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Abstract

Drug development and investigation of protein function both require an understanding of

protein subcellular localization. We developed a system, REALoc, that can predict the sub-

cellular localization of singleplex and multiplex proteins in humans. This system, based on

comprehensive strategy, consists of two heterogeneous systematic frameworks that inte-

grate one-to-one and many-to-many machine learning methods and use sequence-based

features, including amino acid composition, surface accessibility, weighted sign aa index,

and sequence similarity profile, as well as gene ontology function-based features. REALoc

can be used to predict localization to six subcellular compartments (cell membrane, cyto-

plasm, endoplasmic reticulum/Golgi, mitochondrion, nucleus, and extracellular). REALoc

yielded a 75.3% absolute true success rate during five-fold cross-validation and a 57.1%

absolute true success rate in an independent database test, which was >10% higher than

six other prediction systems. Lastly, we analyzed the effects of Vote and GANN models on

singleplex and multiplex localization prediction efficacy. REALoc is freely available at http://

predictor.nchu.edu.tw/REALoc.

Introduction

Current efforts in genomics science routinely make use of various fast and accurate sequencing

platforms. These technologies have led to greater understanding of protein function and the

regulation of biological networks, and the rapidly accumulated sequence information has

allowed exploration of complex physiological mechanisms and numerous diseases. Protein

localization in cells is often closely correlated with its function. According targeting signals

may occur anywhere in the protein sequence, proteins will be sorted to their destination. For

example, signal peptide is a short N-terminal amino acid sequence that guide the distribution

of the protein to the membrane of the endoplasmic reticulum (ER) and enter the secretory

pathway [1,2]. Therefore, we endeavored to use the available sequence information to provide

quick subcellular localization prediction. Two transduction pathways exist: Co-translational
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translocation involves signal-recognition particles and the endoplasmic reticulum delivery sys-

tem, whereas in post-translational translocation, translation is completed in the cytoplasm, but

the protein retains information specifying delivery to different organelles [3]. Nakai et al.
(1991) first proposed the prediction of subcellular localization via signal peptides. However,

due to the very recent growth of protein databases and development of different machine

learning methods, TargetP and SignalP 4.0 are currently the only commonly known prediction

systems [4,5], yet they can only predict localization to three subcellular compartments (chloro-

plast, mitochondrion, and extracellular).

Methods for predicting subcellular localization can be classified into the following three

types: 1) Homology-based prediction compares the localization of known proteins with

unknown proteins. If a certain degree of similarity is found in the sequence, then it can be

inferred that the unknown protein’s subcellular localization may be the same as the known

protein [6]. The Basic Local Alignment Search Tool (BLAST) sequence alignment method [7]

has been widely applied in several prediction systems, including WegoLoc, iLoc-Hum, and

Euk-mPloc 2.0 [8–10]. However, when the similarity between the unknown protein and the

database is low, this method has poor predictive ability. Hence, it is often integrated with other

methods. 2) Functional domain-based prediction relies on known structures or functional

data, such as protein functional domains and motifs, as well as information in the gene ontol-

ogy (GO) database [6,8,11–14]. There are many learning models of research methods are used

to establish the relevance of GO terms and subcellular localization. [10,12,15–19] It has been

shown that GO terms can be used to advance the performance of subcellular localization pre-

diction. These functional data regarded as domain knowledge are highly accurate and reliable,

but this approach requires manual verification of each annotation and cannot be applied to the

whole new protein; therefore it is usually combined with the homology-based approach. The

optimized combined approach can greatly increase the predictive accuracy. 3) Sequence-based

prediction relies on information about the primary amino acid sequence of proteins used for

information technology operations or discovery of hidden information, commonly including

amino acid composition, pseudo amino acid composition, and n-grams [19–22]. Prediction

results from this approach are typically less informative than those for homology- and func-

tional domain-based methods, but in predicting subcellular localization of unknown proteins,

it is still a feasible approach. There are also systems based on n-grams for processing the amino

acid sequence to analyze the subcellular location of the target protein [21]. Most of the existing

methods described above only predict singleplex proteins, those that localize to a single subcel-

lular location, and they do not consider multiplex proteins, those that localize to two or more

different compartments within the cell. Identifying multiple locations of a multiplex protein

has high value to understanding biological functions, and there is much room for continued

development in this area [23].

Currently, the development of subcellular location prediction tools faces two major prob-

lems: the difference among the data quantity of locations is too large and the poor predictive

ability for multiplex proteins [24]. Therefore, a highly accurate system was developed for pre-

dicting human protein subcellular localization that we called REALoc (Reliable and Effective

methods to Assist predicting human protein subcellular Localization), which consists of two

systematic frameworks. The first level uses 32 support vector machine (SVM) models in a one-

to-one relationship system to completely cover all negative learning information by compre-

hensive strategy; the second level uses a many-to-many relationship system comprised of two

learning mechanisms, a genetic algorithm optimized neural network (GANN) and majority

voting (Vote), which represent the strong and weak data correlation, respectively. REALoc can

predict localization to the cell membrane, cytoplasm, endoplasmic reticulum/Golgi, mitochon-

drion, nucleus, and extracellular. With regards to the learning sequences, this study adopted

Realoc
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not only the commonly used amino acid composition (AAC) and surface accessibility (SA),

but also two new learning features, weighted sign amino acid index (aa index) and sequence

similarity profile. Weighted sign aa index allows more emphasis to be placed on subcellular

localization-related amino acid features in the learning process, while sequence similarity pro-

file provides identifiable learning information for similar sequences in proteins with different

subcellular localization. In regards to structural learning features, we used the regular maxi-

mum relevance minimum redundancy (regular-mRMR) method to select the 35 best localiza-

tion- related sets of features for GO.

An independent testing dataset was used to verify the predictive power of REALoc, and the

prediction results were compared to six current predictors, CELLO [25], locTree2 [26] iLoc-

hum [14], Hum-mPLoc 2.0 [27], GOASVM [6] and mGOF-loc [22]. REALoc also uses the

absolute true success rate (ATSR) [9,14,24] to represent the protein prediction score, which

avoids under- and over-prediction. Using the systematic ATSR evaluation method we objec-

tively evaluated the reliability of the human subcellular localization prediction system. After

five-fold cross-validation, the ATSR with the training data and independent testing data used

in this study were 75.3 and 56.5%, respectively. Whether a protein was located in a single or

multiple subcellular compartments, REALoc showed higher overall performance compared

with other prediction systems, with a >10% improvement in the ATSR in independent testing.

In terms of the analysis of the REALoc system, we also removed the GO information to evalu-

ate the predictive power for novel proteins, and the prediction efficacies of the Vote and

GANN learning mechanisms for singleplex and multiplex protein data were also analyzed.

Materials and methods

Data processing

Training dataset 5939p. The dataset was obtained from the UniProtKB/Swiss-Prot pro-

tein database October 2011 version [28]. Proteins with a comment on subcellular location

were extracted and those with uncertain terms such as “by similarity,” potential,” and “proba-

ble” were removed. Sequences <80 amino acids in length were also removed. CD-HIT was

used [29] to eliminate redundant sequences by setting the threshold to 0.7, whereas other

parameters were set as the default. Note that if the threshold of similarity is set too high, the

learning model will easily lead to overfitting. On the other hand, lower threshold value will be

resulting in poor learning effect. Data were divided into six types, cell membrane, cytoplasm,

endoplasmic reticulum/Golgi, mitochondrion, nucleus and extracellular (Table 1). There were

total of 5939 different proteins in the training dataset, and multiplex proteins accounted for

Table 1. Number of proteins in the different subcellular locations in the training and testing datasets.

Subcellular location Training dataset Testing dataset

Cell membrane 1453 221

Cytoplasm 1542 197

ER/Golgi 562 136

Mitochondrion 462 133

Nucleus 2064 156

Extracellular 795 82

Total 6878a (5939b) 925a (868b)

aTotal number of proteins in all locations
bTotal number of different proteins

https://doi.org/10.1371/journal.pone.0178832.t001
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15% of the entire dataset (S1 Fig). In other parts of subcellular location, such as centrosome,

cytoskeleton, endosome, lysosome, microsome, peroxisome and synapse, the number of the

training set is too fewer to obtain accurate prediction [16].

Testing dataset 868pt. The UniProtKB/Swiss-Prot protein database April 2013 version

was acquired [28], and the proteins in the 5939p training dataset were removed. CD-HIT was

then used again to remove repetition. The details for the subcellular locations of the resulting

dataset are shown in Table 1. There were 868 different proteins, among which 44% were multi-

plex proteins (S1 Fig).

Sequence-based features

AAC and SA. Certain protein regions closely correlate with subcellular localization. Pro-

tein sequences can be divided into full-length, the first 30 N-terminal amino acids, the middle

third of the protein, and the last 50 C-terminal amino acids. The AAC and SA were calculated

for each of these regions for each protein. The AAC equation (Eq 1) was as follows:

AAC aið Þ ¼ ðtotal number of amino acid aiÞ=N ;

ai 2 20 amino acids ð1Þ

where ai represents the 20 amino acids and N represents the full length of the given region.

Basic SA information was obtained via NetSurfP [30], individually considering the relative and

accessible surface area and amino acid exposure for the four regions.

Weighted sign aa index. There are 96 different amino acid characteristics, such as hydro-

phobicity, polarity and transfer free energy [31,32], that have been used to increase the accu-

racy of predicting subcellular localization. We included an additional four indices with the

same amino acid characteristics but from different studies to obtain 100 amino acid indices

(S1 Table) that were used to calculate an index value for each protein. After obtaining the

index, we used the AAC for the four regions to assess the AAindex for the different sequence

regions and calculated the weighted sign aa index with the equations:

H ¼ fh1h2 � � � h20g; Ci 2 fc1; c2; c3; � � � ; c100g ð2Þ

scorei ¼
X20

j¼1

AACðajÞ � hj ð3Þ

Ci ¼ logðjscoreijÞ ð4Þ

weighted sign aa index ¼ fðsign1;C1Þ; ðsign2;C2Þ; . . . ; ðsign100;C100Þg;

where signi ¼

(
1; if ðscorei < 0Þ

0; if ðscorei � 0Þ

ð5Þ

In Eq 2, H indicates the set of 20 different amino acid index values corresponding to each

amino acid, and Ci indicates one of 100 amino acid indices we collected. Then, AAC was used to

derive scorei (Eq 3), and these scores were then normalized by obtaining the logarithms (Ci, Eq 4).

After calculating signi, it was combined with Ci to obtain the weighted sign aa index (Eq 5).

Pseudo amino acid composition (PseAAC). Chou et al. (2001) reported that, in addition

to examining the composition of the standard 20 amino acids, investigating PseAAC provides

order information of the amino acids for more complete retention of protein sequences. Also,

state-of-the-art in the studies on pseudo K-tuple nucleotide composition have noted that the

Realoc
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concept can apply to the field of DNA and RNA sequence analysis. The study in iEnhancer-

PsedeKNC provide excellent discussions of the applications of regulatory DNA elements iden-

tification [33]. The research of iDHS-EL [34] and iRSpot-EL [35] addressed important claims

regarding prediction of DNase I hypersensitive sites and recombination hotspot in a genome

by using pseudo nucleotide composition and other sequence-based features into classifier.

Besides, iMiRNA-PseDPC has pointed out that the new feature called "pseudo distance-pair

composition" have a primary role in identifying the human pre-miRNAs efficiently for large-

scale genome analysis [36].

PseAAC provides order information of the elements for more complete retention of

sequences. Chou et al. (2015) integrated four PseAAC modes for protein sequences in the web

server Pse-in-One [37]. For heterogeneous and comprehensive learning, Realoc do not consider

the two modes of PC- and SC-PseAAC-general because they were extracted from AAindex

which is the same source as the feature weighted sign aa index. On the other hand, the mode

PC-PseAAC contains one more physicochemical index than SC-PseAAC, called side chain.

Therefore, the mode PC-PseAAC in the Pse-in-One was adopted as PseAAC encoding by Rea-

loc. We applied the approach of Chou et al., with a 0.05 weight factor ω and λ of 8 [20,38].

Sequence similarity profile (SSP). To address the issue of proteins having different sub-

cellular locations despite high similarity in sequences, we considered secondary sequence-

based features for certain proteins. As Chen et al. (2016) noted in their review of protein

remote homology detection, sequence similarity is a major concern in a wide variety of

computational methods [39]. In this research, BLAST was used to infer sequence similarity

between query protein and training dataset. It compares each protein with 5939p and obtain

three sequence-based features described above from the most similar sequence, which we refer

to as the SSP. If a similar protein could not be found, then the sequence-based features of the

query protein would be the SSP.

Function-based features

The GO database does not provide any sequence data. To simplify data handling, a GO

sequence database integrating the 2013_0318 version of GO with the UniProtKB/Swiss-Prot

protein database was established. A protein often has several GO numbers. In the feature-

selection method, acquiring appropriate GO numbers can effectively assist in the learning of

the prediction model. We revised the standard mRMR feature-selection algorithm [40] (S1

Algorithm) to obtain the top 50 GO numbers in order of relevance to subcellular localization,

which were then used as the feature set in prediction using the SVM model. The results

showed that optimum prediction accuracy was obtained with the first 35 GO numbers. Thus,

the first 35 GO numbers were adopted for function-based features (S2 Fig).

System implementation

A schematic overview of the system is shown in Fig 1. The proteins in the 5939p training

dataset were obtained from UniProtKB, then sequence-based features were collected and cal-

culated and NetSurfP was used to obtain SA prediction results. The query sequence was

BLASTed against 5939p to obtain an SSP, and AAC, PseAAC, and weighted sign aa index were

calculated using defined equations. In the function-based features collection, the primary

sequence of proteins was used to find similar proteins in the GO sequence database, and these

GO numbers were added to the feature set for that protein.

After the features were obtained and values calculated, the values were converted into SVM

input format. The fixed input length was 1945. They were then provided to each SVM for the

first layer of learning. The input for the second learning layer was the output of the first layer

Realoc
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SVMs, using GANN or Vote mechanisms to integrate the input results and for validation and

analysis. We also prepared the independent testing dataset 868pt to compare the prediction

accuracy of REALoc for singleplex and multiplex proteins with those of other prediction

systems.

Fig 1. The flowchart shows the implementation of REALoc.

https://doi.org/10.1371/journal.pone.0178832.g001
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Two-layer framework

REALoc can be divided into two kinds of relationship layers, one-to-one and many-to-many

(Fig 2). The first layer consists of 32 SVMs based on training data for six subcellular locations.

Each location has three to nine SVM models that were obtained based on the best positive to

negative ratio (S2 Table). The second layer contains GANN and Vote models. GANN used the

first layer SVM results as training data to predict the six subcellular locations, whereas Vote

used SVMs from different locations for majority voting. The first layer intentionally used an

odd number of models for easy operation.

First layer: SVM models. SVMs are widely used in subcellular localization studies. Some

studies have used hierarchical structure SVMs [26,41] or the balanced multi-model [42]. How-

ever, when there are large differences in the quantity of source data, it can lead to bias in the

prediction. Therefore, this study designed various subcellular localization classifications so

that they are based on multiple SVM models, and each sub-predictor underwent optimal

adjustment for the data ratio (S3–S8 Figs). Moreover, full negative data were adopted for learn-

ing to obtain optimum learning outcomes without losing information. The first layer of REA-

Loc was constructed with LIBSVM [43].

Second layer: GANN and vote. Previous studies have combined neural networks and

genetic algorithms to deal with classification problems that could prevent neural networks

from falling into local optimum [44]. REALoc adopted a GANN model using the SVM results

from the first layer to predict the possible subcellular locations and establish a many-to-many

prediction core. The parameters settings of the GANN model were population = 500, muta-

tion = 0.3, crossover = 0.7, maxW = 25, minW = -25, maxGen = 1000, and error = 0.05. Vote

used multiple SVM models for evaluation. The second layer of Vote predicts six subcellular

localizations based on particular subsets of SVM prediction models. When more models

showed agreement than opposition for a particular subcellular location, the query protein was

predicted to appear in that location.

Cross-validation and performance evaluation

Because REALoc was composed of two layers of prediction models, the learning models in the

two layers were evaluated and verified using a five-fold cross-validation mechanism (S9 Fig).

The absolute true success rate, ATSR, was assessed as following equation (Eq 6). ATSR is a pre-

diction evaluation measure that requires successful prediction for a protein in all subcellular

Fig 2. Two-layer architecture of REALoc.

https://doi.org/10.1371/journal.pone.0178832.g002
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locations where it could be found. ATSR is stricter than the other evaluation indicators, because

the predictive score of the test protein can be counted as 1 if and only if all of its subcellular posi-

tions are accurately predicted without any under-prediction or over-prediction [9,14,24].

Absolut true success rate ¼
PN

i¼1
DðiÞ

N
;

where DðiÞ ¼

(
1; ith protein are correctly predicted

0; otherwise

ð6Þ

Results and discussion

The performances of REALoc and other predictors in 5939p

In order to realize and validate our training model is mature enough to achieve the standard

level of the current prediction tools, REALoc used the training dataset 5939p and five-fold

cross-validation to verify its learning and predictive power for unknown proteins. The pre-

diction results from REALoc were compared to those of other prediction tools for 5939p

(Table 2).

REALoc obtained results with the Vote and GANN learning mechanisms in the second

layer. The ATSR of REALoc_Vote was 72.8%, and the best prediction result was 75.3% by the

REALoc_GANN learning model. Compared to the GANN learning model, Vote is more intui-

tive, but it does not consider the correlation between the sub-models in the first layer. There-

fore, in terms of learning, the GANN model was better for 5939p.

The overall ATSRs of LocTree2 and CELLO were 60.0 and 54.3%, respectively. LocTree2 is

a newer system developed in 2012 and therefore achieves better performance. In terms of the

prediction results for human proteins, Hum-mPLoc 2.0 and iLoc-hum showed better accuracy,

with ATSRs of 67.2and 72.7%, respectively. Among the six subcellular locations, iLoc-hum was

most accurate at predicting localization to the cytoplasm and mitochondrion, whereas REA-

Loc_GANN obtained superior results for the remaining four subcellular locations.

The performances of REALoc and other predictors for 868pt

Proteins that localize to multiple subcellular localizations accounted for ~44% of the indepen-

dent test dataset 868pt. Thus, this dataset could be used to evaluate the ability of each system to

identify multiplex proteins (Table 3). REALoc_Vote had the highest accuracy of 57.1%, fol-

lowed by REALoc_GANN at 52.5%. For individual subcellular localizations, iLoc-hum was the

best at predicting localization to mitochondrion, with an accuracy of 64.7%, GOASVM had

Table 2. Performance of REALoc with five-fold cross-validation and other predictors for the 5939p dataset.

Subcellular location LocTree2 CELLO Hum-mPLoc 2.0 iLoc-hum REALoc_

Vote

REALoc_

GANN

Cell membrane 57.5 58.9 61.8 69.7 79.6 80.6

Cytoplasm 30.0 25.2 45.3 66.6 63.5 65.6

ER/Golgi 38.1 2.1 53.9 32.4 74.4 81.1

Mitochondrion 51.8 57.1 66.7 84.3 76.0 75.3

Nucleus 57.3 58.8 71.1 71.6 72.7 74.8

Extracellular 78.7 62.1 74.8 80.1 76.5 80.9

Overall 60.0 54.3 67.2 72.7 72.8 75.3

All results are the absolute true success rate given as %, and the bold text indicates the highest value in each row.

https://doi.org/10.1371/journal.pone.0178832.t002
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the highest accuracy of 94.9% for predicting nuclear localization, and REALoc_Vote per-

formed best for the remaining four subcellular location predictions, with accuracy ranging

from 53 to 58% for cell membrane, cytoplasm and ER/Golgi localization and reaching the

maximum accuracy of 80% for prediction of extracellular localization.

From the analyses of 5939p and 868pt, iLoc-hum showed good predictive power for mito-

chondrial localization. In addition, in the 868pt dataset, the nuclear-localized proteins showed

the highest ratio of singleplex to multiplex proteins, accounting for 89% (139/156). Therefore,

for subcellular localization to the nucleus, GOASVM, the singleplex-based system, had more

accurate predictions than other, multiplex-based systems.

The predictive ability for multiplex proteins

In regards to the prediction results of multiplex proteins with the training dataset 5939p

(Table 4), REALoc_GANN had optimal prediction accuracy of 75.9%, whereas Hum-mPLoc

2.0, iLoc-hum and mGOF-loc showed 30.5%, 44.3% and 6.4% accuracy, respectively, far lower

than REALoc. As for the multiplex protein validation with the independent testing dataset

868pt, REALoc_Vote performed the best, with a 50.1% ATSR. In the test excluding GO infor-

mation, REALoc_Vote had the best performance, with an ATSR of 30.1%. The other predic-

tion systems used data for 14 or 37 different subcellular locations as training information.

Because more locations result in more complicated data, the prediction accuracy of these two

systems for the six locations in this study was lower. In contrast, although REALoc can only

predict these six locations, because the training dataset had more protein sequences and the

Table 3. Testing dataset 868pt predicted by REALoc and other predictors.

Subcellular location LocTree2 CELLO Hum-mPLoc 2.0 iLoc-hum GOASVM mGOF-loc REALoc_

Vote

REALoc_

GANN

Cell membrane 23.3 30.8 29.4 43.9 6.8 28.6 57.9 47.5

Cytoplasm 8.0 8.1 22.3 35.5 4.1 7.6 57.4 50.8

ER/Golgi 18.9 0.7 28.9 22.1 3.7 0.0 53.7 52.9

Mitochondrion 38.8 30.1 45.9 64.7 11.3 25.2 53.4 54.1

Nucleus 58.5 64.7 63.3 57.7 94.9 89.9 58.3 55.8

Extracellular 50.0 40.0 52.0 40.0 76.0 40.0 80.0 80.0

Overall 28.4 27.4 36.9 44.0 24.2 30.4 57.1 52.5

All results are the absolute true success rate given as % (the number of proteins correctly predicted/the number of total accepted proteins), and the bold text

indicates the highest value in each row.

https://doi.org/10.1371/journal.pone.0178832.t003

Table 4. Performance of REALoc and other approaches for predicting multiplex proteins.

Dataset Hum-mPLoc 2.0 iLoc-hum mGOF-loc REALoc_

Vote

REALoc_

GANN

5939p 30.5

(278/912)

44.3

(404/913)

6.4

(55/854)

74.2

(677/913)

75.9

(693/913)

868pt 20.0

(80/400)

17.3

(70/405)

2.7

(10/375)

50.1

(203/405)

36.3

(147/405)

868pt

(without GO)

n/a* n/a* n/a* 30.1

(122/405)

22.7

(92/405)

* Not available

All results are the absolute true success rate given as % (the number of proteins correctly predicted/the number of total accepted proteins), and the bold text

indicates the highest value in each row.

https://doi.org/10.1371/journal.pone.0178832.t004
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one-to-one learning mechanism we proposed addressed issues of imbalanced data, REALoc

showed excellent predictive performance for multiplex proteins.

The comparison of REALoc_GANN and REALoc_Vote

To compare the second layer prediction models of REALoc_GANN and REALoc_Vote, 5939p

and 868pt prediction performance results were analyzed in terms of singleplex and multiplex

proteins (Table 5). The five-fold cross-validation for 5939p showed that the GANN model had

better performances for singleplex and multiplex proteins. This is because the quantity of sin-

gleplex protein is 69.2% more than that of multiplex proteins in the 5939p dataset, causing an

increase in overall prediction. However, the percentage of quantity of the multiplex protein in

868pt was 29% higher than that of the multiplex protein in 5939p, accounting for 44% of the

independent testing dataset. With this dataset, REALoc_Vote had a prediction performance

14% better than REALoc_GANN for multiplex proteins (50.1 and 36.3% ATSR, respectively).

However, for singleplex proteins, the predictive power of REALoc_GANN was still better

(3.4% higher than REALoc_Vote).

GANN learning incorporates structural parameters with genetic algorithms to predict pos-

sible subcellular locations, which can provide good predictive power with the relatively simple

learning requirements for singleplex prediction. On the other hand, neural networks are based

on insufficient information to complete the more complex task of predicting multiplex pro-

teins. In addition, the predictive power of majority voting strategies come from the efficacies

of each SVM model in the first layer. More accurate first layer SVM models equate to more

accurate voting. Therefore, REALoc_Vote is more suitable for multiplex prediction.

Conclusions

Here we describe a prediction system, REALoc, that can be used to predict human protein

localization to six major subcellular locations: the cell membrane, cytoplasm, endoplasmic

reticulum/Golgi, mitochondrion, nucleus, and extracellular. REALoc combines various

sequence-based analysis features, such as AAC, PseAAC, SA, and the weighted sign aa index

and SSP we developed, as well as GO function-based features, to provide highly accurate reli-

able prediction results. In addition, in consideration of the recent appreciation of multiplex

protein prediction as well as the issues of large differences in the amounts of source data and

Table 5. Performance comparison of REALoc_GANN and REALoc_Vote.

Detaset REALoc_Vote REALoc_GANN

Training dataset (5939p)

Singleplex

72.5

(3645/5026)

75.3

(3782/5026)

Training dataset (5939p)

Multiplex

74.2

(677/913)

75.9

(693/913)

Training dataset (5939p)

Overall

72.8

(4322/5939)

75.3

(4475/5939)

Testing dataset (868pt)

Singleplex

63.3

(293/463)

66.7

(309/463)

Testing dataset (868pt)

Multiplex

50.1

(203/405)

36.3

(147/405)

Testing dataset (868pt)

Overall

57.1

(496/868)

52.5

(456/868)

All results are representative as absolute true success rate (%), given by (the number of proteins correctly predicted / the number of total accepted

proteins).

https://doi.org/10.1371/journal.pone.0178832.t005
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poor prediction power of current systems for multiplex proteins, two learning mechanisms

with different characteristics were used (one-to-one SVMs and many-to-many GANN) to

establish a two-layer prediction system. On the other hand, the best positive to negative ratio

was found to avoid great effect upon data amount, and then using multiple one-to-one models

to consider all negative data without losing any information.

The ATSRs for the training dataset 5939p and testing dataset 868pt were 75.3 and 57.1%,

respectively, and the prediction results for 5939p and 868pt were 2.6 and 13.1% higher than

those of other prediction systems, respectively. This study further determined that the predictive

power of REALoc for multiplex proteins was twice that of current existing prediction tools. This

may be due to a decrease in classifications caused an increase in learning accuracy and the fact

that there was enough data to provide REALoc with well learning and system stability.

REALoc can only predict six subcellular locations, less than some other prediction systems.

In the future we will focus on developing prediction methods applicable for smaller sets of

data to increase the coverage of subcellular localizations in REALoc. In addition, REALoc, like

other commonly used prediction methods, uses BLAST to compare GO information when

analyzing unknown proteins. However, because BLAST is based on local alignment, if com-

plete information on protein sequence is to be considered, future studies should adopt global

alignment or comparison methods to increase the accuracy in using GO features.

REALoc provides two prediction models, Vote and GANN, which had different efficacies

for different protein characteristics. We suggest using GANN for singleplex proteins and Vote

for multiplex proteins, and this approach has been incorporated into the default settings in the

freely accessible public REALoc online server at http://predictor.nchu.edu.tw/REALoc.
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