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The purpose of this study was to reduce cupping artifacts and improve quantita-
tive accuracy of the images in cone-beam CT (CBCT). An energy minimization 
method (EMM) is proposed to reduce cupping artifacts in reconstructed image 
of the CBCT. The cupping artifacts are iteratively optimized by using efficient 
matrix computations, which are verified to be numerically stable by matrix analy-
sis. Moreover, the energy in our formulation is convex in each of its variables, 
which brings the robustness of the proposed energy minimization algorithm. The 
cupping artifacts are estimated as a result of minimizing this energy. The results 
indicate that proposed algorithm is effective for reducing the cupping artifacts and 
preserving the quality of the reconstructed image. The proposed method focuses on 
the reconstructed image without requiring any additional physical equipment; it is 
easily implemented and provides cupping correction using a single scan acquisi-
tion. The experimental results demonstrate that this method can successfully reduce 
the magnitude of cupping artifacts. The correction algorithm reported here may 
improve the uniformity of the reconstructed images, thus assisting the development 
of perfect volume visualization and threshold-based visualization techniques for 
reconstructed images.
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I. INTRODUCTION

An X-ray system with a large-area detector, which is commonly used for cone-beam computed 
tomography (CBCT), is more susceptible to cupping artifacts generated by scatter and beam 
hardening. X-ray scatter may lead to cupping artifacts, which is one of the most challenging 
problems in CBCT. Many correction methods that have been developed to reduce the cupping 
artifacts focus on reducing the scattered photons on the projective image. One such hardware-
based method involves physical scatter rejection techniques in the data acquisition system, such 
as the use of an air gap,(1) antiscatter grid,(2) or bowtie filter.(3) The second category of software-
based approaches are based on Monte Carlo simulation,(4,5,4) which use Monte Carlo (MC) 
simulations to model the scatter distribution by tracing the history of photons from the source 
to the detector. Some improved Monte Carlo simulation algorithms, such as the GPU-based 
method,(6,7) the combination of several variance-reduction techniques,(8) and the model-based 
volume restoration approach,(9) have been proposed in recent years. However, even using the fast 
algorithm, the formidably heavy computation load associated with Monte Carlo scatter estima-
tion hinders its real-life applications. The third category of methods estimates the contribution 
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of scatter in the measured projection data and then subtracts it from the measured projection 
data, such as the beam-stop array method,(10) the moving blocker method,(11) primary modula-
tion,(12,13,14) artifact-suppressed dictionary learning method,(15,16) and others.(17,18) However, 
these types of correction methods add extra hardware to the CBCT system, which can add 
difficulty and complexity. Although the image correction approach cannot be used to recover 
the contrast sensitivity, it is effective in recovering the accuracy of the projection image data 
for X-ray transmission measurement and in reducing the nonuniformity of the CBCT signals 
that may be depicted as the cupping artifacts. All of these methods act directly on the projective 
image, requiring correction of every projected image. However, scatter correction performed 
on the projection images requires extensive computation to estimate the two-dimensional scat-
ter signal profile in conjunction with the use of sampled physical scatter measurements that 
are integrated with the image acquisition process or performed with additional exposures. We 
had observed that cupping artifacts can be corrected by using reconstructed image. Similar 
observations had also been reported in the literature.(19,20)

In this study, we investigated an energy minimization method for cupping artifacts correc-
tion in the reconstructed image of CBCT. As we know, the cupping artifacts in reconstructed 
images are slow nonlinear varying. The reconstructed images can be decomposed into two parts: 
primary images and cupping artifacts images. To correct the cupping artifacts, we adapted a 
bias correction method previously developed for MR images.(21) The robustness of the pro-
posed algorithms was demonstrated in phantoms. This correction algorithm reported here can 
improve the uniformity of the reconstructed images, thus assisting the development of perfect 
volume visualization and threshold-based visualization techniques for the reconstructed images.

 
II. MATERIALS AND METHODS

A.  Decomposition of reconstructed image
Reconstruction images based on the work by Feldkamp et al.(22) are popular in CBCT. The 
reconstruction image set can be equivalently written as

  (1)
 
 

where dso is the distance of the source-to-rotation axis, the coordinate along the detector that 
specifies the point of detection is (t,z),  is the sequence of the projected image, r 
is extend from the origin to the reconstruction point, s is a unit vector along the ray from the

source to the axis of rotation (i.e., normal to the detector), , and  
is the convolution function.

To address cupping artifacts in the reconstructed image, we formulate our method based 
on an image model that describes the composition of projected images, which are affected by 
scatter and beam hardening. A projected image can be modeled as

 I3D = P3D + S3D + n (2)

where P3D is the image derived from primary photons, S3D is the component caused by scatter 
and beam hardening, and n is additive noise with zero-mean. The P3D measures an intrinsic 
physical property of the objects being imaged, which is therefore assumed to be piecewise 
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(approximately) constant. We can prove that the reconstructed images based on the Feldkamp 
study(22) can be written as follows:

 f = fp + fs + fn (3)

where fp, fs and fn are produced by P3D, S3D, and noise n.
As in Eq. (2), a reconstruction image can be described as the true image plus the cupping arti-

facts. In the following section, we will give a method to remove from the reconstructed images.

B.  Representations of intrinsic components
To effectively use the properties of the fs and fp, the fs is represented by a linear combination 
of a given set of smooth basis function g1,L gM, which ensures the smoothly varying property 
of the cupping artifacts. The estimation of the scatter field is performed by finding the optimal

coefficients w1,L wM in the linear combination fs (x) = wkgk
k=1

. Consequently, the fs(x) can be

expressed in the following vector form: fs(x) = wT G(x), where G(x) = (g1(x),L gM (x))T. In this 
paper, we use 10 polynomials as the smooth scatter function.

We presume that there are N types of tissues in the image domain Ωi. The true image fp(x) 
is virtually a constant ci for x in the i-th tissue. We denote that the i-th tissue is located in the 
region Ωi. Each Ωi can be represented by its membership function ui. In ideal conditions, the 
membership function ui is a binary membership function, with ui(x) = 1 for x∈Ωi and ui(x) = 0 
for x∉Ωi. Given the membership functions ui and constant ci, the image fp can be expressed by 

  (4)
 

C.  Energy formulation for component optimization
We propose an energy minimization formulation previously developed for MR images. In this 
model, we take into account the problem of finding fs and fp of an observed postreconstructed 
image f such that the following energy is minimized

  (5)

Clearly, if there are no constraints on the variables fs and fp, minimization of F is an ill-posed 
problem. Actually, the energy F(fs,fp) is minimized by any variables fs and fp = f – fs which are 
described in the Materials & Methods section B above. With these representations of the true 
image and the cupping artifacts, the energy F(fs,fp) can be expressed as follow:  

  (6)

D.  Optimization of the cupping artifacts
A desirable property of this energy F(u,c,w) is that each variable, u, c, or w is convex. This 
property insures that F(u,c,w) has a unique minimum point in each of its variables.
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For fixed c and u, we can minimize F(u,c,w). This can be achieved by solving the equation
. It can be shown that

  (7)
 

The equation can be expressed as follow:

 Aw = v (8)

where , .

It is easy to show that the matrix A is nonsingular.(21) Consequently, the vector  can be 
expressed as:

  (9)

The estimated bias field is computed by

  (10)

For fixed w and u, the F(u,c,w) can be minimized with the variable .

   
  (11)

 

  ,  

 
It can be shown that  is given by

  (12)
 

where .
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E.  Implementation
From the previous sections, we summarize the scheme of minimization of the energy F(u,c,w)  
as shown in Fig. 1.

|c(n) – c(n–1)|<ε is the convergence criterion, where c(n) is updated from the vector c at the 
n-th iteration, and ε is assigned to 0.001. The  F(u,c,w) rapidly declines and meets the minimum 
value in less than 15 iterations in our applications.

Fig. 1. The process of the proposed cupping artifacts correction.
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F.  Evaluation of cupping correction
Quantitative image quality parameters were analyzed according to the work by Jo et al.(14) 

The magnitude of cupping τcup = 100(uM,edge – uM,center)/uM,edge was extracted in terms of voxel 
values at the center uM,center and edge uM,edge of the water phantom. 

Root mean square contrast (RMSC) is defined as the standard deviation of the pixel intensities:

 
  (13)
 

where Iij is the i-th j-th element of the two-dimensional image of size M by N and I– is the aver-
age intensity of all pixel values in the image. The image I is assumed to have its pixel intensity 
normalized in the range [0,255].

 
III. RESULTS 

A.  Skull phantom
The experimental data were obtained from Rezvani et al.(23) The image size is 211 × 211. After 
correction, the images presented significantly improved signal uniformity, as shown in Fig. 2 
and Fig. 3. For a quantitative analysis of the reconstructed images, we measure the magnitude 

Fig. 2. Sample axial views selected from reconstructed images of the skull phantom before (a) and after cupping artifact 
correction (b).
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of cupping in the selected ROIs, as shown in Fig. 2(a). The analyses are given in Table 1.  
The correction process take 1.89 s for a slice (CPU: i5-2450, RAM: 6GB, GPU: NVIDA 
GeForce 610M).

The 1D horizontal profile before and after correction can be seen in Fig. 3. As before, a great 
reduction in the cupping artifact is observed in the corrected image. 

Fig. 3. The 1D horizontal profile of the measured skull phantom: The column is the profiles of the images, which are at 
middle row in Fig. 2.

Table 1. Quantitative analysis of a skull phantom. Reconstructed image before correction of cupping artifacts (RI_BC), 
reconstructed image after correction of cupping artifacts (RI_AC).

	 	 RMSE		 RMSE	 τcup
  (edge) (center) (%) CNR

 RI_BC 2.22 1.89 16.44 5.61
 RI_AC 2.26 1.68 8.9 9.52



314  Xie et al.: Correction of cupping artifacts 314

Journal of Applied Clinical Medical Physics, Vol. 17, No. 4, 2016

B.  CTP486 phantoms
CTP486 (The Phantom Laboratory, Salem, NY) is used in this experiment. Figure 4 shows 
the reconstructed images. The CTP486 module is cast from a uniform material that has a CT 
number within 2% (0-20H) of water. The image size is 229 × 229. The correction process take 
1.93 s for a slice (CPU: i5-2450, RAM: 6GB, GPU: NVIDA GeForce 610M). 

ROIs for magnitude of cupping are shown in Fig. 4(a). Our approach clearly reduces the 
τcup magnitude by an average of 95%.

The 1D horizontal profile before and after correction can be observed in Fig. 5.

Fig. 4. Sample axial views selected from two different slices of reconstructive images of the CTP486 in the CatPhan500 are 
shown before (a) and after scatter correction (b). The images are rescaled to the same size such that they can be displayed 
in the same figure and are displayed at the same gray scale. ROIs for magnitude of cupping are marked with red blocks.

Fig. 5. The 1D horizontal profile of the measured phantom. The column is the profiles of the images, which are at middle 
row in Fig. 4.
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C.  A mouse bone
A mouse’s bone scan data are obtained from a Micro-CT called Hiscan-M1000 (Hays Feder 
Information Technology Co., Suzhou, China). The acquisitions for the reconstructed images 
consist of 360 projections, with 80 kVp, 200 uA, 30 ms. Sample axial views selected from the 
reconstructive images of the mouse bone is shown before (Fig. 6(a)) and after scatter correction 
(Fig. 6(b)). The image size is 339 × 339. The correction process takes 2.7 s for a slice (CPU: 
i5-2450, RAM: 6GB, GPU: NVIDA GeForce 610M). We measure the magnitude of cupping 
in the selected ROIs, as shown in Fig. 6(a). Our approach reduces the τcup from 23.8% to 9.8%. 
The quantitative image quality analyses are provided in Table 2.

Fig. 6. Sample axial views selected from the reconstructive images of the mouse’s bone are shown before (a) and after 
scatter correction (b). 

Table 2. Quantitative analysis of a mouse bone. Reconstructed image before correction of cupping artifacts (RI_BC), 
reconstructed image after correction of cupping artifacts (RI_AC).

	 	 RMSE		 RMSE	 τcup
  (edge) (center) (%) CNR

 RI_BC 6.36 3.57 28.8 11.97
 RI_AC 6.49 3.57 9.8 15.87
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D.  Pelvis patient
The proposed correction method is further evaluated on the CBCT images acquired from a 
pelvis patient. The tabletop system operates in the full-fan scan mode and a data acquisition in 
a 360° scan. After correction, the images presented significantly improved signal uniformity, 
as shown in Fig. 7.

Fig. 7. Sample axial views selected from two different slices of the pelvis CBCT image are shown before (a) and after 
scatter correction (b). The images are displayed in the same window.
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E.  Comparison with another method
In this study, our idea is originated from MRI. We find another cupping artifact method inspired 
by the MR bias correction method from the work by Yang et al.(19) The results are shown in 
Fig. 8. For a quantitative analysis of the reconstructed images, we measure the magnitude of 
cupping and CNR in the selected ROIs, and the quantitative analyses are given in Table 3.

 
IV. DISCUSSION & CONCLUSIONS 

For a quantitative analysis of the reconstructed images, we measure the magnitude of cupping 
in the selected ROIs for skull phantom, shown in Fig. 2. The analyses are given in Table 1. 
Our approach clearly reduces the τcup  magnitude by an average of 50%. It can be seen that 
the proposed correction method works very well. As shown in Figs. 3 and 5 and Tables 1 and 
2, the proposed method markedly reduced the magnitude of cupping, increased the CNR of 
CBCT, and demonstrated no obvious change of the RMSEs. In other words, the image quality 
was improved after cupping artifact correction.

Our approach clearly reduces the τcup magnitude by an average of 95% in the CTP486 
phantom. As shown in Fig. 4, a marked reduction in cupping artifacts is observed in the cor-
rected image. 

Fig. 8. Comparison of breast CT images before (bottom left) and after (top) cupping artifact correction, using the method 
developed by Yang et al.(19) (Bottom right) This paper’s method.

Table 3. Reconstructed image before correction of cupping artifacts (RI_BC), reconstructed image after correction 
of cupping artifacts, from work by Yang et al.(19) (RI_AC _Ref19), reconstructed image after correction of cupping 
artifacts using this method (RI_AC_our).

	 	 RMSE		 RMSE	 τcup
  (edge) (center) (%) CNR

 RI_BC 4.42 5.37 22.27 11.48
 RI_AC_Ref19 5.31 4.41 0.6 7.74
 RI_AC_our 4.40 5.8 0.7 8.59
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As shown in Fig. 7, the proposed method can significantly improved signal uniformity and 
the image quality. The results clearly show that the proposed correction method works very well.

In Yang et al.,(19) the method automatically corrects the cupping artifacts using a nonpara-
metric coarse-to-fine approach which allows the cupping artifacts to be modeled with different 
frequency ranges and without user supervision. Figure 8 shows that our method equally for the 
correction of cupping artifacts, as well as that detailed in Yang et al. Our method has a higher 
average CNR of 8.59 (Fig. 8(c)), which is higher than the previously reported average CNR 
(Fig. 8(b)) by 1.11-fold.

In Reitz et al.,(24) a scatter correction method is based on a superposition of precalculated 
Monte Carlo generated pencil beam scatter kernels. The cupping artifacts of water phantom 
are reduced from 20% without scatter correction to 4% with scatter correction (reduces the τcup 
magnitude 80%). In our method, the cupping artifacts of CTP486 (water phantom) is reduced 
by about 95%.

As our correction method involves processing of the reconstructed images only, it does not 
require any hardware modifications for signal measurements. The correction algorithm reported 
here may improve the uniformity of the reconstructed images, thus assisting in the development 
of perfect volume visualization and image segmentation techniques.
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