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Objective. To develop a deep learning-assisted recovery and nursing system after total hip arthroplasty and to conduct clinical
trials in order to verify its accuracy. Methods. In our study, based on manual labeling, the human hip X-ray image library was
established, and the deep neural network based on Mask R-CNN was built. The labeled medical images were used to train the
model, providing reference for nursing decision after hip replacement. A total of 80 patients with hip injury from 2016 to 2019
were selected for the study. In our paper, the patients were divided into experimental group and control group. The pertinence
and effectiveness of the model for postoperative care were evaluated by comparing the hip pain (VAS index), recovery (Harris
score), self-care ability (Barthel index), and postoperative complication rate between the two groups. Results. The pain and
complications in the experimental group were significantly lower than those in the control group, the difference being
statistically significant (P < 0:05); the recovery of hip joint and self-care ability were higher than those in the control group, the
difference being statistically significant (P < 0:05); the other differences were not statistically significant (P > 0:05). Conclusion.
The application of deep learning method in the rapid nursing after total hip replacement can significantly improve the nursing
ability. Compared with the traditional method, it has stronger pertinence, faster postoperative recovery, lower incidence of
complications, and greatly improves the postoperative quality of life of patients with hip injury.

1. Introduction

Total hip arthroplasty (THA) is a terminal procedure for the
treatment of patients with hip disease, in which an artificial
prosthesis is attached to the normal bone to replace the
diseased joint and restore normal hip function. In recent
years, with the acceleration of the pace of life, the aging of
the population is increasingly serious, the number of
patients with hip injury is increasing, and hip replacement
has become a treatment for many middle-aged and elderly
patients. However, due to the design of the prosthesis and
the increasing of quantity model, preoperative planning
more complex and uncertain factors in the operation, cause
prosthesis and matching rate is not high, patients often
occurs in patients with postoperative complications such as
long range, hip instability of lower limb, and the poor quality

of life, and giving patients postoperative nursing care of
science is of great significance [1].

At present, posthip replacement care is mainly planned
according to patients’ postoperative performance and
doctors’ clinical experience. X-ray film is the simplest and
most direct method for post-THA evaluation and has been
widely used in the observation and treatment of postopera-
tive recovery of patients, though the patient’s X-ray film
can prevent or treat postoperative complications in the early
stage, targeted to help patients relieve postoperative pain and
restore normal self-care ability as soon as possible [2].

Deep learning has beenwidely applied in thefield of image
recognition in clinical medicine [3]. The hip X-ray of patients
with hip lesions has obvious structural characteristics, which
is very suitable for image recognition by deep learning.
Through training, the model can divide the patient’s joint
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area, accurately identify the patient’s prosthetic structure,
shape, location, and other key information, predict possible
complications, assist doctors to formulate postoperative care
plans for patients, and improve the nursing effect [4].

2. Methods

2.1. Target Location and Segmentation Algorithm Based on
Mask R-CNN

2.1.1. Mask R-CNN Construction. Mask R-CNN is improved
on Faster R-CNN, which extends the Faster R-CNN by
adding a branch to predict an object Mask in parallel with
the existing branch for boundary-box recognition [5]. Com-
pared with Faster R-CNN, Mask R-CNN has simple training
and lower cost. It is suitable for multitask prediction model,
and its integration and comprehensiveness have been
enhanced. At present, it has been applied in the field of
medical image detection and segmentation to some extent
[6]. The architecture of the Mask R-CNN model is shown
in Figure 1.

(1) Backbone. Backbone is a series of feature maps for
extracting images by convolution layer, such as VGG16,
VGG19, GooLeNet, ResNet50, and ResNet101. The pro-
posed ResNet (deep residual network) effectively solves the
problems of gradient disappearance and gradient explosion
caused by the deepening of network layers.

When ResNet is built, the two types of blocks (Identity
block and Conv Block) are used interchangeably, as shown
in Figures 2(a) and 2(b), respectively.

(2) Feature Pyramid Network (FPN). FPN can distinguish
objects of different sizes and different features of objects
and use shallow features and depth features to distinguish
simple objects from responsible objects. The basic principle
is to make use of the characteristics of the convolutional
network itself to conduct convolution and pooling opera-
tions on images, so as to obtain feature maps of different
sizes. Details are emphasized in the shallow network, while
semantic information is emphasized in the deep network.
The feature extraction process of FPN is shown in Figure 3.

FPN consists of two parts: bottom-up and bottom-up.
The bottom-up part realizes the feature extraction function
of traditional convolutional network. With the deepening
of convolution, the spatial resolution decreases, and the
spatial information is gradually lost, but more high-level
semantic information can be detected at the same time.
In the bottom-up part, the prediction is made according
to multiple feature maps [7]. After continuous sampling,
the spatial resolution is improved, but the location infor-
mation of objects is lost at the same time. FPN builds a
horizontal link between the reconstructed layer and the
feature map so that the detector can better predict the
location information of the object, thus replacing the fea-
ture extractor in Faster R-CNN and generating a feature
pyramid of higher quality.

(3) Region Proposal Network (RPN). RPN outputs various
types of rectangular object boxes with scores through images
of any scale as input to provide regional proposals. Its archi-
tecture is shown in Figure 4.

RPN realizes sliding window processing by using an
N ×N window on the feature map output by the shared
convolution layer. In each sliding window, multiple region
suggestions are realized, that is, K anchor boxes, each of
which corresponds to an anchor point [8]. For a convolu-
tion map of size W ×H, there are a total of W ×H × K
anchor points.

The loss function of RPN network is defined in

L pif g, tif gð Þ = 1
Ncls

〠
i

Lcls pi, p∗ið Þ + λ
1

Nreg
〠
i

p∗i Lreg ti, t∗ið Þ,

ð1Þ

where i is the index of the anchor points in batch. pi cor-
responds to the predicted probability of each anchor point,
p∗ represents the ground truth (GT) tag of training set, ti
represents the vector of parameterized coordinates of
anchor boxes, and t∗ is the vector corresponding to GT
bounding boxes.

(4) Region of Interest (ROI) Align. ROI Align is based on Fas-
ter R-CNN improved by ROI Pooling. After RPN, the model
obtains a series of anchor boxes’ characteristic values, which
are of different sizes and need to be uniformly expressed and
input into the full connection layer. In the Faster R-CNN,
the ROI Pooling method is used to carry out the Pooling
operation in proportion on the original coordinates [9].
Since floating point numbers may appear in the pooling
process, it is necessary to carry out the rounding process,
so the problem of pixel points not corresponding will be
generated. When the feature map is restored to the original
image, great errors will be generated, resulting in the loss
of feature values. ROI Align uses bilinear interpolation
instead of rounding floating-point numbers, which makes
the extracted eigenvalues closer to the ROI region of the
original image. The accuracy of the mask increases from
10% to 50%, showing a significant effect. The schematic
diagram of both is shown in Figure 5.

(5) Loss Function. For each ROI, the multitasking loss func-
tion is shown in Equation (2) as follows:

L = Lcls + Lbox + Lmask, ð2Þ

wherein Lcls is the classification loss function and Lbox is the
regression loss function. The mask branch has k ∗m2

dimensions of output for each ROI, that is, binary masks
of class k resolution m2. Using a per pixel sigmoid, Lmask is
defined as the average binary cross entropy loss. For ROI
belonging to the KTH category, Lmask only considers the
KTH mask, allowing each category to generate masks. Com-
petition between classes is avoided [10].
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Through the Faster R-CNN loss function, it can be con-
cluded that the loss function of Mask R-CNN has five parts,
including the classification loss function and regression loss
function of RPN, and the classification loss function, regres-

sion loss function, and mask loss function of ROI. The over-
all loss function is shown in

Lfinal = L pif g, tif gð Þ + Lcls + Lbox + Lmaskð Þ: ð3Þ

Among them, Lmask and Lbox only have effects on posi-
tive sample ROI.

2.2. Mask R-CNN Algorithm for Reusing Underlying
Information. The proposed ResNet network effectively
solves the problem of gradient disappearance and gradient
explosion caused by the deepening of network layers. Its
main structure is the stack of multiple residual blocks,
namely, identity block and conv block mentioned above.
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Figure 1: Mask R-CNN network architecture.
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Figure 2: ResNet framework based on (a) identity block and (b) conv block.
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Figure 3: FPN feature extraction process.

3Computational and Mathematical Methods in Medicine



However, despite ResNet’s strong learning capability, an
excessively deep network still leads to problems with
reduced generalization ability, increased number of partici-
pants, and longer training time. Therefore, the main archi-
tecture of the network is improved by combining two
kinds of residual blocks [11]. According to the body of the
hip anatomy in X-ray images, the need to identify the main
parts including before the iliac spine, pelvis pubic symphysis,
big small femur rotor and rotor, such as object is more, so in
the backbone network between C1 to C5 layer are stacked to
a residual block 4 each residual block includes four convolu-
tion layer, eventually making backbone network from top to
bottom layer for 42 layer. In order to fit the X-ray image of

the training hip joint, the shallower network layer can also
prevent the occurrence of overfitting.

This paper implements a multiplexed C1 feature extrac-
tion network, as shown in Figure 6. The original image with
a size of 640 × 640 × 3 was first input, and the feature image
obtained after the first two compressions was defined as C1.
Secondly, 256 convolution kernels with step spacing of 1 and
size of 3 × 3 were used for convolution operation for C1 to
obtain C1C2 with feature graph size of 160 × 160 × 256.
Then, P2 was obtained after fusion with C2 unified by chan-
nel. For C1, 256 convolution kernels with step spacing of 2
and size of 3 × 3 are used for convolution operation to obtain
C1C3 with feature map size of 80 × 80 × 256. After fusion

2k scores 4k coordinates k anchor boxes

cls layers reg layers

256-d

Intermediate layer

Sliding window

Conv feature map

Figure 4: RPN architecture.
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Figure 5: ROI pooling compared to ROI Align.
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with C3 after channel unification, P3 is obtained. Similarly,
256 convolution kernels with step spacing of 4 and size of
3 × 3 are used for convolution operation for C1 to obtain
C1C4, and P4 is obtained after fusion with C4. At this time,
the C1 layer has fewer compression times and contains more
detailed information, making it easy to detect the lesser tro-
chanter of hip joint. Through this series of steps, the reuse of
low-level information is completed, and the detection ability
of small objects is improved.

2.3. Overall Network Framework. The main architecture of
the network is shown in Figure 7.

After the input X-ray image is processed by RPN and
local feature layer, the target is identified and segmented.
The extracted P2-P6 is used as the input of RPN, in which
anchor boxes of different sizes are generated, and the prob-
ability of containing specific objects in the area is predicted
according to Intersection of Union (IOU), so as to identify
bone information of different proportions in the hip joint.
The use of RPN is necessary because of the varying size of
the hip area to be identified, which makes traditional fixed-
length coils difficult to apply.

After obtaining regions of variable size through RPN,
ROI Align is utilized to generate output of fixed size. At
the same time, the trunk network will input ROI Align to
the extracted P2-P6 and determine which layer to map

according to the size of the region of interest. The mapping
formula [12] is shown in

k = k0 + lb
ffiffiffiffiffi

xy
p
224

� �� �

: ð4Þ

In the formula, k0 represents the subscripts correspond-
ing to P2-P6 of different scale feature layers, x and y corre-
spond to the width and height of the region of interest,
and k is finally obtained by rounded down.

After the ROI Align layer, the network can achieve the
feature map of specific dimension size. After that, after a
7 × 7 convolution and a convolution of 1024 × 1 channels
used to simulate 1024 full connections, it is connected to
the classification and location branches after passing
through the full connection layer. At the same time, fea-
ture maps of specific dimensions are output through RoI
Align layer. Four times of 3 × 3 convolution will be carried
out, and then, one deconvolution will be carried out, and
then, the number of channels is the number of categories
to be identified. Segmentation results will be obtained,
and the detection and segmentation function of Mask R-
CNN network [13] multiplexed with low-level information
is completed.
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Figure 6: Reuse C1 layer feature extraction network.
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2.4. Experimental Settings. In control group, there were 23
males and 17 females aged from 60 to 80 years. Real-time
and routine postoperative rehabilitation nursing guidance
for patients, including routine health education, the applica-
tion of analgesic drugs according to the patient’s pain, and as
early as possible out of bed activities.

In observation group, there were 20 males and 20
females aged from 60 to 82 years. On the basis of the control
group, the algorithm model was used to predict the postop-
erative recovery of patients. For the possible complications,
drugs were used for prevention and control, and surgical
treatment was carried out when necessary.

In our paper, we chose four observation indicators. First,
the visual analog scale (VAS) represents the pain of the two
groups; second, the Harris score represents the recovery of
hip joint; third, the Barthel index represents patients’ self-
care ability; last, the incidence of complications, including
anemia, infection, and stress injury. We will compare the
above indicators between control group and observation
group to evaluate the recovery condition of these patients.

Finally, SPSS 22.0 statistical software was used to process
the data. Measurement data were expressed as X ± S, t test
was used, count data were expressed as percentage, χ2 test
was performed, P < 0:05meant that the difference was statis-
tically significant.

2.5. Classification and Screening of Hip Joint Image Data.
According to the FAI concept proposed by Ganz et al.
[14], complications after hip replacement can be roughly
divided into four types, namely, no disease, Cam collision
type, Pincer collision type, and mixed type. The medical
characteristics and comparison with normal hip joint X-
ray images are shown in Figure 8.

Cam-type: the direct manifestations were bony protu-
berance of the anterior upper margin of the femoral head
and neck junction, insufficient intercervical depression of
the femoral head, accompanied by local hyperosteogeny,
that is, “left hand handle” deformity; nonspherical changes

of femoral head; femoral head and neck eccentricity
decreased; the femoral neck angle (A angle) increased. These
lesions are likely to lead to degenerative changes in the hip,
resulting in the formation of acetabular margin osteophytes
or free calcification. For this lesion type, the key of classifica-
tion lies in identifying the size of angle A, and angle A > 50°
is the critical value for judging this type of FAI lesion, as
shown in Figure 9(a).

Pincer-type: direct manifestations of acetabular dyspla-
sia, including acetabular depth, acetabular tilt forward,
acetabular tilt back, acetabular posterior wall overcoverage;
secondary degenerative changes of the hip, including acetab-
ular margin ossification or calcification; joint space
narrowed and joint surface capsule changed. Cystic changes
in the anterior upper margin of femoral neck and thickening
of adjacent bone cortex. Such lesions can easily lead to defor-
mation or displacement of the acetabulum and then acetab-
ular labial ossification. For this type of lesion, the key to
classification is to identify the LCE angle at the central
margin (the center of the femoral head is defined as point
C, and the sclerotic band below the acetabular margin is
defined as point E for external aid). The LCE angle < 20°
can be diagnosed as hip dysplasia, and >39° can be diag-
nosed as acetabular overcoverage, as shown in Figure 9(b).

Mixed-type: Cam-type and Pincer-type rarely occur
independently, and mixed-type is the case when the two
types occur simultaneously. Mixed-type has two types of
hip joint morphological characteristics at the same time.
Therefore, if the target has both Cam-type characteristics
and Pincer-type characteristics, it can be diagnosed as
mixed-type.

According to FAI classification, hip joint images of
patients were divided into four categories in this paper,
namely, normal, CAM-type, Pincer-type, and mixed-type.
In order to effectively judge the type and degree of disease
in patients, a large number of comparative experiments were
conducted in this paper. 7132 hip joint images were used,
and the data of poor quality were excluded by preprocessing.

Input

P2 ~ P5

P2 ~ P6

Backbone network

Region proposal
network

Local feature layer Local feature layer

Positioning Classification Segmentation

Figure 7: Improved Mask R-CNN process.
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Exclusion criteria: ① patients with other fractures; ②

patients with coagulation dysfunction; ③ patients with dys-
function of important organs; ④ before the onset of motor
dysfunction [15]. A total of 3500 pieces of experimental data
were obtained, as shown in Table 1 and Figure 10.

3. Results

3.1. Hip Imaging Data Preprocessing. By observing the num-
ber of samples, we found that nearly half of the patients in all
samples belonged to the type without disease. Among the
samples with disease, the mixed type was the main type,
and the proportion of Cam type and Pincer type was very
small. There was a large difference in the number among
all samples. We believe that, in the prediction results of the
model, more attention should be paid to correctly predicting
the types of latent complications, rather than to learning the
medical image features of unaffected patients. Therefore, we
should undersample the medical samples of normal patients
with edit nearest neighbor (ENN) [16] and through travers-
ing most types of samples. If most of its K-nearest neighbor
samples are different from their own categories, we delete
them to reduce the impact of data imbalance on the pre-
dicted results. At the same time, according to the clinical
needs, a binary model was set up to detect whether patients
have disease.

In order to avoid the problem of overfitting the training
samples and improve the generalization ability of the model,
according to the characteristics of the training samples, this
paper divides the training set and the test set by the method
of cross validation of tenfold. First of all, the original data set
is divided into equal tenfold. In each compromise, the pro-
portion of different types of data is the same as that of the
original data, so as to avoid the loss of certain types of data.
In each iteration, one fold was successively selected as the
test set and the remaining data as the training set to ensure
that the training set and test set were independent of each
other. This was repeated for ten times, and the average accu-
racy rate was taken as the final accuracy rate of the model.

3.2. Clinical Verifications. VAS scores of the two groups were
compared in Table 2.

Harris hip scores before and after intervention were
shown in Table 3.

Normal Cam-Type Pincer-Type

Figure 8: Image comparison of different types of hip joint.

(a)

A

B

OS

0

𝛼

(b)

Figure 9: Classification and screening of hip joint based on (a) femoral neck angle and (b) LCE angle.

Table 1: Statistical table of hip joint image samples.

Type Sample size Proportion Label 1

Nondisease 1789 51% 1

Cam-type 209 6% 2

Pincer-type 203 6% 3

Mixed type 1299 37% 4
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Barthel scores of the two groups before and after inter-
vention were compared in Table 4.

The complications of the two groups were compared in
Table 5.

The results show that deep learning-based nursing
model of hip surgery can accurately evaluate the postopera-
tive situation of patients and timely predict and treat poten-
tial complications. By comparison, patients in the control
group had more mild postoperative pain, higher Harris score
and Barthel score, and lower incidence of postoperative
complications. The difference was statistically significant
through the test of statistical principle.

4. Discussion

At present, postoperative rehabilitation of patients after
THA in China is still carried out in the traditional way of
nursing. When designing the nursing plan, experienced
physicians are required to observe the patients, and the pro-
cess is complicated and susceptible to subjective factors [17].
The quality of life of patients after hip replacement is
seriously affected by different surgical results, physiological
conditions, and living habits of patients, resulting in a high
incidence of complications.

In clinical applications, X-ray films have been shown to
be useful in predicting potential complications in patients.
However, due to lack of experience, and evaluation results

are prone to observation error of attending physicians, the
effect is not very ideal.

Besides, deep learning has been applied in various
medical fields, but in postoperative care, there are few
related applications, which are still in the exploratory stage.

In this paper, deep learning is applied in the field of post-
operative nursing of hip joint. Mask R-CNN model is used
to provide postoperative nursing advice and guidance for
doctors by using patients’ hip X-ray images. After clinical
trial comparison, the effect is significant.

5. Conclusion

This paper summarizes the hip replacement cases in recent
years, and designs the Mask R-CNN deep learning model
based on X-ray images. In this paper, the prosthetic match-
ing accuracy of patients was analyzed by segmentation and
identification of hip X-ray images. At the same time, FAI
classification was used to classify the patient’s recovery, pre-
dict the possible types of complications, and provide nursing
advice. The model achieved good performance through the
training of a large number of medical case images. In clinical
trials, the observation group and the control group were
evaluated by VAS score, Harris and Barthel index, and

Figure 10: X-ray film samples.

Table 2: VAS scores comparison.

Items Observation group Control group

Admission date 4:01 ± 2:10 4:29 ± 2:77
Postoperation day 2:29 ± 0:92 4:12 ± 1:10
7 days after operation 1:17 ± 0:28 3:05 ± 0:33

Table 3: Harris scores comparison.

Group Before intervention After intervention

Observation group 46:75 ± 5:41 79:47 ± 4:20
Control group 46:87 ± 5:37 67:26 ± 4:16
t value 0.067 13.017

P value 0.948 0.001

Table 4: Barthel scores comparison.

Group Before intervention After intervention

Observation group 44:62 ± 4:40 76:34 ± 3:15
Control group 44:70 ± 4:88 62:65 ± 3:98
t value 0.105 17.092

P value 0.916 0.001

Table 5: Complication comparison.

Group Anemia Infection
Pressure
injury

Overall
rate

Observation
group

1 0 0 2.5%

Control group 1 2 1 10.0%

χ2 value 5.17

P value 0.023
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complication rate. The experimental results showed that
patients in the observation group were better than those in
the control group in terms of pain, hip joint ability score,
self-care ability, and complication rate, and the difference
was statistically significant through the calculation of statis-
tical principles. Therefore, it is a feasible attempt to apply
deep learning method to postoperative nursing of patients
undergoing hip replacement surgery, with high clinical
application potential.
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