inducing fatigue, insulin resistance,
atrophy, and diminished contraction force [58–60]. How-
ever, recent accumulating evidences suggested that physio-
logical levels of radicals play an essential role in the
maintenance of skeletal muscle, including the control of anti-
oxidant capacity, force production, and myogenesis [40, 61–
64]. In our experiment, a mitochondrial-targeted superoxide
scavenger, MitoTEMPO, was used to eliminate palmitate-
induced mitochondrial ROS. The technical limitation of this
method is that it is not possible to scavenge only overpro-
duced portions of superoxide, leading to a possibility that
normal and physiological portions of superoxide are also
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Figure 6: The effects of oleic acid andMitoTEMPO onmorphological features of myotubes treated with PA. (a) Differentiated myotubes were
cotreated with 0.3mM palmitate and/or 0.5mM oleate for 30 h. For some cells, 25 nM of MitoTEMPO was treated 1 h prior to palmitate
treatment. Differentiated myotubes were stained with MF20 antibody and were visualized by florescence microscope
(magnification =×20). (b) Myotube width was quantified. (c) The expression of atrogenes was quantified. Bar graph represented
means± SE. Scale bar = 100 μm. The data were analyzed using one-way ANOVA followed by Tukey’s post hoc test. ∗p < 0 05 versus
NT, #p < 0 05 versus PA. NT: nontreatment; PA: palmitic acid; PA+OA: palmitic acid with oleic acid; PA+MitoT: palmitic acid
with MitoTEMPO.
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scavenged. This idea is supported by a study proving that
MitoTEMPO treatment attenuates the rate of skeletal muscle
cell differentiation [40]. On the contrary, a variety of in vivo
and in vitro studies reported positive effects of MitoTEMPO
treatment in cardiovascular diseases and insulin resistance
in the absence of side effects [65–67]. Thus, our explana-
tion is not yet conclusive, raising a necessity for further
study to remove excessive mitochondrial ROS in the
absence of neutralizing the ROS necessary for normal
physiological function.

Our results indicated that two most abundant fatty acids,
palmitate and oleate, affect skeletal muscle integrity in a
different way via modulation of the gene expression of
mitochondrial fission, proinflammatory cytokines, and atro-
genes. Furthermore, our findings also suggested that the fatty
acid-mediated mitochondrial redox state is a significant
factor in the regulation of myotube atrophy (Figure 7).

5. Limitation

Our study demonstrated the protective effect of oleate against
palmitate-induced atrophy by incubating the two fatty acids
simultaneously. Therefore, with the scope of the current
study, it is difficult to rule out a possibility that the effect of
oleate might originate from simple uptake competition
between oleate and palmitate. However, since palmitate-
induced mitochondrial superoxide and dysfunction are
completely blocked in neuronal cells by the pre-exposure of
oleate alone [30], it is suggested that the effect of oleate in
our study was independent of the competition between two
fatty acids. And it should be also noted that the myotubes
were cultured in the absence of insulin. Accordingly, atrophic
characteristics were observed under a relatively low concen-
tration of palmitate (0.3mM). Considering the fact that insu-
lin has been well documented as a potent regulator of muscle
proteolytic pathway [68, 69], myotubes might tolerate a
higher dose of palmitate in the presence of insulin. Therefore,
a future study is warranted to test the effect of various fatty
acids in the presence of insulin under a more physiologically
relevant condition.

6. Conclusion

The major findings of the study are that oleate prevents the
negative effects of palmitate on myotube atrophy and
reduced mitochondrial ROS by oleate is at least a significant
contributor to the prevention of palmitate-induced atrophy.
A greater understanding of in vivo mechanisms by which
different fatty acids affect skeletal muscle integrity would
provide new insights into the development of nutritional
and pharmacological strategy for those affected by skeletal
muscle-related diseases including sarcopenic obesity and
type 2 diabetes.
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