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Abstract: A concise synthetic route from methylmalonate to a tetravalent aliphatic scaffold has been
developed. The ensuing tetra-tethered derivative is equipped with two hydroxyl groups, as well as
orthogonal alkene and alkyne functionalities. The usefulness of the scaffold has been demonstrated
with the preparation of two representative multivalent derivatives: (i) a tetravalent compound
containing two D-mannose units, one fluorescent boron-dipyrromethene (BODIPY) dye and a suitably
functionalized amino acid and (ii) by way of dimerization and saponification, a water-soluble
tetramannan derivative containing two fluorescent BODIPY units. Additionally, photophysical
measurements conducted on these derivatives support the viability of the herein designed single and
double BODIPY-labeled carbohydrate-based clusters as fluorescent markers.

Keywords: tetravalent scaffold; BODIPY; conjugation; glycosylation; monosaccharide;
multivalent presentation

1. Introduction

It is currently accepted that a broad range of biological functions is associated with recognition
events between carbohydrates and proteins [1,2]. On the other hand, advances in chemical biology
and biomedicine have benefitted from the emergence of small-molecule fluorescent probes [3,4] in
combination with fluorescence spectroscopy or microscopy detection techniques [5-10]. Recently,
encompassing these two research areas, several examples on the usefulness of fluorescently labeled
carbohydrates in the investigation of biological processes have appeared in the literature [11-14]. In a
complementary manner, it has been shown that a glycosyl moiety attached to a fluorescent probe
might play a key role as a targeting [15-18] and internalizing agent for the probe [10-22], sometimes
even providing less cytotoxic entities [23,24].

A further refinement related to the aforementioned carbohydrate-protein interactions came with
the realization that individual carbohydrate-ligands bind to a protein site weakly, and therefore the
high levels of recognition in biological events had to be associated to the existence of the so-called
multivalent interactions [25]. In these (multivalent) interactions, multiple copies of the ligands and
receptors must be involved in the binding event in order to provide the significantly high levels
of specificity required for the biological processes to take place [26-28]. Accordingly, the quest for
multivalent carbohydrate ligands has led to the design of several types of molecular scaffolds, for
example, aliphatic, aromatic, carbohydrate, and peptide scaffolds [29-36], with the ability to lodge
multiple copies of sugar epitopes [37]. Furthermore, glycan-coated polymers and other biomaterials
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have also been used in the multivalent presentation of sugar epitopes and shown their usefulness in
lectin-mediated interactions [38].

We have recently become interested in the preparation of novel fluorescent conjugatable
fluorophores [39,40], in particular, boron-dipyrromethene (BODIPY) [41,42] dyes, which in combination
with carbohydrates could lead to water-soluble fluorophores [43-45] with potential biological
interest [46,47]. In this communication, we report a novel strategy towards a tetravalent scaffold
(1, Figure 1), which enables the multivalent presentation of saccharide derivatives in conjunction with
a BODIPY fluorophore.

According to our design, the aliphatic scaffold 1, reminiscent of Lee’s ABj3, tris(hydroxymethyl)
aminomethane (2, TRIS) [48] (Figure 1), is easily available from ethyl malonate. It contains two primary
hydroxyl groups for glycosylation and two additional (orthogonal) sites, an alkyne and an alkene for
further functionalization. «-p-Mannose was chosen to be introduced in the scaffold as a relevant ligand
that is recognized by macrophage mannose receptors [49], microbacterial membranes [50], as well as
by lectins, such as DC-SIGN [51,52], and concanavalin A [31,33,36]. As a consequence, o-pD-Mannose
has been incorporated into a broad range of multivalent structures [20,30,53]. The incorporation
of the BODIPY chromophore to the scaffold could be achieved by copper(I)-catalyzed azide-alkyne
cycloaddition (CuAAC) [54,55], whereas the remaining terminal olefin could be used for further
conjugation to olefin-containing (bio)molecules of interest (e.g., amino acids, peptides, nucleic acids, etc.)
by a cross-metathesis reaction [56,57], leading to mannosyl BODIPY-labeled species type 3 (Figure 1).

" y—(500r)

Figure 1. Tetravalent scaffold (1), Lee’s TRIS aliphatic scaffold (2), and target molecules (3) (this work).
BODIPY: boron-dipyrromethene

2. Results and Discussion

2.1. Synthesis, Glycosylation, and CuAAC Reaction of The Scaffold

Based on the well-studied chemistry of malonate diesters [58], the sequential bis-alkylation of
dimethyl malonate (4) with pentenyl bromide and propargyl bromide paved the way to, previously
unreported, ene-yne derivative 5 (Scheme 1). Subsequent LiAlH4-mediated reduction of 5 led to
diol 6, which was then glycosylated with readily prepared methyl orthoester (MeOE) 7 [59,60] (acid
washed molecular sieves (AWMS), microwave irradiation) to furnish dimannan 8 in acceptable yield
(Scheme 1) [60].

BzO Ph OMe 820
i) HNa, DMF o E 5% OBz &OBZ
HO BzO o j |lo
MeO o BTM MeO OMe OH BzO0 BZO Bé(z)o
(67%) LiAIH, d
O ii)HNa, DMF acid washed mol. sieves
MeO P (62% (AWMS)
4 B’/\\\ 5 (microwave irradiation)
(86%) (67%)

Scheme 1. Synthesis of dimannoside (8) from methylmalonate (4).

Pseudodisaccharide 8 possesses two orthogonal anchoring sites for further conjugation,
and accordingly, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction of 8 with
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azidomethyl boron-dipyrromethene (BODIPY) derivative 9 [39] was carried out to furnish
carbohydrate-BODIPY hybrid 10, leaving the terminal olefin ready for cross-metathesis reactions [56,57].

2.2. Cross-Metathesis Reactions

As proof of concept on the use of 10 in conjugation protocols, we carried out the cross-metathesis
reaction of 10 and commercially available Boc-protected O-allyl-L-tyrosine (11), as an example of
a functionalized molecule, to yield tetravalent derivative 12 (68% yield). Likewise, dimerization of 10
by cross-metathesis took place smoothly to yield compound 13, containing two BODIPY units and
four copies of carbohydrate ligands (44% yield, 79% corrected yield based on recovered, unreacted,
olefin 10).

2.3. De-O-Benzoylation of Dimer 13

Finally, de-O-benzoylation of dimeric structure 13 (NaOMe, MeOH, room temperature) yielded
fluorescent, water-soluble, tetramannan compound 14 (Figure 2), as a diastereomeric mixture, wherein
the fluorine atoms at boron, in the BODIPY cores, had been replaced by the oxygen atoms at C-4 and
C-6 in the mannose units. The structural assignment of compound 14 was unambiguously made
based on (i) the absence of the fluorine signals in its ?F-NMR spectrum (Supplementary materials,
Figure 526), (ii) its mass spectrum, and (iii) the observed chemical shift (1.45 ppm) in its HB-NMR
spectrum (Supplementary materials, Figure 525). The latter allowed to unequivocally assign the
BODIPY units as bounded to a 1,3-diol ("' B-NMR, chemical shift range from 0.5 to 1.9 ppm) rather than
to a cis-1,2-diol (*!B-NMR, chemical shift range from 4.0 to 5.9 ppm), according to previous studies
in related compounds [61]. This reaction, although somehow unexpected, provided 4,4’-dialkoxy
BODIPY derivative 14 endowed with a respectable fluorescence quantum yield (¢ = 0.30) in water.

HO4 6 OH
HO (0]
HO

Figure 2. Fluorescently-labeled tetramannan derivative (14).
2.4. Photophysical Studies

The photophysical signatures of the single BODIPY-labeled carbohydrate-based scaffolds
(compounds 10 and 12, Table 1) retain the characteristics of the isolated BODIPY chromophoric
core [62] and 8-ortho-benzyl BODIPYs [40]. The linkage of the BODIPY to the tetravalent cluster
through the ortho position of the chromophoric 8-phenyl induces the required sterical hindrance to
vanish the impact of such phenyl substituent into the photophysics of the BODIPY core. Thus, as a result
of such constrained geometry, the 8-phenyl substituent is disposed of almost orthogonally with respect
to the dipyrrin backbone and electronically decoupled, thereby, the spectral bands” positions and
profiles are unaltered by the attachment of the 8-aryl group (Figure 3). Moreover, such hindered
8-phenyl group is placed at a fixed position, hence, avoiding non-radiative deactivation channels
associated to its free motion [63] and ensuring a bright fluorescence response (up to 90% for 10, Table 1)
and long lifetimes (around 5-7 ns in Table 1). Note that the overall photophysical properties of both
dyes 10 and 12 are very similar. Therefore, the size and length of the functionalization attached to the



Molecules 2019, 24, 2050 40f 11

ortho position of the 8-phenyl substituent has a low impact on the photophysics of the photoactive
BODIPY unit, albeit the presence of the electron donor terminal amino acid seems to slightly decrease
the fluorescence efficiency (Table 1).

Table 1. Photophysical properties of diluted solutions (2 uM) of boron-dipyrromethene (BODIPY)-
labeled tetravalent (10 and 12) and hexavalent (13 and 14) derivatives in different solvents.

€max

Dye Solvent Azp (nm) (10* M—1 cm-1) Aq (nm) ¢ T (ns)
10 Ethyl acetate 502.5 5.0 515.5 0.90 7.02
Acetone 502.5 5.1 515.0 0.80 7.05
Acetonitrile 502.0 5.0 515.0 0.82 7.53

12 Ethyl acetate 503.0 4.0 516.0 0.78 6.14
Acetone 502.5 42 516.5 0.55 5.04
Acetonitrile 502.5 3.5 515.5 0.60 5.20

13 Ethyl acetate 503.0 10.2 518.0 0.70 5.69
Acetone 503.0 9.3 517.5 0.50 5.04
Acetonitrile 502.5 9.5 516.0 0.55 5.14

14 Methanol 501.5 8.5 518.0 0.40 4.38
Water 501.5 8.0 518.0 0.30 3.90

Absorption (A;p) and fluorescence (Ag) wavelengths, molar absorption at the maximum wavelength (emax),
fluorescence quantum yield (¢$), and lifetime (7).
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Figure 3. Absorption (bold line) and normalized fluorescence (thin line) spectra of boron-
dipyrromethene (BODIPY)-labeled tetravalent (10 and 12) and hexavalent (13) derivatives in diluted
solutions (2 uM) of EtOAc. The corresponding spectra of compound 14 in water is also included.

Compound 13 features two chromophoric units tethered to the carbohydrate-based cluster
(Scheme 2). The position and shape of the absorption spectrum of dye 13 matches that of its precursor
10, but the intensity shows a two-fold enhancement (up to 10° M~! em~!, Figure 3) according to the
presence of two BODIPYs in the cluster. Therefore, each chromophoric subunit contributes additively
to the whole spectral transition of the molecular assembly. Furthermore, the fluorescence position
also remains the same, and the fluorescence quantum yields and lifetimes are noticeable (higher than
50% and around 5-6 ns, respectively, Table 1), in spite of the large size of the molecule (up to four
carbohydrates and two BODIPYs covalently linked in a single structure) and the conformational
flexibility of the spacers. On the other hand, the absence of any change in the spectral profile of
compound 13 rules out any intramolecular interaction between the two BODIPY units (such as exciton
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coupling) because they are most certainly disposed of far away from each other. In line with these
results, de-O-benzoylated compound 14 (with Boron-oxygen substitution) also displays strong spectral
bands even in water (Figure 3) with a notable fluorescence response (30%, Table 1). Such fluorescence
efficiency is lower than that observed in the fluorinated derivative 13, owing to the known increase
of the non-radiative pathways upon the presence of alkoxy groups replacing fluorine atoms at the
boron bridge [64]. Nevertheless, the herein reported fluorescence efficiency in water is higher than that
reported for the structurally related “BODIPY-labeled” carbohydrates via the boron center [61], owing
to the imposed geometrical constraints around the key chromophoric C-8-position of the BODIPY core.

OBz BzO OBZ

BzO
BZO% BzO

o0/

1"

CH,Cl,
(68%)

2" generation
Hoveyda-Grubbs’ catalyst
0.05 equiv

CuTC (0.1 equiv) 10
THF, rt, 2h
70%
CH,Cl, BzO
(44%) BzBo

[79% corrected yield
based on recovered 10]

CuTC = [Cu(l)-thiophene-2-carboxylate]

Scheme 2. Synthesis of tetravalent and hexavalent derivatives (12) and (13).

Summing up, an efficiently accessible tetravalent malonyl-derived scaffold allows the suitable
incorporation of two (or four) carbohydrate units, tagged with one (or two) fluorescent BODIPY
label(s). Variations in the carbohydrate ligands and/or the BODIPY unit(s) could provide a range of
fluorescent glycoprobes.

3. Experimental Section
3.1. Chemistry

3.1.1. General Procedure for Alkylation

To a suspension of NaH (60% in mineral oil, 1.2 eq.) in anhydrous DMF under Ar atmosphere at
0 °C, the corresponding malonate (1 eq.) was added slowly, and the mixture was stirred for 15 min.
Then, the alkyl bromide (1 eq.) was added dropwise, and the mixture was allowed to react at room
temperature (r.t.) during 24 h. The solution was diluted with Et,O:Toluene (8:2) and washed with
saturated ammonium chloride solution. The aqueous phase was extracted with Et;O. The combined
organic layers were dried over NaSOy, filtered, and concentrated. The crude product was purified by
flash chromatography on silica gel.

Dimethyl 2-(pent-4’-enyl)-2-(prop-2’-ynyl) malonate (5): Following the general alkylation procedure,
dimethyl malonate (2 mL, 17.4 mmol) was added dropwise to a suspension of NaH (840 mg, 20.9 mmol)
in anhydrous DMF (10 mL); after 15 min, 5-bromopent-1-ene (2.1 mL, 17.4 mmol) was added, and the
mixture was stirred during 24 h, quenched, and purified by flash chromatography (hexane:EtOAc,
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7:3) to afford dimethyl 2-(pent-4’-enyl) malonate 2.36 g (67%) [65]. This derivative (2.36 g, 11.8 mmol)
was subsequently added to a suspension of NaH (571 mg, 14.2 mmol) in anhydrous DMF (10 mL).
After 15 min, propargyl bromide (1.07 mL, 14.2 mmol) was slowly added, and the mixture was stirred
for 24 h. The reaction was quenched and purified by flash chromatography (hexane: EtOAc, 95:5) to
give compound 5, 2.41 g (86%). 'H-NMR (400 MHz, CDCl3): 1.20-1.32 (m, 2H), 2.00 (t, ] =2.7 Hz, 1H),
2.02-2.09 (m, 1H), 2.82 (d, ] = 2.7 Hz, 2H), 3.73 (s, 6H), 4.93-5.05 (m, 1H), 5.77 (ddt, ] = 16.8, 10.2, 6.6 Hz,
1-H). 3C-NMR (100 MHz; CDCl3): 22.8,23.2, 31.5, 33.6, 52.7 (x2), 56.8, 71.2, 78.7, 115.0, 137.8, 170.6
(x2). HRMS (ESI-QqTOF) m/z: Calc. for C13H1904 [M+H]* 239.1283, found 239.1285.

2-(pent-4’-enyl)-2-(prop-2'-ynyl)propane-1,3-diol (6): A solution of compound 5 (266 mg, 1 mmol) in
anhydrous THF (5 mL) was added dropwise to a suspension of LiAlH, (95 mg, 2.5 mmol) in THF (5 mL)
at 0 °C. The resulting mixture was stirred at r.t. for 2 h. The reaction was quenched by slow addition
of a saturated solution of Na;SO, (10 mL) and stirring the mixture for 15 min. The resulting white
slurry was filtered through celite and washed with Et;O (2 X 15 mL). The filtrate was concentrated and
purified by flash chromatography (hexane:EtOAc 1:1) to give 6 (113 mg, 62 %). 'H-NMR (400 MHz;
CDCl;): 1.32-1.33 (m, 2H), 1.99 (t, ] =2.7 Hz, 1H), 2.02-2.04 (m, 1H), 2.24 (d, ] = 2.7 Hz, 2H), 3.52-3.68
(m, 4H), 4.92-5.02 (m, 1H), 5.78 (ddt, ] = 16.9, 10.2, 6.7 Hz, 1H). 3C-NMR (100 MHz; CDCl3): 21.3,
22.3,31.0,34.4, 41.6, 67.6,70.7, 81.1, 114.8, 138.6. HRMS (ESI-QqTOF) m/z: Calc. for C11H190, [M+H]*
182.13071, found 182.13231.

Compound 8: A mixture of methyl orthoester MeOE 7 [61] (305 mg, 0.5 mmol) and compound 6 (36.4 mg,
0.2 mmol) in toluene (5 mL) was azeotroped to dryness, and subsequently kept overnight under
high vacuum. This mixture was then dissolved in dry CH,Cl, (8 mL), and acid-washed molecular
sieves AW-300 (Sigma-Aldrich, Saint Louis, MI, USA) (1.6 mm pellets, 3 g) were added. The mixture
was stirred at 50 °C and 200 W during 2 h [61]. Then, the crude was filtered and purified by flash
chromatography (Hexane: EtOAc, 7:3) to give 8 (179 mg, 67%). 'H-NMR (500 MHz; CDCl3): 8.12-7.76
(m, 15H), 7.59-7.19 (m, 25H), 6.14 (t, ] = 10.0 Hz, 1H), 6.13 (t, ] = 10.0 Hz, 1H), 5.93-5.83 (m, 3H),
5.75-5.73 (m, 2H), 5.17 (d, ] = 2.1 Hz, 1H), 5.16 (d, ] = 2.1 Hz, 1H), 5.16 (d, ] = 2.0 Hz, 1H), 5.12-5.00
(m, 2H), 4.78-4.73 (m, 2H), 4.56-4.48 (m,4H), 3.91 (d, ] = 9.7 Hz, 2H), 3.57 (d, ] = 9.7 Hz, 2H), 2.53 (dd,
] =16.9,2.7 Hz, 1H), 2.40 (dd, ] = 16.9, 2.7 Hz, 1H), 2.21-2.12 (m, 2H), 2.06 (t, | = 2.6 Hz, 1H), 1.68-1.57
(m, 2H), 1.52-1.43 (m, 2H). 13C-NMR (125 MHz; CDCl3): 166.3 (X2), 165.6 (x4), 165.4 (x2), 138.4, 133.5
(x2),133.4 (x2), 133.2 (x4), 130.1 (x4), 130.0 (x4), 129.9 (x4), 129.8 (x4), 129.5 (x4), 129.0 (x4), 128.6 (x8),
128.5 (x4), 128.4 (x4), 115.5, 98.5, 98.4, 80.6, 71.5, 70.5 (x2), 70.4 (X2), 70.3 (x2), 69.4 (x2), 66.8 (X2), 62.9
(x4), 41.3,34.4, 31.5, 22.7 (x2). HRMS (ESI-QqTOF) m/z: Calc. for CzoHy4NO,o [M+NH4]* 1357.48323,
found 1357.48118.

Compound 10: The alkyne 8 (450 mg, 0.34 mmol) and the azidomethyl BODIPY derivative 9 [39] (99 mg,
0.3 mmol) were dissolved in THF (15 mL). Cu(I)-thiophene-2-carboxylate (57 mg, 0.3 mmol) was added,
and the resulting solution was stirred at r.t. for 2 h. The crude was concentrated and purified by flash
chromatography (Hexane:EtOAc, 6:4) to give 10 (344 mg, 70%). 'H-NMR (500 MHz; CDCl3): 8.04-7.68
(m, 20H), 7.51-7.08 (m, 28H), 6.59 (d, ] = 4.2 Hz, 1H), 6.49 (d, ] = 4.1 Hz, 1H), 6.36 (dd, ] =4.3, 1.9 Hz,
1H), 6.33 (dd, ] = 4.3, 1.9 Hz, 1H), 6.09 (t, ] = 10.0 Hz, 2H), 5.85-5.71 (m, 3H), 5.62-5.58 (m, 2H), 5.46
(t,] =154 Hz, 1H), 5.38 (d, ] = 15.4 Hz, 1H), 5.02 (d, ] = 2.0 Hz, 1H), 5.01 (d, | = 1.9 Hz, 1H), 4.96-4.88
(m, 2H), 4.71-4.65 (m, 2H), 4.56-4.43 (m, 4H), 3.77 (t, ] = 10.2 Hz, 2H), 3.33 (t, ] = 9.1 Hz, 2H), 2.79
(d,] = 14.7 Hz, 1H), 2.73 (d, ] = 14.9 Hz, 1H), 2.04 (m, 2H), 1.44 (m, 4H). 3C-NMR (125 MHz; CDCl,):
166.2 (x2), 165.6 (x4), 165.4 (x2), 145.4 (x2), 145.2 (x2), 144.0 (x2), 143.3 (x2), 138.7, 135.3, 134.4, 133.4
(x2), 133.3 (x2), 133.2 (x2), 133.1 (x2), 133.0, 132.3, 131.0, 130.9, 130.5, 130.3, 130.1, 130.0 (x2), 129.9
(x6), 129.8 (x6), 129.5,129.4, 129.3, 129.2 (x2), 129.1 (x2), 128.6 (x2), 128.5 (x3), 128.4 (x2), 128.3 (x2),
128.1,124.5,119.2 (x2), 115.3, 98.5 (x2), 71.2, 70.8, 70.5 (X2), 70.4 (X2), 69.4 (X2), 66.7 (X2), 62.9 (x4), 51.6,
41.6,34.4,31.9, 28.4,22.7. HRMS (ESI-QqTOF) m/z: Calc. for CosHgsBF2N5O5 1663.58799 [M+H]*,
found 1663.58625.
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3.1.2. General Procedure for the Cross-Metathesis (CM) Reaction

The appropriate olefins were dissolved in dry CH,Cl,. Argon was bubbled through the solution
for 10 min, and then the 2nd generation Hoveyda-Grubbs catalyst (5% mol) was added. The reaction
mixture was refluxed for 12 h, and after which the air was bubbled through the solution. The solvent
was evaporated in vacuo, and the residue was filtered through a FLORISIL pad and then purified by
flash silica gel column chromatography.

Compound 12: Olefin 10 (25 mg, 0.015 mmol) and Boc-protected O-allyl-L-tyrosine (11) (19.3 mg,
0.06 mmol), dissolved in CH,Cl, (2 mL), were reacted according to the general method for the CM
reaction. The residue was purified by flash silica gel column chromatography (CH,Cl:MeOH 9:1) to
give 12 (20 mg, 68%). 'H-NMR (500 MHz; CDCl;): 8.11-7.77 (m, 20H), 7.59-7.14 (m, 26H), 7.02 (d,
] =8.6 Hz, 2H), 6.79 (d, | = 8.7 Hz, 2H), 6.63 (m, 1H), 6.54 (m, 1H), 6.44 (m, 1H), 6.37 (m, 1H), 6.16 (t,
J = 9.9 Hz, 2H), 5.85-5.50 (m, 8H), 5.08 (m, 2H), 4.76 (m, 2H), 4.57-4.47 (m, 8H), 3.85 (m, 2H), 3.44
(m, 2H), 3.06 (m, 2H), 2.83 (d, ] = 15.4 Hz, 1H), 2.79 (d, ] = 15.1 Hz, 1H), 2.17 (m, 2H), 1.51-1.44 (m, 6H),
1.26 (s, 9H). 13C-NMR (125 MHz; CDCls): 166.3, 166.2 (x2), 165.7 (x2), 165.6, 165.5, 165.4, 157.8, 155.5,
145.5 (x2), 145.1 (x2), 143.9 (x2), 143.2, 135.3 (x2), 134.5, 134.3, 133.4 (x2), 133.3 (x2), 133.2 (x2), 133.1
(x2),132.5 (x2), 131.1, 130.9, 130.5, 130.4, 130.3, 130.1, 130.0 (x2), 129.9 (x4), 129.8 (x4), 129.5, 129.4,
129.3,129.2,129.1, 129.0, 128.6 (x3), 128.5 (x2), 128.4, 128.3, 128.1, 126.3, 124.3, 119.4 (x2), 119.2 (x2),
115.3 (x2), 98.5 (x2), 71.5, 71.1, 70.5 (x6), 69.5, 69.4 (X2), 68.8 (X2), 66.6 (X2), 62.8 (X2), 54.4, 52.0, 41.5,
36.9,33.0 (x2), 31.1, 29.8, 28.5 (x2), 22.9. HRMS (ESI-QqTOF) m/z: Calc. for C119H;02BF2NOo5 [M+H]+
1956.69925, found 1956.69249.; Calc. for C119H101BF2NgNaO,s [M+Na]+ 1978.68119, found 1978.70314.

Compound 13: Olefin 10 (25 mg, 0.015 mmol), dissolved in CH,Cl, (2 mL), was reacted according
to the general method for the CM reaction. The residue was purified by flash silica gel column
chromatography (Hexane:EtOAc, 1:1) to give 13 (11 mg, 44%). H-NMR (500 MHz; CDCl3): 8.11-7.74
(m, 38H), 7.56-7.08 (m, 56H), 6.65 (m, 2H), 6.55 (m, 2H), 6.43-6.39 (m, 4H), 6.18 (t, ] = 10.1 Hz, 4H),
5.91-5.85 (m, 4H), 5.70 (bs, 4H), 5.52-5.42 (m, 6H), 5.11 (bs, 4H), 4.78-4.75 (m, 4H), 4.68-4.53 (m, 8H),
3.91-3.85 (m, 4H), 3.47-3.40 (m, 4H), 2.86-2.80 (m, 4H), 2.08-1.96 (m, 4H), 1.51-1.38 (m, 8H). > C-NMR
(125 MHz; CDCl3): 166.1 (x4), 165.5 (x4), 165.4 (x4), 165.3 (x4), 145.3 (x4), 145.2 (x4), 143.9 (x4), 143.2
(x4),135.3 (x4), 135.2 (x4), 134.5 (x4), 134.4 (x4), 133.4 (x4), 133.3 (x4), 133.2 (x4), 133.1 (x4), 132.3 (x2),
131.1 (x2), 131.0 (x2), 130.5 (x4), 130.3 (x4), 130.2 (x4), 130.1 (x6), 130.0 (x6), 129.9 (x8), 129.8 (x4), 129.7
(x4), 129.5 (x4), 129.3 (x4), 129.2 (x4), 129.1 (x4), 129.0 (x4), 128.6 (x4), 128.5 (x4), 128.4 (x3), 128.3 (x3),
128.1 (x2), 119.1 (x4), 98.5 (x4), 71.4 (x2), 71.2 (x2), 70.6 (X8), 69.4 (x4), 66.6 (x4), 62.9 (x4), 51.6 (X2),
33.6 (X2),29.9 (x4), 28.2 (x2). YF-NMR (376 MHz; CDCl;): —144.7 (dq, Jgr = 103 Hz, Jp.f = 27.1 Hz),
~146.7 (dq, Jgr = 103 Hz, Jp.r = 28.0 Hz). ''B-NMR (128 MHz; CDCl3): 0.16 (t, J5-f = 28.8 Hz). HRMS
(ESI-QqTOF) m/z:Calc. for C188H161B2F4N10N8040 [M+Na]+ 3319.08679, found 3319.10065. Unreacted
olefin 10 (11 mg, 44%) could also be recovered.

Compound 14: A solution of compound 13 (23 mg, 0.007 mmol) in MeOH-CH,Cl, (V:V/2:1, 4 mL)
solution was treated with NaOMe (24 mg, 0.45 mmol, 3 equiv/OBz). After stirring at room temperature
for 12 h, the solution was neutralized with ion-exchange resin (H+), then filtered and concentrated.
The residue was purified by column chromatography on silica gel (EtOAc/MeOH/H,0: 7/2/1) to give
14 (9.8 mg, 90%). 'H-NMR (500 MHz; CD30D): 7.95 (s, 2H), 7.65-7.35 (m, 12H), 6.61-6.51 (m, 8H),
5.51 (m, 4H), 5.30-5.20 (m, 2H), 4.64 (s, 4H), 3.81-3.48 (m, 28H), 3.13-3.00 (m, 4H), 2.64-2.46 (m, 4H),
1.83 (m, 4H), 1.33-1.08 (m, 8H). 13C-NMR (125 MHz; CD;0D): 146.6 (x2), 145.0 (x2), 137.2 (x2), 137.1
(x2), 135.4 (x2), 134.5 (x2), 131.8 (x4), 131.6 (x4), 131.0 (x6), 129.5 (x4), 124.8 (x4), 119.9 (x4), 102.3
(x2), 102.2 (x2), 74.8 (x4), 72.7 (x4), 72.0 (x4), 71.0 (X2), 68.6 (x4), 62.7 (x4), 54.8 (x2), 42.3 (x2), 32.7
(X2), 30.7 (x2), 28.9 (x2), 23.7 (x2). YF-NMR (376 MHz; CD30D): No signals observed. ''B-NMR
(128 MHz; CD30D): 1.45 (bs). HRMS (ESI-QqTOF) m/z: Calc. for C74Hg3ByN19Op4 [M+H]+ 155.65503,
found 1551.66285.
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3.2. Spectroscopy

The photophysical properties were registered in diluted solutions (around 2 x 10~ M) prepared
by adding the corresponding solvent (spectroscopic grade) to the residue from the adequate amount of
a concentrated stock solution in acetone (compounds 10, 12, and 13) or methanol (compound 14). UV-Vis
absorption and fluorescence spectra were recorded on a Varian model CARY 4E spectrophotometer and
a SPEX Fluorolog 322 spectrofluorimeter, respectively, using quartz cuvettes with an optical pathway of
1 ecm. Fluorescence quantum yield (¢) was obtained by using the commercial PM546 dye as reference
(¢" = 0.85 in ethanol). Radiative decay curves were registered with the time correlated single-photon
counting technique (Edinburgh Instruments, model FL920), equipped with a microchannel plate
detector (Hamamatsu C4878) of picosecond time-resolution (20 ps). Fluorescence emission was
monitored at the maximum emission wavelength after excitation by means of a diode laser (PicoQuant,
model LDH470) with 150 ps full width at half maximum (FWHM) pulses. The fluorescence lifetime (7)
was obtained after the deconvolution of the instrumental response signal from the recorded decay
curves by means of an iterative method. The goodness of the exponential fit was controlled by statistical
parameters (chi-square and the analysis of the residuals).

Supplementary Materials: Supplementary materials are available online. Figures S1-S26: Copies of 1D and 2D
NMR spectra for all compounds.
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