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Abstract

Progressive increases in ethanol consumption is a hallmark of alcohol use disorder (AUD).

Persistent changes in brain gene expression are hypothesized to underlie the altered neural

signaling producing abusive consumption in AUD. To identify brain regional gene expression

networks contributing to progressive ethanol consumption, we performed microarray and

scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing

chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral

ethanol consumption. This model has previously been shown to produce long-lasting

increased ethanol consumption, particularly when combining oral ethanol access with

repeated cycles of intermittent vapor exposure. The interaction of CIE and oral consumption

was studied by expression profiling and network analysis in medial prefrontal cortex, nucleus

accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the

amygdala. Brain region expression networks were analyzed for ethanol-responsive gene

expression, correlation with ethanol consumption and functional content using extensive bio-

informatics studies. In all brain-regions studied the largest number of changes in gene expres-

sion were seen when comparing ethanol naïve mice to those exposed to CIE and drinking. In

the prefrontal cortex, however, unique patterns of gene expression were seen compared to

other brain-regions. Network analysis identified modules of co-expressed genes in all brain

regions. The prefrontal cortex and nucleus accumbens showed the greatest number of mod-

ules with significant correlation to drinking behavior. Across brain-regions, however, many

modules with strong correlations to drinking, both baseline intake and amount consumed

after CIE, showed functional enrichment for synaptic transmission and synaptic plasticity.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0233319 May 29, 2020 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Smith ML, Lopez MF, Wolen AR, Becker

HC, Miles MF (2020) Brain regional gene

expression network analysis identifies unique

interactions between chronic ethanol exposure and

consumption. PLoS ONE 15(5): e0233319. https://

doi.org/10.1371/journal.pone.0233319

Editor: Doo-Sup Choi, Mayo Clinic College of

Medicine, UNITED STATES

Received: January 21, 2020

Accepted: May 1, 2020

Published: May 29, 2020

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All processed data

are contained within the manuscript and

Supporting Information files. Additionally, raw data

and metadata for microarray data have been

deposited in the GEO database (https://www.ncbi.

nlm.nih.gov/geo/) with accession #GSE143419.

These data are currently publicly available.

Funding: This work was supported by NIH grants

RC1 AA019138 (HCB and MFM), U01 AA016667

(MFM), P50 AA022537 (MFM), P20 AA017828

(MFM), F31AA023134 (MS), U01 AA014095

http://orcid.org/0000-0003-2542-2202
http://orcid.org/0000-0002-1532-584X
https://doi.org/10.1371/journal.pone.0233319
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233319&domain=pdf&date_stamp=2020-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233319&domain=pdf&date_stamp=2020-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233319&domain=pdf&date_stamp=2020-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233319&domain=pdf&date_stamp=2020-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233319&domain=pdf&date_stamp=2020-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233319&domain=pdf&date_stamp=2020-05-29
https://doi.org/10.1371/journal.pone.0233319
https://doi.org/10.1371/journal.pone.0233319
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Introduction

Alcohol use disorder (AUD) is a highly significant public health issue. The condition contrib-

utes to over 60 types of diseases, and is responsible for over 2 million deaths worldwide every

year [1, 2]. A hallmark of AUD is progressive, abusive ethanol consumption over time. This

increase in ethanol consumption is thought to be due to neurobiological adaptations induced

by ethanol itself, and the repeated occurrence of ethanol withdrawal [3]. Previous studies in

humans and animal models of chronic alcohol exposure have led to the hypothesis that

changes in gene expression are a major molecular mechanism contributing to physiological

and behavioral alterations accompanying AUD [4–7].

Technologies such as microarrays have allowed for the study of the genome-wide effects of

ethanol exposure on mRNA expression [4], and scale-free network analysis provides a means

to organize transcriptome data into networks of co-expressed genes representing functional

pathways [8–12]. Further, gene-phenotype correlations allow for the identification of both

individual genes and gene networks associated with dependent variables such as ethanol con-

sumption. Using such approaches, it may be possible to identify molecular network functions

contributing to increased drinking behavior seen with chronic ethanol exposure, and to pin-

point candidate genes whose expression correlates with consumption; thus identifying new

potential therapeutic targets for the treatment of AUD.

Recent studies provide substantial predictive validation of new animal experimental models

for the discovery of therapeutic targets in the treatment of AUD [13–16]. Chronic intermittent

ethanol vapor exposure (CIE) in rodents is one such model, providing long-term intermittent

intoxicating ethanol exposure. As a part of this paradigm, mice or rats experience repeated

cycles of high blood ethanol levels provided by vapor exposure followed by withdrawal, similar

to behavioral patterns seen in alcoholics [17]. The CIE by vapor chamber model has been

shown to cause neurochemical and structural changes at the synapse and increases in ethanol

consumption. Our laboratories have also previously identified complex brain region-specific

temporal patterns of gene expression changes upon withdrawal from CIE [11, 18]. In mouse

models, providing limited access 2-bottle choice ethanol consumption in between cycles of

ethanol vapor exposure has been shown to more rapidly and significantly increase ethanol

consumption [19]. The molecular mechanisms underlying this combined action of voluntary

oral ethanol consumption and cycles of high dose ethanol withdrawal on ethanol consumption

are unknown but could provide important directions for possible intervention in the progres-

sion from social to abuse drinking [19, 20]. Previous studies of gene expression with CIE in

C57BL/6J mice have focused on differential gene expression during early withdrawal [21], or

on RNA networks during ethanol exposure and withdrawal associated with cell type-specific

gene expression [18]. This current study explores the relationship between high-dose ethanol

vapor exposure, intermittent drinking, and withdrawal in an attempt to identify mechanisms

by which this model leads to progressive increases in ethanol intake.

This manuscript presents a detailed analysis of gene expression network-level changes

caused by CIE exposure with or without intermittent oral ethanol consumption, across multi-

ple brain-regions using Weighted Gene Correlated Network Analysis (WGCNA) [22]. The

brain-regions studied have been associated in numerous studies with the development of

AUD [15, 23, 24]. By combining statistical analysis for genes regulated by ethanol consump-

tion, CIE, or the combination, we identify brain-region selective expression networks respond-

ing to particular ethanol exposure models. Specifically, we show that prefrontal cortex (PFC)

and bed nucleus of the stria terminals (BNST) showed prominent responses to CIE and drink-

ing, but the nucleus accumbens (NAC) and hippocampus (HPC) were primarily responsive to

high-dose ethanol vapor exposure alone, while gene expression in the central nucleus of the
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amygdala (CeA) may be particularly altered by ethanol withdrawal. Furthermore, we identified

expression networks that correlated with increased ethanol consumption caused by cycles of

CIE and drinking, suggesting mechanistic relationships. We also demonstrate that some of the

most strongly correlated genes are those related to synaptic transmission and synaptic plastic-

ity. Together, our findings contribute substantial new knowledge to our understanding of

brain regional gene network adaptations contributing to brain plasticity during various stages

of AUD.

Materials and methods

Animals

Adult male C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME,

USA) at 10 weeks of age. Mice were kept under a 12-hour light/dark cycle and given free access

to water and standard rodent chow (Harland, Teklad, Madison, WI). Mice were kept on corn-

cob bedding (#7092a and #7902.25 Harland, Teklad, Madison, WI). All studies were con-

ducted in an AALAC-accredited animal facility, and approved by the Institutional Animal

Care and Use Committee at Medical University of South Carolina (MUSC). All experimental

and animal care procedures met guidelines outlined in the NIH Guide for the Care and Use of

Laboratory Animals.

Chronic intermittent ethanol (CIE)

Studies were designed to determine genomic responses and interactions between two different

ethanol exposure models: intermittent cycles of ethanol vapor exposure in inhalation cham-

bers (CIE), and oral consumption of 15% (v/v) ethanol in a limited access (2 h/session) para-

digm. Mice were divided into 4 treatment groups (n = 12/group): the “CIE Drinking” group

received inhaled ethanol in the vapor chambers followed by 2-bottle choice ethanol drinking

in between vapor exposure cycles; the “Air Drinking” group received only air in the vapor

chambers, but had 2-bottle choice ethanol drinking between CIE cycles; the “CIE NonDrink-

ing” group received inhaled ethanol in the vapor chambers but only water access in between

CIE cycles; and the “Air NonDrinking” group remained ethanol naïve with air exposure in

vapor chambers and only water consumption between CIE cycles. Following a 2-week acclima-

tion period, mice in the CIE Drinking and Air Drinking groups underwent 6-weeks of 2-bottle

choice drinking to establish baseline drinking levels. The 2-hr limited access session to ethanol

(15 v/v) vs. water started 30 min before lights off. Ethanol and water intake for each individual

mouse was measured daily. Following 6-weeks of baseline drinking, mice were placed in Plexi-

glass inhalation chambers (60x36x60 cm) 16 hours/day for 4 days. Ethanol was volatilized with

an air stone submerged in 95% ethanol. Vapor chamber ethanol concentrations were moni-

tored daily and air flow was adjusted to ethanol concentrations within 10–13 mg/l air. This

ethanol vapor concentration has been shown to yield stable blood ethanol concentrations

(175–225 mg/dL) in C57BL/6J mice [25]. Before each vapor chamber session, intoxication was

initiated in the CIE group by administration of 1.6 g/kg ethanol and 1 mmol/kg pyrazole intra-

peritoneally (i.p.) at a volume of 0.02 ml/g body weight. Pyrazole is an alcohol dehydrogenase

inhibitor used to stabilize blood ethanol concentrations. All mice received the same number

and timing of pyrazole injections prior to final removal from the inhalation chambers with

control mice receiving saline and pyrazole (i.p.), also at a volume of 0.02 ml/g body weight,

prior to being placed into control vapor chambers. Control vapor chambers delivered only air

without ethanol vapor. After 4 days in the inhalation chambers, mice underwent a 72-hour

period of total abstinence from ethanol. Following the abstinence period, mice in the CIE

Drinking and Air Drinking groups were given 2-bottle choice drinking for 2 hours per day for
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5 days. A total of 4 cycles of CIE-abstinence-drinking were performed. After the end of the 4th

cycle mice were sacrificed on the 5th drinking day before receiving ethanol/water access on

that day at the time they received 2-bottle choice drinking all previous drinking days (Fig 1).

No animals had visible signs of ill health and there was no animal mortality during the behav-

ioral treatment experimental manipulations.

Tissue harvesting, RNA isolation, and microarray hybridization

Mice were sacrificed by decapitation, brains were immediately removed from the skull, and

brain-regions (prefrontal cortex, PFC; nucleus accumbens, NAC, basal nucleus of stria termi-

nalis, BNST; central nucleus of amygdala, CeA; and hippocampus, HPC) dissected as previ-

ously described [21]. Tissues were stored at -80˚C until RNA isolation. Total RNA was

extracted using the RNeasy Mini Kit (Qiagen Valencia, CA). Affymetrix GeneChip1Mouse

Genome 430, type 2 arrays were used to measure gene expression. Sample preparation, hybrid-

ization, and array scanning were performed at the MUSC ProteoGenomics Core Facility

according to procedures optimized by Affymetrix (Santa Clara, CA, USA). Each brain-region

was processed separately with treatment groups randomized to minimize batch effects. Array

Fig 1. Behavioral and genomic data analysis experimental designs. A) Schematic representation of CIE and

drinking experimental design. B) Flow chart detailing step-by-step procedures in genomic data analysis.

https://doi.org/10.1371/journal.pone.0233319.g001
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data was stored in CEL file format, and sent to Virginia Commonwealth University (VCU) for

analysis.

Microarray analysis

Affymetrix GeneChip1Mouse Genome 430, type 2 arrays were analyzed with The R Project

for Statistical Computing (http://www.r-project.org/). Microarray quality was assessed by

RNA degradation, average background, percent present probesets, and multi-dimensional

scale plots (MDS; first principal component by second principal component). Arrays showing

low quality measures, or that appeared to be outliers on MDS analysis, were removed from the

dataset. The following final number of microarrays were retained for further analysis by

LIMMA and WGCNA: PFC– 47, NAC– 47, HPC– 42, CeA– 43, BNST– 45. The final number

of biological replicates within each brain region treatment group, after eliminating arrays that

did not pass quality control, ranged from 8–12. All brain region treatment groups had n = 12

microarrays pass quality control except for the following: PFC—Control Drinking n = 11;

NAC–CIE Drinking n = 11; HPC–Control Drinking n = 11, CIE NonDrinking n = 11, Control

NonDrinking n = 8; CeA—CIE NonDrinking n = 11, Control NonDrinking n = 8; BNST–CIE

NonDrinking n = 11, Control NonDrinking n = 10. Background correction using Robust

Multi-array Average (RMA) and quantile normalization was performed using the affy package

for R [26, 27]. Each brain-region was normalized separately. ComBat by RNA hybridization

batch was used to correct for any batch effects present in the data [28]. Microarray data has

been submitted to the GEO database (accession number: GSE143419) for public access follow-

ing publication of this manuscript.

CIE and drinking responsive genes. Statistical analysis to identify significantly regulated

genes was performed using the limma package for R [29]. Two factor LIMMA looking at treat-

ment and drinking, as well as interaction, was used for initial analysis. However, we also ran

LIMMA with each treatment group as an independent variable. This was done based on the

fact that, over the course of the study, each group received a different overall dose of ethanol,

number of, and duration of exposure. Each possible comparison between the 4 treatment

groups was performed leading to 6 total comparisons labeled 1 through 6. Overall significance

was also measured by ANOVA. Multiple testing was adjusted using the Benjamini and Hoch-

berg false discovery rate method (FDR) [30]. False discovery rates equal to or less than 0.01

were considered significant.

Statistical analysis of 2-bottle choice drinking. Average ethanol intake (g/kg) was calcu-

lated across 5 drinking days of each week during the baseline-drinking period. During the test-

ing cycles, mice also drank for 5 days; therefore, average drinking across these 5 days was

calculated to represent drinking during each CIE cycle. Differences in drinking were deter-

mined by Two Way ANOVA with Repeated Measures using SigmaPlot 12.0 (Systat Software,

San Jose, CA, USA).

Weighted Gene Correlated Network Analysis. Weighted Gene Correlated Network

Analysis (WGCNA) was used to perform scale-free network topology analysis of microarrays

[22]. Such scale-free network approaches have been used previously to identify biological path-

ways influenced by ethanol exposure in mice [11, 12]. WGCNA was performed on each brain-

region separately using the WGCNA package for R [31]. Overall significance by one-way

ANOVA comparing all groups (FDR equal to or less than 0.01) was used to select probesets to

be included in network analysis. A probeset found to be significant by ANOVA in any brain

region was included to generate the overall probeset list used for WGCNA across all brain

regions. Standard WGCNA parameters were used for analysis with the exceptions of soft-

thresholding power and deep split. Appropriate soft-thresholding powers were selected using
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previously described methods [31]. A soft-thresholding power of 6 was used for all brain-

regions except the PFC for which a soft-thresholding power of 8 was used. WGCNA was per-

formed with deep-split values of 0–3. Deep-split value was selected by a multi-dimensional

scaling (MDS) plot, which displayed first and second principal components. Deep-split values

were to minimize module overlap on the MDS plot. Deep-split values of 3 were chosen for the

PFC, NAC, and CeA. For the HPC a deep-split of 2 was chosen, and a deep-split of 0 for the

BNST. Modules were validated based a permutation procedure outlined by Iancu et al. [32].

Briefly, the average topological overlap of probesets assigned to each module was compared to

the average topological overlap of 100 bootstrapped modules comprised of randomly sampled

probesets. Z-scores of average topological overlap between probesets assigned to the module,

and modules comprised of random probesets were used to calculate p-values and false discov-

ery rates (FDR). Modules with FDR values� 0.2 were considered validated.

WGCNA-drinking correlation. Modules identified by WGCNA were related to drinking

data by Spearman Rank correlation using the module eigengene as previously described [33,

34]. Individual probesets were also correlated to drinking data with the Spearman Rank

method. These correlations were then used to identify modules enriched in genes whose

expression showed systemic relationships with drinking behavior across 4 cycles of CIE with

2-bottle choice drinking.

Module disruption. Changes in network structure were measured based on the module

disruption method outlined by Iancu et al. [35]. This method was adapted from the module

preservation method [36], which examines module statistics across randomly selected network

nodes (genes). The module disruption method looked at a set of bootstrap networks (n = 200)

generated by randomly selecting a subset of samples without regard to treatment group. Con-

nectivity statistics as described by WGCNA [36] were then generated for each random net-

work. The average correlation of each network’s intramodular connectivity (kIM) and total

network connectivity (kME) to that for all other randomly generated networks was calculated.

These values were then compared to the correlation of intramodular connectivity (cor.kIM)

and total connectivity (cor.kME) between two treatment groups. For the purposes of this

study, we compared the CIE Drinking group to the Air NonDrinking group. Difference in cor-

relation between treatment groups, and all bootstrap networks were quantified using a Z score:

Z ¼ obs � μ=s:

obs = Correlation between network statistic between treatment groups.

μ = Average correlation between network statistic for comparisons of 200 random networks.

σ = Standard deviation of correlation between network statistic for comparisons of 200 ran-

dom networks.

In accordance with Iancu et al. [35], modules with Z scores less than -2 were considered sig-

nificantly disrupted (see S11 Table).

Bioinformatics

Modules identified by WGCNA were examined for function using publicly available bioinfor-

matics resources. The Functional Annotation Chart tool from DAVID (http://david.abcc.

ncifcrf.gov/) [37] was used to identify biological pathways highly represented by genes grouped

into each module. Gene Ontology terms were then summarized by semantic similarity using

REVIGO (revigo.irb.hr/). GeneMANIA (http://www.genemania.org) was also used for func-

tional analysis through use of GO process constituent genes as query lists. GeneMANIA mines

public database and publication data to identify known associations between genes and their
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protein products. Co-expression modules identified in this dataset were also compared to

those identified in corresponding brain-regions in a previously published study from our labo-

ratory of the time-dependent effects of multiple cycles of CIE by vapor chamber [11]. This

comparison was performed using WGCNA’s userListEnrichment() function, utilizing hyper-

geometric overlap to determine significance of enrichment [31]. Hypergeometric overlap p-

values were adjusted for multiple testing using false discovery rates [30]. Module overlaps were

considered significant at a FDR� 0.05. Since all brain-regions in this study used RNA from

whole tissue samples, modules were also examined for enrichment for genes expressed in spe-

cialized cell-types [38] found in brain (neurons, astrocytes, and oligodendrocytes) to deter-

mine whether any identified modules represented specific cell-type gene expression changes

within a brain-region [39]. The userListEnrichment() function was also used for cell-type

enrichment analysis, with Bonferroni corrected p-values� 0.05 considered significant.

Results

2-bottle choice drinking

Consistent with previous behavioral studies of CIE combined with ethanol consumption [19],

Two Way ANOVA with Repeated Measures revealed significant differences in ethanol intake

(p-value� 0.05) between the CIE Drinking and Air Drinking groups after the first, third, and

fourth vapor chamber session. After the second vapor chamber cycle, the CIE Drinking group

decreased ethanol intake compared to the first vapor chamber cycle, therefore, at this time-

point, there was no significant difference in amount of ethanol consumed between CIE Drink-

ing and Air Drinking groups. However, after the third and fourth vapor chamber sessions, the

CIE Drinking group drank significantly more ethanol than the Air Drinking group (Fig 2; S1

Table). Interestingly, both the CIE Drinking and Air Drinking groups drank significantly

more, compared to baseline, after only one session in the vapor chamber (Fig 2; S1 Table).

This suggests that exposure to the air inhalation chambers may affect ethanol consumption.

However, animals exposed to ethanol vapor during inhalation chamber sessions consumed

significantly more ethanol, indicating that prolonged exposure to intoxicating levels of ethanol

is the major driver of changes in drinking behavior.

Gene expression with CIE and drinking

To define molecular mechanisms contributing to the actions of chronic ethanol vapor expo-

sure and intercurrent oral ethanol intake on escalating ethanol consumption seen in Fig 2, we

performed extensive microarray studies across brain regions implicated in CIE through our

prior genomic studies [11, 21]. Statistical analysis of microarray data with LIMMA found

more significant differences in gene expression when each treatment group was treated as an

independent group (Table 1). Significant differences in gene expression were found between

each of the four treatment groups in the PFC, suggesting prominent treatment-specific

responses in that brain region. Other brain regions, however, showed very different patterns of

differential gene expression. In the NAC, HPC, BNST, and CeA, significant differences in gene

expression were seen only seen with Comparison 1 (CIE Drinking vs. Air Drinking), Compari-

son 3 (CIE Drinking vs. CIE NonDrinking), and Comparison 4 (CIE Drinking vs. Air Non-

Drinking) (Table 1; S2 Table). Examining overlap between these comparisons revealed that a

substantial number of genes were significant across all 3 comparisons, or between any combi-

nation of 2 comparisons in the PFC, BNST, and CeA. However, in the NAC and HPC, the

majority of overlap was between Comparison 4 and Comparison 1 (Fig 3). Across NAC, HPC,

BNST and CeA, the largest number of differentially expressed genes was seen between Com-

parison 4, the CIE Drinking group vs. the ethanol naïve Air NonDrinking group (Table 1).
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These four regions, however, did show significant differential gene expression in Comparison

1 and Comparison 3 (Table 1). This finding indicates an interaction between prolonged expo-

sure to inhaled ethanol and voluntary intermittent drinking. Unique to the PFC, large expres-

sion differences were seen across all comparisons but Comparison 4 (CIE Drinking vs. Air

NonDrinking) had the smallest number of changes, in contrast to other brain regions (Table 1;

S2 Table).

Weighted Gene Correlated Network Analysis

To identify networks of coordinately regulated genes that might point to specific biological

functions, we performed WGCNA analysis independently across all brain regions. To limit the

Table 1. Differentially expressed probesets and genes for comparisons across all treatment groups.

Comparison1 Comparison2 Comparison3 Comparison4 Comparison5 Comparison6

CIE Drinking vs. Air

Drinking

CIE NonDrinking vs. Air

NonDrinking

CIE Drinking vs. CIE

NonDrinking

CIE Drinking vs. Air

NonDrinking

CIE NonDrinking vs.

Air Drinking

Air Drinking vs. Air

NonDrinking

PFC 840 (775) 569 (527) 843 (764) 325 (306) 759 (705) 629 (573)

NAC 127 (122) 0 (0) 9 (9) 1219 (1069) 1 (1) 0(0)

HPC 549 (502) 0 (0) 37 (37) 1615 (1395) 0 (0) 0 (0)

BNST 419 (391) 0 (0) 178 (168) 543 (508) 0 (0) 0 (0)

CeA 78 (76) 0 (0) 721 (641) 818 (726) 0 (0) 0 (0)

Cells contain number of significant probesets and number of genes (parenthesis). Significant differential expression: LIMMA group comparisons, FDR� 0.01.

https://doi.org/10.1371/journal.pone.0233319.t001

Fig 2. Ethanol intake in CIE and air control mice. Statistical difference in ethanol intake measured by two-way ANOVA with

repeated measures, � p-value� 0.05, �� p-value� 0.01.

https://doi.org/10.1371/journal.pone.0233319.g002
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WGCNA input to those genes showing some expression response to ethanol, we combined

LIMMA-positive gene lists across all brain regions as described in Methods and our prior stud-

ies [11]. WGCNA identified modules of co-expressed genes in all brain-regions. Module sizes

varied from over 3000 probesets to less than 35 (Table 2). Module validation using topological

overlap showed that most modules identified withstood permutation of constituent genes, as

indicated by Z-score false discovery rates� 0.2 (S10 Table). One module in the CeA, green yel-

low, did not show a significant false discovery rate, indicating that module may be the result of

spurious associations. Additionally, in each brain region, the FDR of topological overlap Z-

scores for the grey modules was 1 as expected, since WGCNA groups all genes which do not

show significant topological overlap with any other module into the grey module. When

WGCNA modules were interrogated by over-representation analysis for LIMMA-positive

genes from various treatment comparisons across brain regions, PFC showed the largest extent

of enrichment for LIMMA-positive genes across modules and these were generally distributed

across multiple treatment comparisons (Fig 4; S10 Table). In PFC 17 out of 21 modules,

excluding the Grey module, were enriched for LIMMA-positive results across at least one

comparison group. These generally included both CIE Drinking and CIE NonDrinking

groups. In contrast, other brain regions generally showed few modules enriched for LIMMA-

positive genes and these all involved treatment comparisons with CIE Drinking animals,

although these brain regions also did not have as many LIMMA-positive genes across multiple

treatment groups (Fig 4).

WGCNA module phenotypic correlations

To define WGCNA modules functionally related to ethanol drinking behaviors, we calculated

Spearman correlations for module eigengenes with phenotypic data collected across the course

of the experiment (Figs 5 and 8; S1–S3 Figs and S4 Table). Across brain regions, the highest

correlation between drinking data and module eigengene expression was seen with ethanol

Fig 3. Overlap between 3 treatment/drinking group comparisons in all brain-regions. Overlap Venn Diagrams of

differentially expressed genes in PFC, NAC, HPC, BNST, and CeA between comparison of the CIE Drinking group

and either the CIE control (CIE NonDrinking), drinking control (Air Drinking), or ethanol naïve control (Air CIE

NonDrinking). Significant differential expression: LIMMA FDR� 0.01.

https://doi.org/10.1371/journal.pone.0233319.g003
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intake with after CIE cycle 4, and with change in ethanol intake between baseline and CIE

cycle 4. The PFC and NAC showed the largest number of modules with highly significant cor-

relation to drinking (Figs 5 and 8). The HPC, BNST, and CeA did not show as many strong

correlations to drinking, but certain modules showed module-phenotype correlations with sig-

nificant p-values (�0.05) at specific session time-points (S1–S3 Figs).

Module disruption by CIE drinking

In addition to identifying network modules over-represented for LIMMA-positive genes or

correlating with ethanol behavioral phenotypes as above, we also identified networks showing

Table 2. Module names and sizes for each brain region.

Brain Region Module Color Module Size Module Color Module Size Module Color Module Size

PFC Black 250 Grey60 49 Red 422

(n = 22) Blue 1926 Light cyan 64 Royal blue 37

Brown 1588 Light green 43 Salmon 74

Cyan 71 Light-yellow 40 Tan 81

Dark red 33 Magenta 108 Turquoise 1943

Green 513 Midnight blue 66 Yellow 771

Green yellow 87 Pink 192

Grey 1828 Purple 98

NAC Black 304 Green yellow 192 Purple 204

(n = 25) Blue 1406 Grey 550 Red 490

Brown 1369 Grey60 66 Royal blue 44

Cyan 103 Light cyan 96 Salmon 118

Dark green 40 Light green 63 Tan 127

Dark grey 33 light yellow 52 Turquoise 2339

Dark red 42 Magenta 212 Yellow 1107

Dark turquoise 38 Midnight blue 97

Green 975 Pink 220

HPC Black 276 Grey 461 Salmon 72

(n = 16) Blue 1856 Magenta 165 Tan 150

Brown 1735 Midnight blue 45 Turquoise 2653

Cyan 54 Pink 184 Yellow 630

Green 461 Purple 179

Green yellow 165 Red 422

BNST Black 387 Green yellow 174 Red 808

(n = 15) Blue 1451 Grey 901 Salmon 72

Brown 1087 Magenta 201 Tan 150

Cyan 57 Pink 239 Turquoise 2653

Green 829 Purple 180 Yellow 1080

CeA Black 251 Grey60 35 Red 755

(n = 19) Blue 2010 Light cyan 43 Salmon 72

Brown 1202 Light green 34 Tan 89

Cyan 70 Magenta 187 Turquoise 2205

Green 931 Midnight blue 59 Yellow 1035

Green yellow 96 Pink 245

Grey 802 Purple 125

Module size shown in number of probesets. Module names are arbitrary colors assigned by WGCNA and do not indicate similar modules across brain regions.

https://doi.org/10.1371/journal.pone.0233319.t002
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the largest degree of network structure disruption caused by CIE. Such metrics can identify

more subtle changes in expression networks caused by a given treatment. For the purposes of

focusing on the presumed most extreme changes, as described in Methods, we performed net-

work disruption analysis between the Air NonDrinking and CIE Drinking groups. Network

disruption was calculated for both the average correlation of intramodular connectivity (cor.

kIM) and total connectivity (cor.kME) with full results in S11 Table. The Z_cor.kIM values

gave larger numbers of disrupted modules but largely overlapped with Z_cor.kME results, and

are thus discussed further here and shown in Table 3. Larger modules, in general, showed

more significant disruption scores (Pearson r = -0.696, p = 0.0013) but there was not a strict

correspondence between the number of modules and their size vs. the number significantly

disrupted by CIE treatment across brain regions. NAC showed the largest number and per-

centage of disrupted modules (17/24), followed by CeA (9/18), BNST (5/14), HPC (4/15) and

then PFC (4/21). Thus, despite NAC only showing two modules with over-representation for

Air NonDrinking vs. CIE Drinking regulated genes, that brain region showed the greatest per-

centage of modules with connectivity disrupted by CIE. This suggests a dissociation between

more subtle network-level responses to CIE versus robust CIE regulation of individual genes.

Bioinformatics analysis of WGCNA modules

Prefrontal cortex. As previously noted, the strongest correlations between ethanol intake

and modules in the PFC were seen after the 4th CIE cycle. The strongest correlations between

Fig 4. Overlap between WGCNA modules and all 6 treatment/drinking group comparisons in all brain-regions. Cell numbers indicate number of

overlapping probesets between module and significantly differentially expressed genes for each comparison (LIMMA p-value� 0.05). Cell color

indicates significant of overlap. Significant overlap: p-value� 0.05.

https://doi.org/10.1371/journal.pone.0233319.g004
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WGCNA modules and all intake measures were between change from baseline drinking after

CIE cycle 4 and eigengenes for the turquoise module (r = 0.8, p-value = 1e-12), the magenta

module (r = 0.65, p-value = 6e-7), and the grey60 module (r = -0.72, p-value = 9e-9) (Fig 5).

The magenta and turquoise modules showed Gene Ontology (GO) hits related to neuron

development and synaptic transmission (S5 Table). Specific genes within these GO categories

include Ngfr, Ppp1r9a, Fgfr1, Sox1, Slc1a3 (turquoise module), and Grin2b,Htt, Cacna1a,

Ppp3ca, Rims1 (magenta module). All of these genes, individually, show significant correlation

with change in drinking between baseline and CIE cycle 4 (S4 Table). The green module also

showed significant correlation to ethanol intake after CIE cycle 4, and to absolute and percent

change in ethanol intake between CIE cycle 4 and baseline (r = 0.49, p-value = 6e-4 with etha-

nol intake, r = 0.39, p-value = 0.009 with absolute change from baseline, r = 0.35, p-

value = 0.02 with percent change from baseline) (S4 Table). Looking at module eigengene val-

ues across samples further indicates that this module’s is driven by co-expression patterns,

across genes within the module, particularly between the CIE Drinking group and the other

treatment groups (Fig 6a). This module had significant enrichment for regulation of neuro-

transmission as indicated by several GO categories (Fig 6b). In addition, this module was sig-

nificantly enriched for genes involved in neuron ensheathment by myelin (GO: 0007272, GO:

0008366, GO: 0042552). Myelin genes within this module include Cd9, Lgi4, Cldn11, Olig2,

Gjc3, Gas3st1, andMbp (S3–S5 Tables). Additionally, the green PFC module contained the

astrocytic protein gene Gfap (S3 Fig), known to be involved in astrocyte-neuron communica-

tion and to influence myelin expression. Gfap showed a nearly 2-fold increase in expression

between the Control Drinking and CIE Drinking groups (S3 Fig). Using the myelin-related

genes from the green module as an input list, GeneMANIA validated that those genes have

Fig 5. Heatmap of correlation between PFC modules and ethanol intake. Module eigengene (ME, 1st principal component of gene expression) values

were correlated to ethanol intake measures. Cell color indicates strength of correlation (green = negative correlation, red = positive correlation).

https://doi.org/10.1371/journal.pone.0233319.g005
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shown co-expression, co-localization, or protein-protein interactions in previous published

studies (Fig 6c).

Module eigengene expression in the large turquoise module also indicated that this mod-

ule’s formation is driven by coexpression of genes between the CIE Drinking group and Air

NonDrinking groups (Fig 7a). This module showed a strong GO hit for chromatin modifica-

tion (GO:0016568). Genes in the turquoise module within this category include many well-

known chromatin modification genes such as Dnmt1, Dnmt3b,Hdac8, Bcor, Crebbp, Ctcf,
Bptf, Smarca5, and Smarcc1 [40–45] (Fig 7b). The grey60 module also showed a significant GO

hit for chromatin (GO:0000785). Genes within this category wereH1f0, Tcp1, and Klhdc3 (S5

Table). Of these genes, Hdac8, Bcor, Crebbp, Ctcf, Bptf, Smarca5, Smarcc1,H1f0, Tcp1, and

Klhdc3 were significantly correlated with change in baseline intake after CIE cycle 4 or with

ethanol intake after CIE cycle 4 (S3 Table).

Fig 6. Eigengene expression for each sample in PFC green module, Gene Ontology enrichment, connectivity of myelin genes. A) Eigengene (1st

principal component) value from each PFC sample. Red = CIE Drinking, Blue = Air Drinking, Pink = CIE NonDrinking, Light blue = Air

NonDrinking. B) Gene Ontology biological processes significantly enriched in the PFC green module, grouped by biological theme using REVIGO. C)

GeneMANIA network generated from PFC green module genes involved in myelination.

https://doi.org/10.1371/journal.pone.0233319.g006
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Fig 7. Eigengene expression for each sample in PFC turquoise module and connectivity of chromatin

modification genes. A) Eigengene (1st principal component) value from each PFC sample. Red = CIE Drinking,

Blue = Air Drinking, Pink = CIE NonDrinking, Light blue = Air NonDrinking. B) Connectivity, represented by

expression correlation, between genes involved in chromatin modification for each group. Line thickness and opacity

represent strength of connectivity between genes.

https://doi.org/10.1371/journal.pone.0233319.g007
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Nucleus accumbens. Patterns of module-ethanol intake correlations in the NAC were

more scattered than those seen in the PFC, but the strongest correlations were still seen with

intake after the 4th cycle of CIE (Fig 8). These modules were the royal blue (r = 0.74, p-

value = 3e-10 with ethanol intake, r = 0.67, p-value = 6e-8 with percent change from baseline),

and salmon modules (r = -0.79, p-value = 8e-13 with ethanol intake, r = -0.47, p-value = 6e-4

Fig 8. Heatmap of correlation between NAC modules and ethanol intake. Module eigengene (ME) values (1st principal

component of gene expression) were correlated to ethanol intake measures. Cell color indicates strength of correlation

(green = negative correlation, red = positive correlation).

https://doi.org/10.1371/journal.pone.0233319.g008

Table 3. Combined analysis of WGCNA module responses to ethanol.

Brain

Region

Module Disruption by Ethanol Ethanol Consumption Correlated Over-represented

Ethanol Regulated

Overlaps

PFC Brown, Green, Light Yellow, Turquoise Grey60, Light green, Magenta,

Midnight blue, Pink, Red, Salmon,

Tan, Turquoise

Black, dark red,

Turquoise

Turquoise

NAC Black, Blue, Brown, Dark green, dark red, Green, Grey60, light

green, light yellow, Magenta, midnight blue, Pink, Purple, Royal

blue, Tan, Turquoise, Yellow

dark red, Light cyan, Royal blue,

Turquoise, Yellow

Salmon, Turquoise dark red, Royal blue,

Turquoise, Yellow

HPC Blue, Salmon, Tan, Turquoise Black, Green yellow, Purple,

Turquoise, Yellow

Green, Turquoise Turquoise

BNST Black, Blue, Brown, Green, Yellow Red Blue Blue

CeA Black, Blue, Brown, Green, Purple, Red, Tan, Turquoise, Yellow Blue Blue, Green Blue, Green

Results show modules significant for Module Disruption (Z_cor.kIM� -2), correlation with Ethanol Consumption (p<0.01 for percent change vs. baseline after CIE

cycle 4), or over-representation for ethanol responsive genes by LIMMA analysis of Air NonDrinking vs. CIE Drinking (FDR<0.01). Overlap is indicated for modules

present in at least two analyses (bolded module names). Module names are arbitrary colors assigned by WGCNA and do not indicate similar modules across brain

regions.

https://doi.org/10.1371/journal.pone.0233319.t003
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with change in drinking from baseline). The royal blue module contained probesets for several

subunits of the ribosomal complex (Rps7, Rsp10, Rps13, Rps17, Rps26, Rpl12, Rpl28, Rpl32,

Rpl35, Rpl36, Rpl37a, Fau) indicating this module may play a role in regulation of protein syn-

thesis (S4 and S7 Tables). Whereas GO hits for cellular metabolic processes, such as glucose,

fumarate, glutamate, and aspartate processing, were seen in the salmon module (S6 Table).

The light yellow and yellow modules repeatedly showed significant correlation with both base-

line drinking, and with drinking after each cycle of CIE. In both of these modules, however,

this correlation decreased following the 4th CIE cycle. Finally, several modules (blue, light yel-

low, tan, magenta, salmon, and yellow) showed very strong correlation to baseline drinking.

Of these, the blue, light yellow, magenta, and yellow showed GO hits related to synaptic trans-

mission or synaptic plasticity (S6 Table). The magenta and tan modules contained genes

related to chromatin modification (Magenta: Ing4, Ing3,Hdac1, Rbbp4, Kat5. Tan:Hdac9,

Zbtb16), and development (Magenta: Rtn4, Sox9, Bmpr1b. Tan: Fgf9,Hdac9, Igfbp3, Zbtb16)

(S6 Table). Together, these modules indicate that, in addition to alterations in mRNA expres-

sion, CIE-induced changes in protein and metabolite populations in the NAC may be involved

in the observed increase in ethanol intake (Fig 2) [19].

Hippocampus. In the hippocampus, a noticeable pattern of module-intake correlation

was also seen in after the 4th cycle of CIE. In the green yellow, black, purple, and yellow mod-

ules significant correlations were seen with change in intake from baseline to CIE cycle 4. All

of these modules showed significant overlap with GO categories related to synaptic transmis-

sion (black, purple and yellow) or neuron development (purple, green yellow, and yellow) (S1

Fig; S7 Table). The pink and magenta modules showed significant correlation to percent

change in intake from baseline after CIE cycle 3 (pink module: r = 0.4, p-value = 0.009,

magenta module: r = 0.42, p-value = 0.006). Significant correlations with intake in CIE cycle 1,

and percent change from baseline intake were also seen in a few modules such as the yellow,

cyan, and brown. Like the yellow module, the brown and magenta modules showed GO hits

specifically for neuron development or synaptic transmission. GO analysis of the pink module

showed many hits related to electron transport chain regulation, and cell motility. However,

this module also showed significant overlap with two GO categories related to dendrite struc-

ture (GO:0043197, GO:0030425) (S7 Table). Genes from the pink module within these catego-

ries included Ppp1r9a, Fbxo2, and Gria3. Ppp1r9a correlated significantly with ethanol intake

after CIE cycle 1 and percent change from baseline to CIE cycle 1; and Fbxo2 and Gria3 signifi-

cantly correlated with percent change from baseline to CIE cycle 3 and CIE cycle 4 (S1 Fig).

Bed nucleus of the stria terminalis. Fewer compelling intake correlations were seen in

the BNST compared to other brain-regions. However, the turquoise and black modules

showed very strong correlations to intake after the first cycle of CIE (black module: r = 0.57, p-

value = 4e-05 with ethanol intake, turquoise module: r = -0.55, p-value = 9e-05 with ethanol

intake). Both of these modules showed multiple GO hits for synaptic transmission (S2 Fig; S8

Table). The black module also contained 4 gene ontology hits related to myelination

(GO:0042552, GO:0008366, GO:0007272, GO: 0019911) (S8 Table). Genes contained within

these categories included some of the known myelin building blocks such as myelin basic pro-

tein (Mbp), myelin-associated oligodendrocyte basic protein (Mobp), galactose-3-O sulfotrans-

ferase 1 (Gal3st1), oligodendrocyte transcription factor (Olig2), and Cd9 (Cd9) [46, 47].

Although most of these genes correlated with ethanol intake after CIE cycle 1, and with percent

change from baseline to CIE cycle 1 (S4 Table), very little change in mRNA expression, with

any of the 6 comparisons examined, was seen in the BNST (S3 Table). Compared to other

brain-regions, the BNST also showed fewer modules with strong correlations to intake after

CIE cycle 4. The red module is a notable exception, with a correlation coefficient of 0.55, and

p-value of 7e-05 with change in drinking from baseline. This module also showed significant
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overlap with several GO categories for synaptic transmission (S8 Table). Similar to the myelin-

related genes seen in the black module, however, most of the genes within these GO categories

did not show significant differences in mRNA expression across treatment groups (S3 Table).

In spite of these relatively level gene expression patterns, certain genes in this module did show

significant correlation with ethanol intake after CIE cycle 4 and percent change in drinking

from baseline to CIE cycle 4 (S2 Fig). These genes included ionotropic glutamate receptor sub-

units: Gria4, Grin2b and Grin3a. Metabotropic glutamate receptor 2 (Grm2) also correlated

significantly with ethanol drinking at CIE cycle 4 and percent change from baseline.

Central nucleus of the amygdala. Module-drinking correlations seen in the CeA were

sporadic, with few noticeable trends for correlation to a specific drinking measure. The two

strongest correlations observed were correlations between the blue module and percent change

from baseline and CIE cycle 4, and the green module with intake with CIE cycle 4 (S4 Fig).

Functionally, the blue module contained several genes related to ion-mediated synaptic trans-

mission such as Gria4, Grin2b, Grin1, Grid2, Kcnma1, Cacnb4, and Cacna1a (S9 Table). The

green module, however, showed many GO hits related to chromatin modification. Several of

the genes in these categories were the same as those seen in the PFC turquoise module such as

Bcor, Smarcc1, Smarca5, Bptf and Ctcf. Other known chromatin remodeling genes present in

the CeA green module included Smarca4, Ncor1, Rcor1, and Rbbp4. All of these genes except

Bptf, Rcor1, and Rbbp4 strongly correlated with ethanol intake after CIE cycle 4 (S9 Table).

This finding is, perhaps, not surprising considering the green module as a whole (as indicated

by module eigengene) also significantly correlated to ethanol drinking during the final CIE

cycle (S4 Fig).

Discussion

Through a systems biology approach we have characterized the transcriptome level response

to chronic intermittent ethanol by vapor chamber with and without 2-bottle choice drinking,

and identified modules of co-expressed genes in 5 regions of the mesocorticolimbic system

and extended amygdala. The CIE plus drinking model has been shown; both in this study and

in previous ones, to increase ethanol consumption with each successive vapor chamber cycle

(Fig 2) [19, 48].

Differential expression analysis with LIMMA showed that both CIE and drinking affect

gene expression in the PFC. Through overlap analysis between all comparisons of all 4 treat-

ment groups, our results further suggested that gene expression changes in the NAC and HPC

are primarily regulated by CIE, whereas in the PFC, BSNT, and CeA an interaction effect

between CIE and drinking is seen (Table 1; Fig 3). Differences across treatment categories

might simply reflect a linear or non-linear response to the total amount of ethanol exposure.

However, the nature of the CIE and drinking model also raises the possibility that withdrawal

time influences gene expression differences between the 4 treatment groups. The drinking

groups, at time of sacrifice, have been abstinent from ethanol for 22 hours, whereas the Non-

Drinking groups have been abstinent for roughly 8 days. Correlations seen between module

eigengenes (MEs) and ethanol intake, particularly CIE cycle 4 (Fig 3), are likely related to gene

expression changes during acute withdrawal and long-term withdrawal, indicating that

repeated cycles of high-dose ethanol exposure has a long term effect, both on voluntary intake,

and on brain gene expression.

Network analysis with WGCNA revealed specific patterns of correlated gene expression in

each brain region used in this study. This network-centric approach also allowed us to corre-

late both individual genes and modules of co-expressed genes directly to ethanol drinking. The

strongest correlations between gene co-expression modules and drinking were seen in the
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PFC and NAC. These results suggest that these brain regions may have the strongest influence

on the increase in drinking seen with CIE (Fig 2). The influence of the prefrontal cortex on

behaviors associated with alcohol use disorders such as increased ethanol consumption and

uncontrolled intake have been associated with this brain region’s role in impulse control and

compulsivity [49, 50]. The nucleus accumbens, however, has been hypothesized to impact eth-

anol drinking behavior due to its involvement in reward [51, 52]. Therefore, ethanol-respon-

sive gene expression changes in areas of the brain that control impulsivity and reward are

implicated by network analysis in the increase in drinking seen following repeated exposure to

intoxicating levels of ethanol.

One particularly striking finding was that those modules most strongly correlated with

drinking after CIE exposure were consistently overrepresented for genes involved in synaptic

transmission and synaptic plasticity (S5–S9 Tables). This finding is not unexpected, as ethanol

exposure has previously been shown to affect synaptic transmission, and synaptic architecture

in several of the brain regions studied in these experiments [15, 23, 24, 53, 54]. These findings

build on previous investigations into the molecular mechanisms of ethanol response in the

brain, to suggest that the effect of repeated, prolonged ethanol exposure on synaptic transmis-

sion and synaptic architecture may have a direct influence on behavior both in animal models

and human alcoholics. Specifically, correlated changes in expression of genes involved in syn-

aptic remodeling in the mesocorticolimbic system and extended amygdala, in response to

repeated cycles of CIE by vapor chamber, may underlie the observed increase in voluntary eth-

anol intake (Fig 2). In fact, recent research utilizing neuroimaging technologies have explored

the effect of alcohol addiction on brain structure and function, and the relation to drinking

behavior in humans [55, 56]. These studies have linked reduced grey matter volume in the

medial PFC with increased risk of relapse in people with AUD [57]. SPECT and PET scanning

have also shown correlations between decreased basal activity in the medial PFC during alco-

hol abstinence, as indicated by blood flow and glucose metabolism respectively, with poor

AUD treatment outcome [58, 59]. Neuroimaging studies in mouse models are fewer; however,

it is hypothesized based on previous comparative research, including those of the gene expres-

sion and behavioral response to ethanol [8, 24], that neuroplasticity changes in response to

chronic ethanol exposure are highly conserved between species. Indeed, such a hypothesis has

been employed in recent work using neuroimaging in rodent models to study the effect of eth-

anol exposure during gestation on fetal brain structure [60–62]. The results of our microarray

analyses, therefore, may help shed light onto the molecular mechanisms underlying both the

sustained increase in drinking observed with the CIE model, and, potentially, neuroadapta-

tions observed in the brains of humans. Further study is needed to establish such mechanisms,

and will be the topic of future research by this group.

Network analysis also identified modules in both the PFC and BNST enriched for myelin-

related genes (Fig 6; S5 and S8 Tables). In the prefrontal cortex, the green module showed sig-

nificant overlap with 3 GO categories related to myelination. Previous studies at our labora-

tory, as well as anatomical observations of the brains of human alcoholics, have suggested a

role for myelination in the PFC in response to both acute and chronic ethanol exposure [13,

63–66]. Fewer studies have taken place on myelination in the BNST; however, our analyses

identified the BNST black module as one with significant correlations to ethanol intake after

the 1st and 2nd CIE cycles. Although the BNST is a lesser-studied brain region in the myelin

field, this region has previously been associated with the negative reinforcing properties of

alcohol [24, 67]. Our findings suggest that repeated exposures to intoxicating ethanol may also

have an effect on myelination in other brain regions that have, up to this point, not been exam-

ined as often as other regions more commonly associated with ethanol related demyelination,

and that changes in myelin gene expression may be another mechanism underlying increased
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drinking. Future avenues of study will involve examining the effect of CIE by vapor chamber

on myelination in implicated brain regions, and on the effect of induced demyelination on vol-

untary ethanol intake with repeated exposures to prolonged levels of intoxicating ethanol.

Bioinformatic analysis also pointed to chromatin remodeling as a potential regulator of the

transcriptomic response to CIE. The PFC turquoise module and CEA green module both con-

tained genes involved in both DNA methylation [68] and members of known chromatin

remodeling complexes [69–71]. Smarcc1 has been associated with ethanol response in mouse

whole brain meta-analyses [72], and Smarca5 was found to be associated with alcohol response

in network analysis of post-mortem brain tissue from human alcoholics [8]. Indeed, ethanol’s

effects on epigenetic modifications to chromatin have been an area of intense study, both in

humans and rodent models, during recent years [8, 73–75]. These included a study from Dr.

Jennifer Wolstenholme at the Miles laboratory which found that chromatin modification

genes correlated with individual variation in ethanol consumption in C57BL/6 mice [75].

Based on our findings in the other brain-regions studied, we hypothesize that this reflects the

transcription level response in the brain to chronic ethanol exposure leading to downstream

transcriptional regulation such as the observed changes in genes related to synaptic transmis-

sion, synaptic plasticity, and myelination.

In summary, differential gene expression and scale-free network analysis of microarray

data after multiple cycles of CIE with and without intermittent access drinking has revealed

brain region and treatment specific changes. Differential expression in the PFC, CEA, and

BNST indicated an interaction effect between CIE and drinking; whereas in the NAC and

HPC, the primary effect came from CIE. Analysis of drinking patterns across multiple cycles

of CIE showed that both CIE and air control mice increase their drinking, however, mice

exposed to CIE drink significantly more than control. These results are in line with previous

studies [19], and indicate that the CIE paradigm consistently produces progressive, lasting

increases in voluntary ethanol intake in response to chronic high dose ethanol exposure. Fur-

thermore, we have used the capabilities of network analysis through WGCNA to attempt to

bridge the gap between gene expression and behavior by identifying co-expressed networks of

genes in each brain region, and then correlating those networks to ethanol drinking. This strat-

egy revealed that the most highly drinking correlated modules were seen in the PFC and NAC.

In both brain-regions, as well as those with fewer significant drinking correlations, those mod-

ules with the strongest correlations to drinking, particularly after the 4th CIE cycle, were

enriched for genes involved in synaptic transmission or synaptic plasticity. Modules from the

PFC and BNST also indicated that changes in myelin gene expression also strongly correlate to

changes in drinking. These results are of particular interest as previous studies from our group

have observed significant changes in myelin gene expression with acute ethanol exposure [4]

in mice and with chronic ethanol consumption in rhesus macaques [76]. Our results also sug-

gest a role for chromatin remodeling, particularly in the PFC and CEA, in the gene expression

response to chronic, prolonged ethanol exposure. Future studies will further explore the link

between chromatin remodeling and altered synaptic transmission, possibly leading to struc-

tural changes in the brain, such as altered myelination. Such changes may be mechanistically

important in the drinking behavior response to chronic intermittent ethanol exposure.

Supporting information

S1 Fig. Heatmap of correlation between HPC modules and ethanol intake. Eigengene values

(1st principal component of gene expression) were correlated to ethanol intake measures. Cell
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BNST. Gene Ontology categories, overlapping genes and significance values are shown for all
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Gene Ontology categories, overlapping genes and significance values are shown for all catego-
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S10 Table. Topological overlap statistics and results of overlap analysis between WGCNA
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(XLSX)

S11 Table. Module disruption results for all WGCNA modules. Module disruption results
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group and the Air NonDrinking group (mod.cor.kME), mean correlation of total connectivity

between all bootstrap networks (mean.boot.cor.kME), standard deviation of correlation of

total connectivity between all bootstrap networks (sd.boot.cor.kME), Z-score of correlation of
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drinking group and the Air NonDrinking group (mod.cor.kIM), mean correlation of within
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