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The continuous generation of entropy leads to exergy destruction which reduces the performance of a physical 
system. Hence, entropy minimization becomes necessary. New applications of nanofluids due to their enhanced 
thermo-physical properties has spurred new studies into the heat transfer and entropy generation rate in 
nanofluids in the last decade. In this study, we investigate the heat transfer performance and entropy generation 
rate in a mixed convective flow of a hydromagnetic Aluminum oxide-water Powell-Eyring nanofluid flow through 
a vertical channel. The nanofluid dynamic viscosity adopted is based on experimental data. The combined 
effects of the magnetic field, nonlinear thermal radiation, viscous dissipation, suction/injection and convective 
cooling on the heat transfer and entropy generation were considered. The dimensionless equations describing 
the flow and energy balance were solved using an efficient iterative spectral local linearization method. The 
computational analysis of the rate of entropy generation in the channel for various flow parameters is presented. 
The result shows that increasing the nanoparticle volume fraction and thermal radiation parameter enhanced the 
temperature profiles, entropy generation and the Bejan number. The results from this study may help engineers 
in the optimization of thermal systems.
1. Introduction

Nanofluids are stable and uniform colloids of nanometer-sized met-

als or metallic oxides called nanoparticles. These fluids have a higher 
thermal conductivity relative to the base fluid. Choi [1] reported that 
the thermal conductivity of the base fluid is significantly enhanced by 
adding a low volume fraction of nanoparticles. Nanofluids now find 
applications in the enhancement of chemical engineering operations, 
polymer processing and petrochemical applications. A comprehensive 
review of other applications of nanofluids is reported in the study by 
Wong and De Leon [2]. In recent years, considerable attention has 
been focused on the study of the transport phenomenon in nanofluid 
flow due to their wide applications. The study of the magnetohydro-

dynamics (MHD) nanofluid flow past a channel was investigated by 
Sheikholeslami et al. [3]. They obtained a series solution to the flow 
equations by using the Least Square and Galerkin methods. Raza et al. 
[4] extended the Sheikholeslami et al. [3] model to include heat transfer 
analysis. The heat equation was solved using the Runge-Kutta-Fehlberg 
shooting technique. Hayat et al. [5] studied the MHD nanofluid flow 
in a rotating porous disk. Malvandi and Ganji [6] examined the ther-

mal transport in a nanofluid within a circular microchannel. Das et al. 
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[7] presented the radiative hydromagnetic buoyancy-induced flow and 
heat transfer in a nanofluid.

In these studies, emphasis was dominantly placed on the Newtonian 
constitutive model. However, in recent years, the focus of researchers 
has been centered on the study of non-Newtonian fluids due to their 
industrial, technological and medical applications. These fluids exhibit 
complex relations between stress and the rate of strain, hence, they de-

viate from the Newton’s law of viscosity. A single constitutive relation 
cannot be used to understand the complex nature of non-Newtonian flu-

ids. On account of this fact, several non-Newtonian constitutive models 
have been put forward by scientist, among which but not limited to, 
are the power-law fluid model, Casson fluid model, viscoelastic fluid 
model and Powell-Eyring fluid model. Researchers have focused atten-

tion on the Powell-Eyring model [8] due to its advantages over other 
non-Newtonian models. The Powell-Eyring model is derived from the 
kinetics theory of fluids and not on an empirical relation. Further, un-

der certain shear rates, the model reduces to a Newtonian model. The 
flow and heat transport in a Powell-Eyring fluid has been studied by 
many researchers. Tanveer et al. [9] studied the mixed convection peri-

staltic flow of a Powell-Eyring nanofluid in a curved channel. Khan and 
Pop [10] investigated the heat and mass transfer in a nanofluid past a 
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stretching plate. Agbaje et al. [11] studied the transient developing flow 
of a Powell-Eyring nanofluid over a shrinking plane. The effects of slip 
conditions on the flow of a Powell-Eyring nanofluid was discussed by 
Hina [12]. Hayat et al. [13] reported the heat transport in a radiative 
Powell-Eyring nanofluid.

Exergy loss is a major challenge in many industrial processes. Re-

cently, the interest of many researchers has shifted towards entropy 
generation analysis in a nanofluid flow. This is important in many 
thermal engineering processes, because the continuous generation of 
entropy eventually leads to exergy destruction in the system. There-

fore, the optimization of the performance of industrial and engineering 
processes is necessary and could be achieved by minimizing entropy 
generation [14]. The second law of thermodynamics is an efficient and 
accurate tool for optimizing a given system as opposed to the first law of 
thermodynamics. Following Bejan [14] several studies on the entropy 
generation minimization based on second law thermodynamics analy-

sis have appeared in the literature. Pakdemirli and Yilbas [15] analyzed 
the entropy generation in a third-grade fluid. Das et al. [16] studied the 
entropy generation in the hydrodynamics pseudo-plastic in a nanofluid 
flow through a porous channel. Ting et al. [17] discussed the effect of 
viscous dissipation on the entropy generation in a nanofluid flow in a 
channel. The exact solution to the study of entropy generation in the 
magnetohydrodynamic fluid flow was presented by Ibáñez [18]. López 
et al. [19] reported on the entropy generation in a magnetohydrody-

namic flow of a nanofluid in a porous channel. They considered the 
effect of non-linear thermal radiation and convective-radiative bound-

ary conditions. Makinde and Eegunjobi [20] studied numerically, the 
impact of convective heating on the entropy generation rate of a steady 
flow between two permeable walls. Recently, Nagaraju et al. [21] con-

sidered the effect of suction and magnetic field effects on the entropy 
generation in the fluid flow through a circular pipe. The homotopy 
perturbation method was used for the solution of the flow equations. 
Computational simulation on the role of magnetic forces on ferrofluid 
second law treatment was scrutinized by Sheikholeslami [22]. Jangili 
et al. [23] studied the entropy generation in a couple stress fluid flow. 
The homotopy analysis method was utilized for their analysis. Further 
studies on the minimization of entropy generation in the fluid flow us-

ing second law analysis under different geometry are reported in [24, 
25, 26, 27, 28].

The aim of this study is to examine the entropy generation in the 
flow of a Powell-Eyring nanofluid in a porous channel. The mathe-

matical formulation includes the effects of hydrodynamic slip, viscous 
dissipation, nonlinear thermal radiation and convective boundary con-

ditions. The flow equations are solved numerically using an iterative 
spectral local linearization method. The findings may be useful in opti-

mizing thermal engineering processes such as crude pyrolysis.

2. Model

2.1. Mathematical formulation and analysis

The mixed convective laminar, viscous flow of an incompressible 
Powell-Eyring nanofluid through a vertical channel separated by a dis-

tance ℎ apart is considered. The schematic diagram for the flow geom-

etry is shown in Fig. 1. It is assumed that an external transverse and 
uniform magnetic field of strength 𝐵0 is applied parallel to the flow 
field. We assumed the magnetic Reynold number and induced electric 
field to be negligible.

With the above assumptions, the momentum and heat balance equa-

tions for the Powell-Eyring nanofluid flow are written as [11, 19]
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Fig. 1. Geometry of the flow.

where 𝑉0 is the uniform suction/injection velocity at the channel plates, 
�̄� is the axial velocity, 𝜇𝑛𝑓 is the dynamic viscosity of nanofluid, 𝑏 and 
𝑐 are fluid constants, 𝜎𝑛𝑓 is the nanofluid electrical conductivity, 𝑔 is 
the gravitational acceleration, 𝜌𝑛𝑓 is the nanofluid density, 𝛽𝑛𝑏 is the 
thermal expansion coefficient of nanofluid, �̄� is the nanofluid temper-

ature, 𝑇0 is the ambient temperature, (𝐶𝑝)𝑛𝑏 is the heat capacitance 
of nanofluid, 𝑘𝑛𝑓 is nanofluid thermal conductivity, 𝜎𝑠 is the Stefan-

Boltzman constant and 𝑘𝑚 is the mean absorption coefficient.

The relevant boundary conditions for Eqs. (1) and (2) are:

�̄� = 0, �̄� = 𝑇0, at �̄� = 0, (3)

�̄� = 0, 𝑘𝑛𝑓
𝑑�̄�

𝑑�̄�
+ 𝜖1

(
�̄� − 𝑇1

)
= 0, at �̄� = ℎ (4)

where 𝜖1 is the convective heat transfer coefficients.

Nguyen et al. [29] proposed a new model for the dynamic viscosity 
of Al2O3-water nanofluid based on their experimental data. Adopting 
the Nguyen et al. [29] model, the nanofluid viscosity can be represented 
by the relation

𝜇𝑛𝑓

𝜇𝑏𝑓
= 1 + 0.025𝜙+ 0.015𝜙2. (5)

The density, thermal expansion coefficient, electrical conductivity, spe-
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termined by the expressions (see Khanafer and Vafai [30] and Das and 
Jana [31]),

𝜌𝑛𝑓

𝜌𝑏𝑓
= 1 −𝜙+𝜙

𝜌𝑠

𝜌𝑏𝑓
,

(𝜌𝛽)𝑛𝑓
(𝜌𝛽)𝑏𝑓

= 1 −𝜙+𝜙
(𝜌𝛽)𝑠
(𝜌𝛽)𝑏𝑓

,

𝜎𝑛𝑓

𝜎𝑏𝑓
=

⎡⎢⎢⎢⎢⎣
1 +

3
(
𝜎𝑠
𝜎𝑏𝑓

− 1
)
𝜙(

𝜎𝑠
𝜎𝑏𝑓

+ 2
)
−
(
𝜎𝑠
𝜎𝑏𝑓

− 1
)
𝜙

⎤⎥⎥⎥⎥⎦
,

(
𝜌𝐶𝑝

)
𝑛𝑓(

𝜌𝐶𝑝
)
𝑏𝑓

= 1 −𝜙+𝜙

(
𝜌𝐶𝑝

)
𝑠(

𝜌𝐶𝑝
)
𝑏𝑓

,

𝑘𝑛𝑓

𝜅𝑏𝑓
=
𝑘𝑠 + 2𝑘𝑏𝑓 − 2

(
𝑘𝑏𝑓 − 𝑘𝑠

)
𝜙

𝑘𝑠 + 2𝑘𝑏𝑓 +
(
𝑘𝑏𝑓 − 𝑘𝑠

)
𝜙
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

In Eqs. (5) and (6), 𝜙 denotes the nanoparticle volume fraction, the sub-

scripts bf and s represent the properties of the base fluid and nanopar-

ticles respectively. The thermo-physical properties of the Al2O3-water 
nanofluid are presented in Table 1.
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Table 1

Thermo-physical properties of water and Al2O3 [16].

𝜌 𝐶𝑝 (Jkg−1 K−1) 𝑘 (Wm−1 K−1) 𝛽 × 105
(
K−1) 𝜎 (Sm−1)

Water 997.1 4179 0.613 21 5.5 × 10−6

Al2O3 3970 765 40 0.85 35 × 106

In order to express Eqs. (1), (2), (3) and (4) in a nondimensional 
form, it is necessary to define the dimensionless variables accordingly, 
and the following variables are chosen [19, 23, 26]:
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Using Eq. (7), Eqs. (1), (2), (3) and (4) yields the following dimension-
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where 𝜆 and 𝛿 are fluid constants, 𝐻𝑎 is the Hartmann number, 𝐺𝑟 is the 
Grashof number, 𝑅𝑒 is the suction/injection parameter, 𝐺 is the axial 
pressure gradient parameter, 𝑁𝑟 is the thermal radiation parameter, 𝜃𝑤
is the temperature ratio parameter, 𝑃𝑟 is the Prandtl number, 𝐵𝑟 is the 
Brinkman number which is related to the Eckert number, 𝛾 is the Biot 
number. These parameters are defined as;
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Other important physical properties are the skin-friction coefficient 𝐶𝑓
and local Nusselt number Nu which are defined as follows:
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In terms of Eq. (7), the dimensionless forms of Eqs. (13) and (14) are 
given by
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 Entropy generation

In many thermodynamic processes, energy management is of great 
cern when a large amount of energy is dissipated as heat. Hence, it 

portant to investigate the entropy generation of the system. Con-

ing with Bejan [14], the entropy generation rate per volume in the 
ofluid flow in the channel can be expressed as
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q. (17) the first term represents the heat entropy generation due 
eat transfer and thermal radiation, the second term denotes the 
opy production due to fluid frictional interaction and finally, the 
d term indicates the entropy generation due to magnetic flied.

Using Eq. (7), we can rewrite Eq. (17) as
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[ (
1 + 0.025𝜙+ 0.015𝜙2 + 𝜆

)( 𝑑𝑢
𝑑𝑦

)2
− 𝛿𝜆

3

(
𝑑𝑢

𝑑𝑦

)4

+
𝜎𝑛𝑓

𝜎𝑏𝑓
𝐻𝑎2𝑢2

]
,

=
(𝑘𝑛𝑓
𝑘𝑏𝑓

+𝑁𝑟
[(
𝜃𝑤 − 1

)
𝜃 + 1

]3 )(𝑑𝜃
𝑑𝑦

)2
, (19)

 𝑁𝑓 is the irreversibility due to combined effects of viscous dis-

tion and magnetic field and 𝑁ℎ is the heat transfer with thermal 
ation irreversibility.

The Bejan number can be used to determine the relative effects of 
heat transfer irreversibility and irreversibility due to combined ef-

s of viscous dissipation and magnetic field in the entropy generation. 
s, we define the Bejan, number, 𝐵𝑒, as (see Bejan [14])

𝑁ℎ

𝑁ℎ +𝑁𝑓
= 1

1 +𝑀
, (20)

re 𝑀 =𝑁𝑓∕𝑁ℎ is the irreversibility ratio.

alculation

 Numerical solution

In this section, an efficient iterative spectral local linearization 
hod (SLLM) proposed by Motsa [32] is used to numerically integrate 
coupled non-linear differential Eqs. (8) and (9) with the boundary 
ditions Eqs. (10) and (11). To apply this technique, we consider the 
wing non-linear differential operators(
1 + 0.025𝜙+ 0.015𝜙2 + 𝜆

)
𝑢′′𝑛 − 𝛿𝜆

(
𝑢′ − 𝑛

)2
𝑢′′𝑛 −

𝜎𝑛𝑓

𝜎𝑏𝑓
𝐻𝑎2𝑢𝑛

+
(𝜌𝛽)𝑛𝑓
(𝜌𝛽)𝑏𝑓

𝐺𝑟𝜃𝑛 −
𝜌𝑛𝑓

𝜌𝑏𝑓
𝑅𝑒𝑢′𝑛 +𝐺 (21)
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Ω𝜃 =
(𝑘𝑛𝑓
𝑘𝑏𝑓

+𝑁𝑟
[(
𝜃𝑤 − 1

)
𝜃𝑛 + 1

]3 )
𝜃′′𝑛

+ 3𝑁𝑟
(
𝜃𝑤 − 1

) [(
𝜃𝑤 − 1

)
𝜃𝑛 + 1

]2 (
𝜃′𝑛
)2 − (

𝐶𝑝
)
𝑛𝑓(

𝐶𝑝
)
𝑏𝑓

𝑅𝑒𝑃 𝑟𝜃′𝑛

+𝐵𝑟
[(
1 + 0.025𝜙+ 0.015𝜙2 + 𝜆

)(
𝑢′𝑛
)2 − 𝛿𝜆

3
(
𝑢′𝑛
)4 + 𝜎𝑛𝑓

𝜎𝑏𝑓
𝐻𝑎2𝑢2𝑛

]
(22)

where the prime denotes derivative with respect to 𝑦.
Eqs. (21) and (22) can be decoupled according to the following al-

gorithm;

1. From Ω𝑢, find 𝑢𝑛+1 assuming that 𝜃𝑛 is known from the previous 
iteration.

2. Solve for 𝜃𝑛+1 from Ω𝜃 using the updated solution of 𝑓𝑛.
3. Subsequent iterative solutions are obtained by repeating step 1 and 

2.

In the framework of the SLLM, the following iterative scheme is ob-

tained

𝑎1,𝑛𝑢
′′
𝑛+1 + 𝑎2,𝑛𝑢

′
𝑛+1 + 𝑎3,𝑛𝑢𝑛+1 =𝑅

𝑢, (23)

𝑎4,𝑛𝜃
′′
𝑛+1 + 𝑎5,𝑛𝜃

′
𝑛+1 + 𝑎6,𝑛𝜃𝑛+1 =𝑅

𝜃, (24)

𝑢𝑛+1(0) = 0, 𝜃𝑛+1(0) = 0, (25)

𝑢𝑛+1(1) = 0,
𝑘𝑛𝑓

𝑘𝑏𝑓
𝜃′
𝑛+1(1) + 𝛾

(
𝜃𝑛+1(1) − 1

)
= 0. (26)

The coefficients in Eqs. (23) and (24) along with their right hand sides 
are defined as follows

𝑎1,𝑛 =
𝜕Ω𝑢
𝜕𝑢′′𝑛

= 1 + 0.025𝜙+ 0.015𝜙2 + 𝜆− 𝛿 𝜆𝑢′𝑛
2
,

𝑎2,𝑛 =
𝜕Ω𝑢
𝜕𝑢′𝑛

= −2𝜆𝛿 𝑢′𝑛𝑢
′′
𝑛 −

𝜌𝑛𝑓

𝜌𝑏𝑓
𝑅𝑒

𝑎3,𝑛 =
𝜕Ω𝑢
𝜕𝑢𝑛

= −
𝜎𝑛𝑓

𝜎𝑏𝑓
𝐻𝑎2, 𝑎4,𝑛 =

𝜕Ω𝜃
𝜕𝜃′′𝑛

=
(𝑘𝑛𝑓
𝑘𝑏𝑓

+𝑁𝑟
[(
𝜃𝑤 − 1

)
𝜃𝑛 + 1

]3 )
𝑎5,𝑛 =

𝜕Ω𝜃
𝜕𝜃′𝑛

= 6Nr (𝜃𝑤− 1)
(
1 + (𝜃𝑤− 1)𝜃𝑛

)2
𝜃𝑛𝜃

′
𝑛 −

(
𝐶𝑝

)
𝑛𝑓(

𝐶𝑝
)
𝑏𝑓

𝑅𝑒𝑃 𝑟 (27)

𝑎6,𝑛 =
𝜕Ω𝜃
𝜕𝜃𝑛

= 3𝑁𝑟
(
𝜃𝑤 − 1

) [(
𝜃𝑤 − 1

)
𝜃𝑛 + 1

]2
𝜃′′𝑛

+ 6𝑁𝑟
(
𝜃𝑤 − 1

)2 [(
𝜃𝑤 − 1

)
𝜃𝑛 + 1

] (
𝜃′𝑛
)2

𝑅𝑢 = 𝑎1,𝑛𝑢′′𝑛 + 𝑎2,𝑛𝑢
′
𝑛 + 𝑎3,𝑛𝑢𝑛 −Ω𝑓 , 𝑅𝜃 = 𝑎4,𝑛𝜃′′𝑛 + 𝑎5,𝑛𝜃′𝑛 + 𝑎6,𝑛𝜃𝑛 −Ω𝜃 .

The Eqs. (23), (24), (25), (26) and (26), are solved numerically using 
the Chebyshev pseudo-spectral technique. To apply this method, we 
first map the interval [0, 1] to [−1, 1] using the transformation 𝑦 = (𝜉 +
1)∕2 for 𝜉 ∈ [−1, 1]. Then, we discretize using Chebyshev-Gauss-Labatto 
collocation points

𝜉𝑘 = cos
(
𝜋𝑘

𝑁

)
, 𝑘 = 0,1,… ,𝑁 ; −1 ≤ 𝜉 ≤ 1. (28)

The derivatives of 𝑢(𝑦) and 𝜃(𝑦) are computed using the Chebyshev dif-

ferentiation matrix 𝐷 (see [33]), at the collocation points as a matrix 
vector product, that is:

𝑑𝑢

𝑑𝑦
=
�̄�∑
𝑖=0
𝐷𝑖𝑗𝑓

(
𝜉𝑖
)
=𝐃𝐅, 𝑗 = 0,1,2,… , �̄� , (29)

𝑑𝜃

𝑑𝑦
=
�̄�∑
𝑖=0
𝐷𝑖𝑗𝑓

(
𝜉𝑖
)
=𝐃𝚯, 𝑗 = 0,1,2,… , �̄� , (30)

where �̄� + 1 is the number of collocation points, 𝐃 = 2𝐷, 𝐅 =[
𝑢
(
𝜉0
)
, 𝑢

(
𝜉1
)
,… , 𝑢

(
𝜉�̄�

)]𝑇
and 𝚯 =

[
𝜃
(
𝜉0
)
, 𝜃

(
𝜉1
)
,… , 𝜃

(
𝜉�̄�

)]𝑇
are vec-

tor functions at the collocation points. The second order derivatives of 
4

𝑢 and 𝜃 can be computed as the powers of 𝐃, that is, 𝜃′′(𝑦) =𝐃2𝜃(𝑦) and 
𝑢′′(𝑦) =𝐃2𝑢(𝑦).

Substituting Eqs. (28), (29) and (30) into Eqs. (23), (24), (25) and 
(26) and imposing the boundary conditions, gives the following decou-

pled matrices

⎡⎢⎢⎢⎣
1 … 0

diag[𝑎1,𝑛]𝐃2 + diag[𝑎2,𝑛]𝐃+ diag[𝑎3,𝑛]𝐈

0 … 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

𝑢𝑛+1(𝜉0)
𝑢𝑛+1(𝜉1)

⋮
𝑢𝑛+1(𝜉�̄�−1)
𝑢𝑛+1(𝜉�̄� )

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0
𝑅
𝑓

𝑛+1(𝜉1)
⋮

𝑅
𝑓

𝑛+1(𝜉�̄�−1)
0

⎤⎥⎥⎥⎥⎥⎦
, (31)

⎡⎢⎢⎢⎢⎣
1 … 0

diag[𝑎4,𝑛]𝐃2 + diag[𝑎5,𝑛]𝐃+ diag[𝑎6,𝑛]𝐈
𝑘𝑛𝑓

𝑘𝑏𝑓
𝐃+ 𝛾𝐈

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

𝜃𝑛+1(𝜉0)
𝜃𝑛+1(𝜉1)

⋮
𝜃𝑛+1(𝜉�̄�−1)
𝜃𝑛+1(𝜉�̄� )

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0
𝑅𝜃
𝑛+1(𝜉1)
⋮

𝑅𝜃
𝑛+1(𝜉�̄�−1)
𝛾

⎤⎥⎥⎥⎥⎥⎦
, (32)

where 𝐈 is an identity matrix of dimension (�̄� + 1) × (�̄� + 1) and diag[]
denotes a diagonal matrix.

4. Results & discussion

The nanofluid velocity profiles, temperature profiles, entropy gener-

ation rate and Bejan number for distinct values of the fluid parameter 
𝜆, Hartmann number 𝐻𝑎, Grashof number 𝐺𝑟, suction/injection param-

eter 𝑅𝑒, thermal radiation parameter 𝑁𝑟, temperature ratio parameter 
𝜃𝑤, Brinkman number 𝐵𝑟 and Biot number 𝛾 are presented in Figs. 2, 
3, 4, 5, 6, 7, 8, 9 and 10 and discussed based on physical laws. In these 
profiles, unless otherwise stated, we have assigned the following de-

fault values to the parameters: 𝜆 =𝐻𝑎 =𝐺𝑟 =𝐺 =𝑅𝑒 =𝑁𝑟 =𝐵𝑟 = 𝛾 = 1, 
𝜃𝑤 = 1.5 and 𝑃𝑟 = 6.97.

Fig. 2A–D represents the effects of various values of the nanoparticle 
fraction volume ranging from 0 ≤ 𝜙 ≤ 0.3 on the velocity profiles, tem-

perature profiles, entropy generation rate and Bejan number. In general, 
a parabolic trajectory is obtained for the nanofluid velocity profiles with 
the maximum value attained near the centerline. Fig. 2A shows that 
as the nanoparticle volume fraction increases, there is a corresponding 
decrease in the nanofluid flow. This is physically correct since increas-

ing volume fraction would have a direct impact on the internal viscous 
shear stresses which in-turn shortens the inter-molecular forces between 
the fluid particles. An increment in the volume fraction of the nanoparti-

cle leads to a further increment in the temperature profiles close the left 
permeable wall in the region of 𝑦 ∈ [0, 0.6]. Thereafter, the temperature 
profile decreases in the rest of the region towards the right permeable 
wall. Interestingly, we observed that entropy generation rate decreases 
with an increase in the nanoparticle volume fraction while the Bejan 
number is an increasing function of the nanoparticle volume fraction as 
illustrated in Fig. 2C and D respectively.

The effect of varying the fluid material parameter, 𝜆 in the range 
0 ≤ 𝜆 ≤ 1.5 on the nanofluid velocity profiles, temperature profiles, en-

tropy generation rate and Bejan number is displayed in Fig. 3A to C. 
We observed that as the material fluid parameter increases, there is a 
decrease in the nanofluid dynamic viscosity, hence, the fluid flow in 
the channel is reduced as represented in Fig. 3A. It is worth mentioning 
that 𝜆 = 0 corresponds to the Newtonian case and the velocity profiles 
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Fig. 2. Effect of varying the nanoparticle volume fraction on the nanofluid (A) velocity profiles, (B) temperature profiles, (C) entropy generation rate, (D) Bejan 
number.

Fig. 3. Effect of varying the fluid material parameter on the nanofluid (A) velocity profiles, (B) entropy generation rate, (C) Bejan number.
5
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Fig. 4. Effect of increasing the Hartmann number on the nanofluid (A) velocity profiles, (B) entropy generation rate, (C) Bejan number.

Fig. 5. Effect of increasing the Grashof number on the nanofluid (A) velocity profiles, (B) entropy generation rate, (C) Bejan number.
6
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Fig. 6. Effect of varying the suction/injection Reynold number on the nanofluid (A) velocity profiles, (B) temperature profiles, (C) entropy generation rate, (D) Bejan 
number.

Fig. 7. Effect of varying the thermal radiation parameter on the nanofluid (A) temperature profiles, (B) entropy generation rate, (C) Bejan number.
7
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Fig. 8. Effect of varying the temperature ratio parameter on the nanofluid (A) temperature profiles, (B) entropy generation rate, (C) Bejan number.

Fig. 9. Effect of varying the Brinkman number on the nanofluid (A) temperature profiles, (B) entropy generation rate, (C) Bejan number.
8
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Fig. 10. Effect of varying the Biot number on the nanofluid (A) velocity profiles, (B) temperature profiles, (C) entropy generation rate, (D) Bejan number.
attained a maximum value for this case. Fig. 3B shows that the entropy 
generation number decreases with an increase in the fluid material pa-

rameter. This can be associated with the damping effect of the fluid 
material parameter on the nanofluid flow, thus, minimizing the entropy 
in the channel. It is easily seen from Fig. 3C that the Bejan number in-

creases as the fluid material parameter increases.

We examined the effect of the transverse magnetic field on the 
nanofluid velocity, entropy generation and Bejan number. The veloc-

ity profiles, entropy generation rate and Bejan number for different 
values of the Hartmann number in the range 0 ≤𝐻𝑎 ≤ 3 are given in 
Fig. 4A to C. We observed that the flow in the channel decreases with 
an increase in the magnitude of the magnetic field intensity. Physically, 
this observation is correct, since, the nanofluid particles aggregate un-

der the Lorentz dipolar forces from the transversely placed magnetic 
field. Interestingly, Fig. 4B shows that, the entropy generation number 
decreases as the Hartmann number increases close to the permeable 
wall, in the region 0 ≤ 𝑦 ≤ 0.3 and between 0.3 ≤ 𝑦 ≤ 0.7 the entropy 
generation number is an increasing function of the Hartmann number, 
thereafter, the entropy generation number decreases as the Hartmann 
number increases. The opposite trend is observed in Fig. 4C for increas-

ing the Bejan number. Fig. 4C implies that the irreversibility due to fluid 
friction in the channel is higher than the heat transfer irreversibility in 
the region 0 ≤ 𝑦 ≤ 0.3 and 0.7 ≤ 𝑦 ≤ 1 while in the region 0.3 ≤ 𝑦 ≤ 0.7, 
the heat transfer irreversibility is higher than the irreversibility due to 
fluid friction.

The effect of varying the Grashof number in the range of 0 ≤𝐺𝑟 ≤ 1.5
on the nanofluid velocity profiles, entropy generation number and Be-

jan number is shown in Fig. 5A to C. We observed that the nanofluid 
velocity profile increases as the magnitude of the Grashof number in-

creases as depicted in Fig. 5A. This is physically true because increasing 
the value of the Grashof number reduces the nanofluid dynamic vis-

cosity. These increments lead to an increase in the volumetric thermal 
expansion in the channel which further enhances the nanofluid flow. 
9

Entropy generation number increases as the Grashof number increases 
as seen in Fig. 5B. Fig. 5C indicates that the Bejan number decreases as 
the value of the Grashof number increases. This result shows that the 
irreversibility due to frictional forces and magnetic field dominates the 
irreversibility due to heat transfer in the channel.

Fig. 6A to C shows the influence of the suction/injection Reynolds 
number on the nanofluid velocity profiles, temperature profiles, entropy 
generation number and the Bejan number. The value of the suction/in-

jection Reynolds number varies in the range 0 ≤𝑅𝑒 ≤ 0.5. We observed 
that as the Reynolds number increases, both the fluid injection at the 
left permeable wall and the fluid suction at the right permeable wall 
also increase, hence the velocity profile decreases as shown in Fig. 6A. It 
is evident from Fig. 6B that the nanofluid temperature profiles decreases 
with an increase in the suction/injection Reynolds number. Within the 
region of 0 ≤ 𝑦 ≤ 0.85, both the entropy generation number and the Be-

jan number decreases with an increase in suction/injection Reynolds 
number, however, there is a change in trend close to the right perme-

able wall in the region of 0.85 ≤ 𝑦 ≤ 1 as depicted in Fig. 6C to D.

The effect of different values of the thermal radiation parame-

ter on the nanofluid temperature profiles, entropy generation number 
and Bejan number are displayed in Fig. 7A to C. From Fig. 7A, the 
nanofluid temperature profiles are enhanced with the thermal radia-

tion parameter. The physical reason for this observed trend is that, for 
a higher value of the radiation parameter, more heat is transferred to 
the nanofluid since the mean absorption coefficient 𝑘𝑚 reduces with an 
increase in the radiation parameter. Clearly, from Fig. 7B and C, we 
observed that both the entropy generation number and the Bejan num-

ber increases in the channel as the values thermal radiation parameter 
increases. This observation may be attributed to the dominance heat 
irreversibility. A similar observation is seen for the behavior of the tem-

perature ratio parameter as illustrated in Fig. 8A to C.

Fig. 9 shows the effects of varying the Brinkman number within the 
range of 0 ≤ 𝐵𝑟 ≤ 7 on the nanofluid profiles. We observed from Fig. 9A 
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Fig. 11. (A) Effect of Reynolds number on skin friction coefficient, (B) effect of Grashof number on skin friction coefficient, (C) effect of radiation parameter on skin 
friction coefficient, (D) effect of Brinkman number on skin friction coefficient, (E) effect of Grashof number on Nusselt number, (F) effect of radiation parameter on 
Nusselt number, (G) effect of Brinkman number on Nusselt number.
10
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that an increase in the values of the Brinkman number improves the 
temperature profiles. This is true, since increasing the magnitude of 
the Brinkman number implies an increase in the heat generated by 
dissipation which leads to a rise in the heat transfer rate within the 
channel. Fig. 9B shows the entropy generation number increases as the 
Brinkman number increases. Fig. 9C shows that in the absence of fric-

tional heat irreversibility, the Bejan number is unity. Also, an increase 
in the Brinkman number decreases the Bejan number.

In Fig. 10, the effect of varying the Biot number on the nanofluid 
velocity profiles, temperature profiles, entropy generation number and 
Bejan number are illustrated. Fig. 10A to B shows that the nanofluid ve-

locity profiles, as well as the temperature profiles, are enhanced with an 
increase in the Biot number. This is physically correct since increasing 
the values of the Biot number signifies an increase in the heat transfer 
coefficient, hence, the rate of cooling decreases while the temperature 
of the nanofluid within the channel rise. Both the entropy generation 
number and the Bejan number rises in the channel as seen in Fig. 10C 
to D.

The effects of various thermo-physical parameters on the skin fric-

tion and Nusselt number are illustrated in Fig. 11. We observed from 
these Figures that the skin friction decreases with increasing the values 
of Hartmann number, suction/injection Reynolds number and nanopar-

ticle fraction volume but increases with an increase in Grashof number, 
thermal radiation parameter and Brinkman number. This can be at-

tributed to a decrease or increase in nanofluid velocity gradient at the 
channel walls as the values of these parameters increases. Meanwhile, 
an increase in the Grashof number, thermal radiation parameter and 
Brinkman number decreases the Nusselt number due to a decrease in 
temperature gradient at the walls while an increase in Hartmann num-

ber and nanoparticle fraction volume increases the Nusselt number due 
to an increase in temperature gradient at the walls.

5. Conclusion

In this study, the entropy generation in a Powell-Eyring Al2O3-water 
nanofluid flow in a vertical channel subjected to convective cooling has 
been studied. The transport equations were solved using an iterative 
spectral local linearization method. The entropy generation rate in the 
system has been analyzed using the second law of thermodynamics. In 
summary, the nanoparticle volume fraction and the Brinkman number 
are significant in minimizing the entropy generation rate in the channel. 
Hence, by increasing the nanoparticle volume fraction and reducing the 
Brinkman number the flow in channel can be optimized.
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