
Research Article
Fast Polynomial Time Approximate Solution for 0-1
Knapsack Problem

Zhengyuan Wang , Hui Zhang , and Yali Li

Xi’an Research Institute of Hi-Tech, Xi’an, Shaanxi 710025, China

Correspondence should be addressed to Zhengyuan Wang; zh53054958@163.com

Received 16 May 2022; Revised 14 September 2022; Accepted 15 September 2022; Published 22 October 2022

Academic Editor: Maciej Lawrynczuk

Copyright © 2022 Zhengyuan Wang et al. /is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

0-1 Knapsack problem (KP) is NP-hard. Approximate solution is vital for solving KP exactly. In this paper, a fast polynomial time
approximate solution (FPTAS) is proposed for KP. FPTAS is a local search algorithm./e best approximate solution to KP can be
found in the neighborhood of the solution of upper bound for exact k-item knapsack problem (E-kKP) where k is near to the
critical item s. FPTAS, in practice, often achieves high accuracy with high speed in solving KP. /e computational experiments
show that the approximate algorithm for KP is valid.

1. Introduction

0-1 Knapsack problem (KP) is a classical combinatorial
optimization problem. KP is NP-hard. Knapsack problems
were used to model capital budgeting problems in which
investment projects are to be selected subject to expenditure
limitations. Additionally, the knapsack problem has been
used to model loading problems. Knapsack problems,
moreover, arise as suboptimization problems in solving
larger optimization problem [1]. KP can be formulated as
follows:

maxf(x) �
n

i�1
pixi,

s.t,

n

i�1
wixi ≤ c,

xi � 0, 1.i � 1, 2, · · · , n,

(1)

where pi is the profit of item i, wi is the weight of item i, c is
the capacity of the knapsack, n is the number of items in
KP, and variable xi � 0 or 1 indicates whether item i is

selected or not. Without loss of generality, it is assumed
that all items are arranged in nonincreasing order of
efficiency.

pi

wi

 ≥
pi+1

wi+1
 (i � 1, 2, · · · , n − 1). (2)

It is very important to find a fast polynomial ap-
proximation for KP in practice. Greedy algorithm [1], an
approximate algorithm for KP, is on the basis of certain
rules, such as the item being selected with priority over
larger efficiency, larger profit, or smaller weight. Greedy
algorithm is O(n) time complexity, but it is not an
ε-approximate algorithm [1]. Approximation algorithm is
often k-neighborhood local search method. Increasing the
radius k of the neighborhood can improve the accuracy of
the approximate algorithm [1, 2]. While PTAS for KP
typically require only O(n) storage, all FPTAS are based
on dynamic programming and their memory requirement
increases rapidly with the accuracy ε, which makes them
impractical even for relatively big values of ε [3]. Heu-
ristics rules are adopted to decrease the calculation in
searching accurate approximation, such as harmony
search algorithm [4, 5], amoeboid organism algorithm [6],

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1266529, 11 pages
https://doi.org/10.1155/2022/1266529

mailto:zh53054958@163.com
https://orcid.org/0000-0001-9561-3026
https://orcid.org/0000-0003-4458-5517
https://orcid.org/0000-0002-1802-1227
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1266529

cuckoo search algorithm [5, 7], binary monarch butterfly
optimization [8], cognitive discrete gravitational search
algorithm [9], bat algorithm [10], and wind driven op-
timization [11]. Nowadays, it is tend to combine different
heuristics together in solving combinatorial optimization
problem, such as mixed-variable differentiate evolution
[12], self-adaptive differential evolution algorithm [13],
two-stage cooperative evolutionary algorithm [14], co-
operative water wave optimization algorithm with rein-
forcement learning [15], and cooperative multi-stage
hyper-heuristic algorithm [16]. However, these algo-
rithms cannot guarantee the accuracy of the solution of
KP. Meanwhile, these methods for the solution to KP are
generally time-consuming. More domain knowledge is
necessary for better algorithm. Pisinger gave an exact
algorithm for KP [17] which is based on an expanding
core. /e items not included in the core are certain to be
selected or not in the optimal solution, while the items in
the core are uncertain to be selected or not in the optimal
solution. He found that algorithms solving some kinds of
core problem may be stuck by difficult cores [18]. For
example, KP is determined by

wi � i, pi � 10i
2

+ 107, c � 200020, i � 1, 2, · · · , 104. (3)

It is easy to find that the core of KP is [1, 10000], so this
problem is difficult to tackle by the exact algorithm in [17].
In this paper, it is easy to get an approximate solution of KP
which objective value is 6395122580. /e solution can be
proved to be the optimal solution.

In this paper, a fast polynomial approximate solution
is proposed for 0-1 knapsack problems based on the
solution of its upper bound. Firstly, an upper bound is
presented based on the exact k-item knapsack problem E-
kKP in Section 2. Secondly, an initial solution of KP is
constructed on the basis of the solution of upper bound of
E-kKP in Section 3.1. /irdly, the approximate solution is
proposed to find the best solution in the neighborhood of
the initial solution in Section 3.2. In Section 3.3, the best
approximation solution is achieved by comparison with
number of items changing. In Section 3.4, the calculation
for the approximate solution of KP is analyzed. In Section
4, computational experiments of KP are implemented./e
results show that the approximate solution proposed in
this paper can achieve high accuracy in general. It im-
plicates that the exact solution to KP is similar to the
solution to the upper bound. /e algorithm proposed here
is a fast polynomial approximate solution to KP.

2. Upper Bound for KP

If there are exact k objects selected in the knapsack, then KP
is an exact k-item knapsack problem E-kKP formulated as
follows [3]:

maxf(x) �
n

i�1
pixi,

s.t,

n

i�1
wixi ≤ c,

n

i�1
xi � k,

xi � 0, 1.i � 1, 2, · · · , n.

(4)

/e upper bound of E-kKP may be achieved by La-
grangian relaxation of capacity constraint:

L(k, λ) � λc + max
n

i�1
pi − λwi(ui,

s.t,

n

i�1
ui � k,

ui � 0, 1.i � 1, 2, · · · , n.

(5)

Suppose that

pdk1
− λwdk1
≥pdk2

− λwdk2
≥ · · · ≥pdkn

− λwdkn
, wdkk
≤wdkk+1

.

(6)

/en

L(k, λ) � λc + k
i�1 pdki

− λwdki
 . (7)

So L(k, λ) can be solved by sorting pi − λwi in
descending order in O (nlnn) time if λ and k are fixed. /e
upper bound of E-kKP is formulated as follows:

Bk � min
λ≥0

L(k, λ). (8)

It can be proved that L(k, λ) is a unimodal function of λ
if k is fixed. Bk can be quickly solved by linear search al-
gorithm [19]. So Bk can be solved in O (nlnn) time.

/e upper bound of KP is the maximum value of Bk:

B � max
0≤k≤n

Bk. (9)

It can be proved that Bk increases when k< s − 1 and
decreases when k> s, where the critical item s satisfies.

0≤ c − w1 − w2 − · · · − ws− 1 <ws. (10)

So the upper bound of KP is

B � min Bs− 1, Bs . (11)

2 Computational Intelligence and Neuroscience

Example 1. Consider the instance of KP listed in Table 1.
/e capacity is 467.8435.

Here the critical item s is 20. /ere is no feasible solution
with 20 items included in the knapsack. So the upper bound

B20= 0. If k is 19, we have the optimal ratio λ19 = 1.0003251
and the upper bound B19 = 486.9565 by (8). /e solution of
L(19, λ19) is u(19) � (ud19i

)as follows:

ud19i
�

1, i≤ 19,

0, i> 19,

d19i(� (2, 1, 4, 7, 5, 3, 10, 6, 9, 16, 8, 13, 18, 11, 26, 20, 21, 17, 14, 27, 28, 23, 12, 15, 19, 30, 25, 24, 22, 29).

(12)

So the upper bound of KP is 486.9565.
We test different upper bounds of KP from Pisinger’s

paper [20], where the weights and profits of items are
randomized. /e instances listed in Table2 are tested to
compare our proposed method with the existing upper
bounds, such as the upper bound UMT2 proposed by
Martello and Toth [21], the improved upper bound UMTM
[22] and the upper bound Ukmax with maximum cardinality
[23]. /e difficult instances can be constructed as follows
[20]:

(i) Uncorrelated instances with similar weights:
Weights wi are distributed in [R, R+ 100] and the
profits pi in [1, 1000].

(ii) Uncorrelated data instances: pi and wi are chosen
randomly in [1, R].

(iii) Weakly correlated instances: Weights wi are
chosen randomly in [1, R] and the profits pi in
[wi − 0.1R, wi + 0.1R] such that pi ≥ 1.

(iv) Strongly correlated instances: Weights wi are
distributed in [1, R] and pi =wi + 0.1R.

(v) Inverse strongly correlated instances: Profits pi are
distributed in [1, R] and wi = pi+0.1R.

(iv) Almost strongly correlated instances: Weights wi

are distributed in [1, R] and the profits pi in
[wi + 0.098R, wi + 0.102R].

(vii) Subset sum instances: Weights wj are randomly
distributed in [1, R] and pi =wi.

(viii) Circle instances circle (d): /e weights are uni-
formly distributed in [1, R] and for each weight w

the corresponding profit is chosen as
p � d

��������
4wR − w2

√
where d is 2/3.

(ix) Profit ceiling instances pceil (d): /e weights of the
n items are randomly distributed in [1, R], and the
profits are set to pi � dwi/d./e parameter dwas
chosen as d= 3.

(x) Multiple strongly correlated instances mstr (k1, k2,
d): /e weights of the n items are randomly dis-
tributed in [1, R]. If the weight wi is divisible by d,
then we set the profit pi: =wi + k1; otherwise set it
to pi: =wi + k2. We set d: = 6 here.

For each instance type, a series of K� 100 instances is
performed, and the capacity is determined by (13). All the
instances above are generated with data range R� 103, 104,
105, 106 or 107.

c �
k

1 + K

n

i�1
wi, k � 1, 2, · · · , K. (13)

/ere are 100 instances for each type of KP where the
capability is described as follows:

C �
k

101

n

i�1
wi

⎡⎣ ⎤⎦, k � 1, 2, · · · , 100, n � 104. (14)

/e mean relative error of upper bounds to the best
upper bound of KP is listed in Table 3.

From Table 3, we find that the relative error of the upper
bound B is the minimum in general. /e upper bounds of
5000 instances are carried out with different methods. More
details are listed in Table 4.

From Table 4, we find that Ukmax is the best upper bound
in 2025 instances. /e upper bound B plays an important
role in obtaining the best upper bound even if s≤ kmax.

/e upper bound can gather most items selected in the
optimal solution all together. For example, KP is determined
by

wi � i, pi � 10i
2

+ 107, c � 200020, i � 1, 2, · · · , 104. (15)

A maximum of 631 items can be selected in the knap-
sack. /e upper bound Bs− 1(s � 632) and the solution u(s− 1)

are as follows:

Bs− 1 � min
λ≥ 0

max λc +
10000

i�1
pi − λwi(xi

10000

i�1
xi � s − 1, xi � 0, 1

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭

� 106310c +
631

i�1
pi − 106310wi(� 7215794600, ui �

1, i � 1, 2, ..., 631,

0, 0, 631< i≤ 10000.

(16)

Computational Intelligence and Neuroscience 3

/e initial solution z(s− 1) is equal to u(s− 1). /e best
solution y(s− 1)

a in the neighborhood ∪ 4h�1N(z(s− 1), 2h) can
be described as follows:

yi �
1, i � 1, 2, ..., 630, 1225,

0, i≠ 1225, 630< i≤ 10000.
 (17)

It is obviously that there is little difference between z(s− 1)

and y(s− 1)
a . Relation between (pi − 106310wi) and wi is

displayed in Figure 1. Relation between pi/wi and wi is
displayed in Figure 2. It is found that (pi − 106310wi)

changes more dramatically than pi/wi. It makes solution to
KP easy.

From Figure 1, we can see that (pi − 106310wi) of all
items selected are larger, while the others are smaller. It is
easy to get a better solution on the basis of (pi − 106310wi)

than that on the basis of efficiency pi/wi.

3. Approximate Solutions

/e approximate solution to E-kKP is a solution to KP. We
obtain the best approximate solution to KP by comparison to
approximate solutions for E-kKP where k is near to the
critical item s. In order to achieve a better solution to E-kKP,
we firstly obtain an initial solution on the basis of the so-
lution to the upper bound of E-kKP./en the initial solution
is developed by local search in the neighborhood of the
initial solution. At last, the approximate solution to KP is the
best approximate solution to E-kKP with various k. /e
upper bound of E-kKP is used to decrease calculation. /e
solution to the upper bound of E-kKP and the upper bound
make key contribution in FPTAS to KP.

3.1. Initial Solution to E-kKP. Let u(k) � (udki
) be an optimal

solution to the upper bound Bk. We may obtain an initial

solution to E-kKP on the basis of u(k). /e initial solution
z(k) to E-kKP is determined by

udki
�

1, i≤ k,

0, k< i≤ n,

zdki
�

udki
, i≠ k, k + 1,

udki
, wdkk+1
> c −

k− 1

j�1
wdkj

, i � k, k + 1,

1 − udki
, wdkk
> c −

k− 1

j�1
wdkj

, i � k, k + 1,

udki
, c −

k− 1

j�1
wdkj
≥max wdkk

, wdkk+1
 , pdkk

≥pdkk+1
, i � k, k + 1,

1 − udki
, c −

k− 1

j�1
wdkj
≥max wdkk

, wdkk+1
 , pdkk

<pdkk+1
, i � k, k + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

In Example 1, z(19) is an initial solution and its objective
value is

Table 1: Weight and profit of items.

i wi pi

1 1.7856 2.7924
2 4.877 5.8853
3 6.3493 7.3521
4 7.0943 8.0992
5 7.8807 8.885
6 8.5593 9.5616
7 13.9249 14.9319
8 19.6114 20.6148
9 21.0881 22.0925
10 24.2688 25.2767
11 27.3441 28.3472
12 31.618 32.6189
13 32.7739 33.7797
14 32.787 33.7898
15 33.9368 34.9379
16 37.1566 38.1662
17 37.887 38.892
18 39.6104 40.6175
19 40.014 41.0159
20 40.7362 41.7432
21 42.4565 43.463
22 45.2896 46.2899
23 45.6688 46.6693
24 45.7868 46.7932
25 46.6997 47.7013
26 47.8583 48.866
27 47.8753 48.8848
28 47.9746 48.9822
29 48.2444 49.2448
30 48.5296 49.5335

4 Computational Intelligence and Neuroscience

Table 2: Weights and profits of knapsack problems from Pisinger’s paper [20].

No. (wi, pi) (i� 1, 2, . . ., 104) No. (wi, pi) (i� 1, 2, . . ., 104)

1 ([R + 100ui], 1000vi) 2 (Rui, Rvi)

3 ([Rui], [R(ui + 0.2vi − 0.1)]) 4 ([Rui], [Rui + 0.1R])

5 ([Rvi + 0.1R], [Rvi]) 6 ([Rui + 0.098R], [R(ui + 0.102R)])

7 (Rui, Rui) 8 ([Rui], [2R/3
��������
ui(4 − ui)

])

9 ([Rui], Rui/3 10 ([Rui], [Rui + 0.3R]), [Rui]%6 � 0;
([Rui], [Rui + 0.2R]), [Rui]%6≠ 0

∗Note. ui and vi are uniformly distributed in [0,1]. R� 103, 104, 105, 106 or 107.

Table 3: Mean relative error of upper bounds to the best upper bound of (KP) (ppm).

(No, R) UMT2 UMTM Ukmax B (No, R) UMT2 UMTM Ukmax B
(1, 103) 4.6696 4.6696 4.6869 0 (2, 103) 0.0138 0.0031 0.0421 0.0174
(1, 104) 91.413 91.3869 81.4422 0 (2, 104) 0.0345 0.0075 0.0465 0.0189
(1, 105) 60.2607 60.2542 43.2765 0 (2, 105) 0.0194 0.005 0.0351 0.0164
(1, 106) 61.0366 61.0366 0 0 (2, 106) 0.0258 0.0057 0.0391 0.0152
(1, 107) 61.3372 61.3372 0 0 (2, 107) 0.0274 0.0069 0.0466 0.018
(3, 103) 0.0116 0.0049 0.0179 0 (4, 103) 28.7876 28.7876 0 0
(3, 104) 0.0031 0 0.0196 0.0044 (4, 104) 34.656 34.6518 0 0
(3, 105) 0.0148 0.0018 0.027 0.016 (4, 105) 31.5535 31.5456 0 0
(3, 106) 0.0114 0.0016 0.0166 0.0071 (4, 106) 27.5082 27.5001 0 0
(3, 107) 0.0066 0.0022 0.0105 0.0031 (4, 107) 25.7493 25.7467 0 0
(5, 103) 38.9054 38.9054 38.9054 0 (6, 103) 0 0 0 0
(5, 104) 0 0 0 0 (6, 104) 0 0 0 0
(5, 105) 0 0 0 0 (6, 105) 0 0 0 0
(5, 106) 0 0 0 0 (6, 106) 0 0 0 0
(5, 107) 0 0 0 0 (6, 107) 0 0 0 0
(7, 103) 0 0 0 0 (8, 103) 0 0 0 0
(7, 104) 0 0 0 0 (8, 104) 0 0 0 0
(7, 105) 0 0 0 0 (8, 105) 22.8602 22.8602 0 0
(7, 106) 0 0 0 0 (8, 106) 0 0 0 0
(7, 107) 0 0 0 0 (8, 107) 0 0 0 0
(9, 103) 0 0 0 0 (10, 103) 0 0 0 0
(9, 104) 0 0 0 0 (10, 104) 0 0 0 0
(9, 105) 16.1344 16.1344 0 0 (10, 105) 0 0 0 0
(9, 106) 30.1447 30.1447 0 0 (10, 106) 0 0 0 0
(9, 107) 8.9156 8.9156 8.9156 0 (10, 107) 0 0 0 0
∗/e best upper bound is min{UMT2, UMTM, Ukmax, B} in this paper.

Table 4: Sum of the best upper bounds in 5000 instances.

Upper bound Sum of the best upper bound Percentage of the best upper bound (%) Sum of the best upper bounds equal to B
UMT2 1520 30.40 1495
UMTM 1925 38.50 1548
Ukmax 2025 40.50 2025
B 4623 92.46 4623

Computational Intelligence and Neuroscience 5

f z
(19)

 � 473.1749

Zd19i �
1, i≤ 19

0, i> 19

d19i(� (2, 1, 4, 7, 5, 3, 10, 6, 9, 16, 8, 13, 18, 11, 26, 20, 21, 17, 14, 27, 28, 23, 12, 15, 19, 30, 25, 24, 22, 29).

(19)

3.2. Approximate Solution to E-kKP. Approximate solution
to E-kKP is the best solution in the neighborhood of z(k).
Let N(z(k), 2h) be a neighborhood of z(k) that is defined by

N z
(k)

, 2h � y
(k)

� ydki

n

i�1
ydki

− zdki

� 2h,

n

i�1
ydki

� k, ydki
� 0, 1

⎧⎨

⎩

⎫⎬

⎭. (20)

It is obvious that the size of N(z(k), 2h) increases with h.
But it is unnecessary to take into account all elements of
N(z(k), 2h). Algorithm 1 is a fast algorithm for searching the
best solution in N(z(k), 2h).

In order to decrease the calculation for the approximate
solution to KP, N(z(k), 2h) is redefined by (21) and Step 1 in
Algorithm 1 is modified correspondingly.

N z
(k)

, 2h � y
(k)

� ydki

Ukh

i�Lkh

ydki
− zdki

� 2h,

n

i�1
ydki

� k, ydki
� 0, 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (21)

where

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Weight

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(P
ro

fit
 -

10
63

10
W

ei
gh

t)

×108

Figure 1: Relation between (pi − 106310wi) and wi.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Weight

0

2

4

6

8

10

12

Ef
fic

ie
nc

y

×106

Figure 2: Relation between (pi/wi) and wi.

6 Computational Intelligence and Neuroscience

Lkh �

1, h � 1

max k − 100, 1{ }, h � 2

max 1, k − 50{ }, h � 3

max k − 30, 1{ }, h � 4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ukh �

n, h � 1

min 99 + k, n{ }, h � 2

min 49 + k, n{ }, h � 3

min 29 + k, n{ }, h � 4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s − 5≤ k≤ s + 4.

(22)

From (21), we know that the size of N(z(k), 2h)(h �

1, 2, 3, 4) is limited. In order to search for the best solution, it
is unnecessary to seek all solutions in N(z(k), 2h). Let

rw � c − wdk1
− wdk2

− · · · − wdkk

ps1, ws1(|ps1 � pdki1
+ · · · + pkih

, ws1 � wdki1
+ · · · + wdkih

+ rw, max 1, Lkh ≤ i1 < · · · < ih ≤ k

ps2, ws2(|ps2 � pdkj1
+ · · · + pdkjh

, ws2 � wdkj1
+ · · · + wdkjh

, k< j1 < · · · < jh ≤min n, Ukh .

(23)

/e best approximate solution corresponds to
max ps2 − ps1 | ws2 ≤ws1 , so the calculation is O (nlnn)
time when h equals to 1. A better solution is generated if the
profit sum of h items selected in the knapsack is less than that
of h items not selected in the knapsack, and the capacity
constraint still holds at the same time. On the other hand, the
calculation decreases via variable reduction in practice.

In Example 1, let the approximate solution xa equal to
z(19) and objective value fa equal to f(z(19)) firstly, and then
the approximate solution xa is updated by the best solution
y(19)

a in N(z(19), 2) if possible.

f y
(19)
a � 486.1884>fa � 473.1749

yd19i �
zd19i

, i≤ 30, i≠ 12, 22

1 − zd19i
, i � 12, 22

⎧⎨

⎩

fa←f y
(19)
a , xa←y

(19)
a .

(24)

Similarly, xa is replaced by the best solution y(19)
a in

N(z(19), 4) if possible.

f y
(19)
a � 486.9426>fa � 486.1884

yd19i �
1, i � 1, 2, ..., 21, i≠ 13, 17

0, i � 13, 17, 22, ..., 30

fa←f y
(19)
a , xa←y

(19)
a .

(25)

/ere is no better solution of KP in N(z(19), 6) and
N(z(19), 8). We get an approximate solution y(19)

a with 19
items selected and the approximate objective value is
486.9426.

3.3. ApproximationAlgorithmofKP. Let xa describe the best
approximate solution to KP in (26).

Step 1: Obtain the neighborhood N(z(k), 2h) by (20), h� 1, 2, 3, 4.

Step 2: Calculate the objective value of feasible solution y(k) � (ydki
) in N(z(k), 2h) by equation as follows:

f(y(k)) �

n

i�1
piydki

,
n

i�1
wiydki
≤ c

0,
n

i�1
wiydki
> c

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Step 3: Obtain the best solution y(k)
a in N(z(k), 2h)(h � 1, 2, 3, 4) by (Algorithm 1). f(y(k)

a) � max f(y(k)) | y(k) ∈ ∪ 4h�1N(z(k), 2h)

ALGORITHM 1: Approximate solution to (E-kKP).

Computational Intelligence and Neuroscience 7

Step 1 Input the capacity c, size n, weights wi and profits pi of items.
Step 2 Obtain the critical item s by (10).
Step 3 Let � (0, 0, ..., 0), fa � 0, k1 � s − 1, k2 � s.
Step 4 Obtain the upper bound Bk and its solution u(k)(k � k1, k2) by (8).
Step 5 If Bk1

≥Bk2
, then k � k1. Otherwise, k � k2.

Step 6 If Bk ≤fa, then exit.
Step 7 Obtain the initial solution z(k) by (18).
Step 8 Obtain the best solution y(k)

a in the neighborhood N(z(k), 2h)(h � 1, 2, 3, 4) and its objective value f(y(k)
a) by Algorithm 1.

Step 9 If fa <f(y(k)
a), then fa←f(y(k)

a), xa←y(k)
a .

Step 10 If k � k1, then k1←k1 − 1, get Bk1
and its solution u(k1) by (8); else, k2←k2 + 1, getBk2

and its solution u(k2) by (8). Go to Step 5.

ALGORITHM 2: Approximate Algorithm for (KP).

Table 5: 0/1 Knapsack problems.

No. (wi, pi) (i� 1, 2, . . ., 10000) C

1 (i,
�
i

√
) 2.6e+ 07

2 (i, ln i + 1) 2.7e+ 07
3 (i, tan (πi/30000)) 2.8e+ 07
4 (i, 100 + 10− 4i2) 2.9e+ 07
5 (i, 0.01i − 5600)2 + 1) 3.0e+ 07
6 (i, i + tan (πi/30000)) 3.1e+ 07
7 (i, tan (πi/30000) + 0.001i2) 3.2e+ 07
8 (i, 5000 + 10− 6i3) 3.3e+ 07
9 (i, tan (πi/30000) + 10− 6i3) 3.4e+ 07
10 (i, arctan (0.01i) + 1) 3.5e+ 07
11 (i, 3 − lncos(10− 4i)) 3.6e+ 07
12 (i, arctan (10− 4i2) + 1) 3.7e+ 07
13 (i, sin e10

− 4 i + 10− 4i2) 3.8e+ 07
14 (i, sin e10

− 4i + 10− 2i) 3.9e+ 07
15 (i, (1/i)) 4.0e+ 07
16 (i, (e10

− 4i + e− 10− 4 i/sin (10− 4i))) 4.1e+ 07
17 (i, i2) 4.2e+ 07
18 (i, i + 2 + εi), εi ∼ [0, 0.003] 4.3e+ 07

Table 6: Approximate value and optimization value of 0/1 Knapsack problems.

No. Approximate value Optimal value
1 4.082159596963170e+ 05 4.082159596963174e+ 05
2 6.541219347026785e+ 04 6.541219347026781e+ 04
3 4.102160742890480e+ 03 4.102160742890481e+ 03
4 2.462154058619999e+ 07 2.462154058620000e+ 07
5 8.338180285999998e+ 08 8.338180286000001e+ 08
6 3.100447382723671e+ 07 3.100447382723672e+ 07
7 2.613912845586523e+ 07 2.613912845586526e+ 07
8 2.232528710024500e+ 09 2.232528710024500e+ 09
9 2.244286940564110e+ 09 2.244286940564110e+ 09
10 2.096538351264514e+ 04 2.096538351264514e+ 04
11 2.655627458756987e+ 04 2.655627458756988e+ 04
12 2.189122733748200e+ 04 2.189122733748204e+ 04
13 2.942021969836180e+ 07 2.942021969836181e+ 07
14 3.981146835799920e+ 05 3.981146835799920e+ 05
15 9.675897955855723 9.675897955855723
16 1.997554888239176e+ 05 1.997554888239177e+ 05
17 3.120269950000000e+ 11 3.120269950000000e+ 11
18 4.301855990805434e+ 07 4.301855990837396e+ 07

8 Computational Intelligence and Neuroscience

xa � argmax
k

f y
(k)
a � argmax

k

max
1≤ h≤ 4

f y
(k)

 y
(k) ∈ N z

(k)
, 2h

 . (26)

We can obtain the approximate solution xa of KP by
Algorithm 2.

In Example 1, we obtain fa � 486.9426 when k� 19.

B20 � 0, B18 � 485.9582<fa � 486.9426. (27)

/e best approximate solution xa � (xd19i
) for KP and its

objective value are as follows:

fa � 486.9426. (28)

It may be proved that xa is the optimal solution to KP in
Example 1.

3.4. Calculation Analysis. Approximation algorithms for
KP based on upper bound of E-kKP runs in polynomial
time. Calculation for the upper bound of E-kKP is less
than O (nlnn) for a given E-kKP. We obtain the

Table 7: Relative average error to the upper bound (ppm).

R No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10
103 5.6579 2.7082 1.6469 0.4003 0 1.2883 0.0573 100.5351 41.0547 24.8855
104 0.3227 1.5208 0.7258 0.0157 0.0132 0.4878 0 46.7007 0.131 21.4483
105 0.0591 1.1447 0.4877 0.0141 0.0444 0.2357 0.0044 43.6594 0.0148 19.1698
106 0.0577 1.1524 0.6731 0.0185 0.0328 0.246 0.0047 50.0126 0.0014 19.21
107 0.0510 1.205 0.5800 0.0229 0.0192 0.1975 0.0034 49.9764 0.0001 14.8858

Table 8: Relation between (pi-1.0003121wi) and the optimal solution (x
opt
i) in Example 1.

i wi pi (pi/wi) ej pi − 1.0003121wi d19l x
opt
i xei

i z
(19)
i

2 4.877 5.8853 1.20674595 2 1.006714385 1 1 1 1
1 1.7856 2.7924 1.563844086 1 1.006219464 2 1 1 1
4 7.0943 8.0992 1.141648929 4 1.002593494 3 1 1 1
7 13.9249 14.9319 1.072316498 7 1.002472723 4 1 1 1
5 7.8807 8.885 1.127437918 5 1.001737819 5 1 1 1
3 6.3493 7.3521 1.15793867 3 1.000735709 6 1 1 1
10 24.2688 25.2767 1.04153069 10 1.000009703 7 1 1 1
6 8.5593 9.5616 1.117100697 6 0.999517192 8 1 1 1
9 21.0881 22.0925 1.047628757 9 0.997543816 9 1 1 1
16 37.1566 38.1662 1.027171485 16 0.997519609 10 1 1 1
8 19.6114 20.6148 1.051164119 8 0.997023922 11 1 1 1
13 32.7739 33.7797 1.030689054 13 0.995144517 12 1 1 1
18 39.6104 40.6175 1.025425141 18 0.994221827 13 0 1 1
11 27.3441 28.3472 1.03668433 11 0.994209859 14 1 1 1
27 47.8753 48.8848 1.02108603 26 0.993934735 15 1 0 1
20 40.7362 41.7432 1.024720028 20 0.993755806 16 1 0 1
21 42.4565 43.463 1.023706617 21 0.9926965 17 0 0 1
17 37.887 38.892 1.026526249 17 0.992682141 18 1 1 1
26 47.8583 48.866 1.021055909 27 0.992140262 19 1 0 0
14 32.787 33.7898 1.030585293 14 0.992140258 20 1 1 1
28 47.9746 48.9822 1.021002781 28 0.99200245 21 1 0 0
24 45.7868 46.7932 1.021980134 23 0.99151375 22 0 0 0
12 31.618 32.6189 1.031656019 12 0.990620324 23 0 1 0
15 33.9368 34.9379 1.029498951 15 0.990066434 24 0 1 0
19 40.014 41.0159 1.025038736 19 0.988890608 25 0 1 0
30 48.5296 49.5335 1.020686344 30 0.988122008 26 0 0 0
25 46.6997 47.7013 1.021447675 25 0.986416947 27 0 0 0
23 45.6688 46.6693 1.021907736 24 0.985652114 28 0 0 0
22 45.2896 46.2899 1.022086748 22 0.9855754 29 0 0 0
29 48.2444 49.2448 1.020736085 29 0.984714732 30 0 0 0
∗pd19l

− 1.0003121wd19l
≥pd19l+1

− 1.0003121wd19l+1
, (pej

/wej
)≥ (pej+1

/wej+1
), j, l � 1, 2, · · · , 29. (xei

i) is an initial solution constructed in descending order of
efficiency.

Computational Intelligence and Neuroscience 9

approximate solution to KP on the basis of the upper
bound of E-kKP where k is an integer close to s. For a given
k, the initial solution is determined by (13). It takes O
(nlnn) time to develop the initial solution in the neigh-
borhood N(z(k), h) (h = 1, 2, . . ., 4) defined by (21). Hence,
it takes at most O (nlnn) time to achieve the approximate
solution to E-kKP. Generally, we obtain the best ap-
proximate solution for KP among the approximate so-
lutions for E-kKP where k is near the critical item s.
Hence, the calculation for approximate solution to KP is
less than O (nlnn).

In Algorithm 1, we search for the best solution in
N(z(k), h) defined by (21). In order to develop the ap-
proximate solution quickly, the weight sum of h items is
sorted in ascending order firstly, and then the profit sum of h
items selected in the knapsack is compared with the profit
sum of h items not selected. So the storage needed in Al-
gorithm 1 is O(n) when h is fixed at 1, 2, 3, or 4. In Al-
gorithm 2, we have the best solution to KP by comparison to
the best approximate solution to E-kKP where k is an integer
close to s. So the storage of the approximate algorithm for KP
is O(n).

3.5.AccuracyAnalysis. All feasible solutions to KP are in the
search scope of approximation algorithm with changing k
and h. So approximation algorithm for KP is an ε-ap-
proximation algorithm. From one aspect, weights, profits,
capacity and size of KP have influence on the accuracy of an
approximation algorithm. From another aspect, the search
scope of the approximation algorithm has influence on its
accuracy as well. Better solution is usually with more cal-
culation. /e exact algorithm for KP may be explored on the
basis of the branch and bound algorithm here. Intensive
research will be carried out in the future.

4. Computational Experiments

By Algorithm 2, we get the approximate solutions to KP
listed in Table 5./e results are listed in Table 6. /e optimal
value listed in Table 6 is carried out by combo [24].

From Table 6, we find that the approximate solutions are
almost the optimal solutions in 18 instances. It implicates
that the approximate algorithm proposed here achieves high
precision in solving KP.

In Table 7 lists the experimental results of the solutions
for KP listed in Table 2 by Algorithm 2. /e upper bound
listed in Table 4 is carried out by equation (11) in Section 2.

From Table 7, we see that the relative average error of 100
instances is almost less than 0.0001. /e experiment result
shows that the approximate algorithm proposed here can
achieve high accuracy.

From Table 8, we find that the upper bound of E-kKP
makes key contribution in FPTAS. Firstly, the initial so-
lution constructed on the basis of the solution to the upper
bound of E-kKP is similar with the optimal solution. For
example, there are only 4 elements different between the
initial solution and the optimal solution to E-kKP where k
equals to 19, while there are 8 elements different between

the initial solution constructed by efficiency and the op-
timal solution to KP in Table 8. Secondly, the differences
between the initial solution and the solution to the upper
bound of E-kKP are near to the item dkk. It is to say, we
search the optimal solution to KP in a core with small size
on the basis of the solution to the upper bound of E-kKP.
While the optimal solution to KP in a core with large size
on the basis of the solution to the upper bound of Dantzig.
So, algorithms proposed here is easy to get approximate
solution to KP.

Furthermore, no better solution of E-kKP exists when
the objective value fa of the approximate solution achieved
before is larger than the upper bound Bk. So we only search
solution of E-kKP with upper bound larger than fa which is
in the neighborhood of the optimal solution to the upper
bound of E-kKP. /e candidate strategy makes the search in
polynomial time and the solution with high accuracy in
Algorithm 1. /e upper bound of E-kKP plays important
role in decreasing calculation of the approximate solution of
E-kKP in Algorithm 2 as well.

5. Conclusion

It is still difficult to obtain the exact solution for large scale 0-1
knapsack problem directly. Here a fast polynomial approxi-
mate solution is proposed on the basis of the upper bound for
KP. /e exact solution to KP is in the neighborhood of the
solution to the upper bound for E-kKP./erefore, it is possible
to find an approximation with high accuracy in the neigh-
borhood of the solution to the upper bound for E-kKP where k
is near to the critical item s. All in all, as the basis of fast exact
algorithm for KP, it is important to obtain an approximate
solution and the upper bound for KP. In order to obtain a fast
exact solution to KP, more intensive research on variables
reduction need be conducted in the future.

Data Availability

All data inside the manuscript have been specified clearly in
the manuscript.

Conflicts of Interest

/e authors declare that they have no known conflicts fi-
nancial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] S. Sahni, “Approximate algorithms for the 0/1 knapsack
problem,” Journal of the ACM, vol. 22, no. 1, pp. 115–124,
1975.

[2] O. H. Ibarra and C. Kim, “Fast approximation algorithms for
the knapsack and sum of Subset problems,” Journal of the
ACM, vol. 22, no. 4, pp. 463–468, 1975.

[3] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger, “Ap-
proximation algorithms for knapsack problems with cardi-
nality constraints,” European Journal of Operational Research,
vol. 123, no. 2, pp. 333–345, 2000.

10 Computational Intelligence and Neuroscience

[4] D. Zou, L. Gao, S. Li, and J. Wu, “Solving 0–1 knapsack
problem by a novel global harmony search algorithm,” Ap-
plied Soft Computing, vol. 11, no. 2, pp. 1556–1564, 2011.

[5] Y. Feng, G.-Ge Wang, and X.-Z. Gao, “A novel hybrid cuckoo
search algorithm with global harmony search for 0-1 knap-
sack problems,” International Journal of Computational In-
telligence Systems, vol. 9, no. 6, pp. 1174–1190, 2016.

[6] X. Zhang, S. Huang, Y. Hu, Y. Zhang, S. Mahadevan, and
Y. Deng, “Solving 0-1 knapsack problems based on amoeboid
organism algorithm,” Applied Mathematics and Computation,
vol. 219, no. 19, pp. 9959–9970, 2013.

[7] Y. Feng, Ke Jia, and Y. He, “An Improved Hybrid Encoding
Cuckoo Search Algorithm for 0-1 Knapsack Problems,”
Computational Intelligence and Neuroscience, vol. 2014, 2014.

[8] Y. Feng, G.-Ge Wang, S. Deb, M. Lu, and X.-J. Zhao, “Solving
0-1 Knapsack Problem by a Novel Binary Monarch Butterflfly
Optimization,” Neural Computing & Applications, vol. 28,
2015.

[9] S. F. Razavi and H. Sajedi, “Cognitive discrete gravitational
search algorithm for solving 0-1 knapsack problem,” Journal
of Intelligent and Fuzzy Systems, vol. 29, no. 5, pp. 2247–2258,
2015.

[10] Y. Zhou, L. Li, and M. Ma, “A Complex-Valued Encoding Bat
Algorithm for Solving 0–1 Knapsack Problem,” Neural Pro-
cessing Letters, vol. 44, 2015.

[11] Y. Zhou, Z. Bao, Q. Luo, and S. Zhang, “A Complex-Valued
Encoding Wind Driven Optimization for the 0-1 Knapsack
Problem,” Applied Intelligence, vol. 46, 2016.

[12] W.-L. Liu, Y.-J. Gong, W.-N. Chen, Z. Liu, H. Wang, and
J Zhang, “Coordinated charging scheduling of electric vehi-
cles: a mixed-variable differential evolution approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21,
no. 12, pp. 5094–5109, 2020.

[13] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, and Q. Zhang, “A
self-adaptive differential evolution algorithm for scheduling a
single batch-processing machine with arbitrary job sizes and
release times,” IEEE Transactions on Cybernetics, vol. 51, no. 3,
pp. 1430–1442, 2021.

[14] F. Zhao, X. He, and L. Wang, “A two-stage cooperative
evolutionary algorithm with problem-specific knowledge for
energy-efficient scheduling of No-wait flow-shop problem,”
IEEE Transactions on Cybernetics, vol. 51, no. 11, pp. 5291–
5303, 2021.

[15] F. Zhao, L. Zhang, J. Cao, and J Tang, “A cooperative water
wave optimization algorithm with reinforcement learning for
the distributed assembly no-idle flowshop scheduling prob-
lem,” Computers & Industrial Engineering, vol. 153, no. 10,
Article ID 107082, 2021.

[16] F. Zhao, S. Di, J. Cao, and J. Tang, “A novel cooperative multi-
stage hyper-heuristic for combination optimization prob-
lems,” Complex SystemModeling and Simulation, vol. 1, no. 2,
pp. 91–108, 2021.

[17] D. Pisiginger, “An Expanding Core Algorithm for the Exact 0-
1 Knapsack Problem,” European Journal of Operational Re-
search, vol. 87, 1995.

[18] D. Pisiginger, Core problems in knapsack algorithms, 1999.
[19] Z. Wang, Li Gao, and H. Wang, “A hybrid one dimensional

optimization,” in Proceedings of the 4th International Con-
ference on Electronics, Communications and Networks
(CECNET IV), pp. 409–414, Beijing, China, December 2014.

[20] D. Pisinger, “Where are the hard knapsack problems?”
Computers & Operations Research, vol. 32, no. 9, pp. 2271–
2284, 2005.

[21] S. Martello and P. Toth, “An upper bound for the zero-one
knapsack problem and a branch and bound algorithm,”
European Journal of Operational Research, vol. 1, no. 3,
pp. 169–175, 1977.

[22] S. Martello and P. Toth, “A new algorithm for the 0-1
knapsack problem,” Management Science, vol. 34, no. 5,
pp. 633–644, 1988.

[23] S. Martello and P. Toth, “Upper bounds and algorithms for
hard 0-1 knapsack problems,” Operations Research, vol. 45,
no. 5, pp. 768–778, 1997.

[24] S. Martello, D. Pisinger, and P. Toth, “Dynamic programming
and strong bounds for the 0-1 knapsack problem,” Man-
agement Science, vol. 45, no. 3, pp. 414–424, 1999.

Computational Intelligence and Neuroscience 11

