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Abstract: Gallium-68 prostate-specific membrane antigen positron emission tomography
(68Ga-PSMA-PET) is a highly sensitive method to detect prostate cancer (PC) metastases. Visual
discrimination between malignant and physiologic/unspecific tracer accumulation by a nuclear
medicine (NM) specialist is essential for image interpretation. In the future, automated machine
learning (ML)-based tools will assist physicians in image analysis. The aim of this work was to
develop a tool for analysis of 68Ga-PSMA-PET images and to compare its efficacy to that of human
readers. Five different ML methods were compared and tested on multiple positron emission
tomography/computed tomography (PET/CT) data-sets. Forty textural features extracted from both
PET- and low-dose CT data were analyzed. In total, 2419 hotspots from 72 patients were included.
Comparing results from human readers to those of ML-based analyses, up to 98% area under the
curve (AUC), 94% sensitivity (SE), and 89% specificity (SP) were achieved. Interestingly, textural
features assessed in native low-dose CT increased the accuracy significantly. Thus, ML based on
68Ga-PSMA-PET/CT radiomics features can classify hotspots with high precision, comparable to
that of experienced NM physicians. Additionally, the superiority of multimodal ML-based analysis
considering all PET and low-dose CT features was shown. Morphological features seemed to be of
special additional importance even though they were extracted from native low-dose CTs.

Keywords: prostate cancer (PC); prostate-specific membrane antigen (PSMA); positron emission
tomography (PET); computed tomography (CT); machine learning (ML)

1. Introduction

Computer-aided diagnosis (CAD) based on artificial intelligence (AI) and machine learning (ML)
will revolutionize the process of image reading in radiology and nuclear medicine [1]. Innovative
tools will assist physicians in handling large data-sets of images more efficiently. A central issue in
this context will be the development of tools for the automated classification of lesions to pre-define
pathological findings following work-up by the physician. CAD was proposed as early as 1998 for
lung nodules in computed tomography (CT) examinations [2]. To date, many other applications have
been described—for example, in mammography [3] and positron emission tomography (PET) [4].
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More recently, radiomics features such as textural parameters became the focus of interest in the
analysis of imaging data in PET as well as in CT or magnetic resonance imaging (MRI). The significance
of textural features analysis in diagnosis and therapy response prediction using PET/CT has been
demonstrated by a large body of evidence [5–11].

In recent years, radiolabeled analogues of the prostate-specific membrane antigen (PSMA) were
developed for imaging of primary prostate cancer (PC) and PC metastases. Gallium-68 (68Ga) and
Fluorine-18 (18F)-labeled PSMA tracers are highly effective and show high detection rates, especially in
PC patients with biochemical recurrence [12–14]. Due to its high sensitivity, PSMA-PET/CT helps to
stratify patients in primary staging of PC for surgery or for systemic treatment by exclusion or detection
of metastases [15,16]. Therefore, PSMA-PET/CT has become the most important imaging modality,
especially for staging and restaging of PC. Thus, it is frequently performed at most comprehensive
cancer centers. However, for optimal therapy decisions, accurate scan interpretation is essential [17]
to guide the referring physician to handle challenging cases or to recommend appropriate work-up.
For standardization of reporting and reduction of reporting time, it would be of high interest to develop
AI-based tools for automatic discrimination of malignant lesions from physiological PSMA uptake.

Here, we report an innovative in-house programmed tool including five different ML algorithms
for the classification of lesions in PSMA-PET/CT images as pathological or physiological based on
analysis of textural features. Our data collective consists of 72 patients with 2419 PSMA-positive
findings. By means of the tool, it is possible to discriminate unspecific from malignant PSMA tracer
accumulations with similar sensitivity and specificity to trained nuclear medicine physicians.

2. Materials and Methods

2.1. Patients and Volume of Interest (VoI) Definition and Annotation

In total, 72 male patients with histologically confirmed prostate carcinoma who were referred
for 68Ga-PSMA PET/CT were included in this retrospective analysis. The patients′ ages ranged from
48 to 87 years, Gleason score ranged from 6 to 9 and serum PSA level from 4.0 ng/mL to 1840 ng/mL.
All patients had undergone previous treatments: 63 underwent radical prostatectomy, 11 received
local radiation treatment of the prostate, 69 had hormonal treatment, 56 received chemotherapy, and
47 underwent radiation treatment of bone or lymph node metastases. All patients were referred to
our department for follow-up staging, with the possibility of further nuclear medicine treatment
either with radium-223-dichloride or luthetium-177-PSMA. The scans were carried out between
November 2014 and February 2017 using a Biograph 2 PET/CT system (Siemens Medical Solutions,
Erlangen, Germany). Around 40 to 80 min after intravenous injection of 98 to 159 MBq in-house
produced 68GA-HBED-CC PSMA, a low-dose CT (16mAs, 130 kV) from the base of skull to mid-thigh
was acquired, followed by the PET scan acquired over the same area, with 3 or 4 min per bed position
depending on the body weight of the patient. CT data were reconstructed in 512 to 512 matrices
with 5 mm slice thickness. PET data were reconstructed in 128 by 128 matrices with 5 mm slice
thickness as well. An attenuation-weighted ordered subsets expectation maximization algorithm was
utilized for image reconstruction, including attenuation and scatter corrections as implemented by the
manufacturer. Written informed consent to the imaging procedure and for anonymized evaluation
of their data was obtained from all patients. Due to the retrospective character of the data analysis,
an ethical statement was waived by the institutional review board.

For each scan, all the hotspots have been identified and manually delineated consecutively by two
trained nuclear medicine (NM) physicians (both board-certified and with 7 and 3 years’ experience in
PET/CT) using InterView FUSION software V3.08.005 (Mediso Medical Imaging Systems, Budapest,
Hungary [18]) (see Figure 1). Hotspots were defined as focal uptake beyond the local background
without any specific threshold. To define each 3D hotspot, all its 2D counterparts were delineated in
subsequent slices. Hence, the hotspots were analyzed as fully connected 3D volumes. The hotspots
included malignant tissues in any organs and metastatic uptakes in bones or lymph nodes as well as
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physiological uptakes in kidneys, livers, etc., as well as benign or unspecific uptake, e.g., in the thyroid.
Per hotspot, a total of 80 (40 PET-based+40 CT-based) features were calculated by InterView FUSION
software (the standard set of radiomics features provided by the software). The features include first
and higher order statistics features (mean, max, kurtosis, etc.), shape-based features (max diameter
and volume), textural features (entropy, contrast, homogeneity, etc.), and volumetric zone and run
length statistics (grey-level non-uniformity, short run emphasis, etc.). See Table 1 for a detailed list of
the radiomics features. Afterwards, the ground truth labels were merged with the features calculated
by InterView software using our internal PET/CT scan annotator software (Python V2.7).
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Figure 1. Example of Region of interest (RoI) definition for a bone PET/CT hotspot in InterView FUSION
Software. The 2D slice includes the defused PET uptake (kidneys and bone metastasis in dark blue,
green, yellow, and red) co-registered with the CT image (in grayscale). The blue contour around the
metastatic uptake is defined and named (Bone 11) by the NM expert.

Table 1. List of the calculated features: PET-based and CT-based features. Note that the total lesion
glycolysis (TLG) is PET-specific and BoneMineralDensity is CT-specific.
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2.2. Classification

After delineation, as the ground truth labels, the hotspots were divided into two classes
by two experienced NM physicians: pathological (malignant) vs. physiological (unspecific).
After accumulating the data from all the scans, the feature vector was divided into three feature groups:
PET only, CT only, and combined PET and CT (PET/CT). Five different ML algorithms (linear, radial
basis function (RBF), and polynomial kernel support vector machine (SVM) [19], extra trees (ET) [20],
and random forest (RF) [21]) were applied to each subset of the features. Hence, the performance of all
classifiers was quantified as applied to each of the feature groups (e.g., PET with ET or PET/CT with
linear SVM).

To quantify the significance of our results, the accuracy measures (area under the receiver operating
characteristic (ROC) curve (AUC), standard deviation (STD) of AUCs for the cross-validation step as
well as for the feature importance, sensitivity (SE), and specificity (SP)) were quantified to calculate the
total precision for each of the classifiers applied to each feature group. Hyperparameter values for
the ML methods were established using five-fold cross-validation (CV) on the training data-set with
48 subjects. The performance of the resulting classifier was evaluated on a validation (hold-out) set
with 24 subjects followed by an inter-observer analysis.

To gain insight into which features contributed most, we also ranked them based on the ET
classifier, as it performed best. The features were ranked with the ET feature importance measure
provided by the scikit learn library [22]. It quantifies the overall decrease in Gini impurity achieved
with a given feature. We report means and standard deviations of these importance scores, over the
folds of our five-fold cross-validation.

2.3. Cross-Validation (CV)

To achieve more generalizable results, it is important to use separate data for tuning model
hyperparameters and for evaluating the final accuracy. We thus randomly sub-divided our data
into two subsets. The first subset (named the training set and including 48 subjects) was used for
training and hyperparameter tuning using cross-validation. The second subset, containing 24 subjects,
was used as the validation or hold-out set. After standardizing the data-set using the MinMaxScaler
method [23], cross-validation using the KFold method with five folds was applied on the training set.
In each CV step, a grid search was performed to find the best set of parameters for the ML algorithms
to predict the true labels for each category. For the grid search, all the five ML classifiers (SVM with
three different kernels including linear, polynomial, and RBF, as well as random forest and extra trees)
were tested with different parameters (C = [1, 10, 100, 1000, 2−5, 2−3,..., 215], gamma = [10−3, 10−4, 2−15,
2−13, 2−11,..., 23], etc.).

Given the best set of parameters for each classifier on the training set, the performance of each
classifier to predict the labels of the validation set was calculated. Again, the relative importance of
each feature group was calculated individually. We report the accuracy measures of each classifier on
each feature group applied to the validation (hold-out) set.

2.4. Inter-Observer Variability

To check for inter-observer variability, both qualitative and quantitative measures were taken into
account. The whole cohort was randomly divided into two subsets: one with 30 patients and one
with 42 patients. Each subset was annotated and manually segmented by a different experienced NM
physician (hence, two annotators)—both board-certified and one with 7 years′ experience in PET/CT
and the other with 3 years′ experience in PET/CT. Due to availability of the retrospective data as well
as different time limits, the NM physicians were assigned to annotate different numbers of patients.
However, we made sure that the cohorts had similar demographic and physiological distributions.
Afterwards, the segmentation results by the two annotators were reviewed and qualified by a third
highly experienced NM physician (also board-certified with 7 years′ experience in PET/CT). To quantify
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the variability of the manual segmentations, additional rounds of CV were applied. In the first round,
training data came from the first subset and test data came from the second subset. In the second
round, the train and test data swapped sides. The results were then compared to the main CV results.

2.5. Permutation Test

At the end, a permutation test was performed to reject the null hypothesis which stated that
permuted distribution of labels might have produced similar results. Here, we conducted a separate
five-fold CV on the cohort with 48 patients from the first CV step. There were 25,000 total iterations
with the same set of feature groups and ML classifiers. In each CV step, the ground truth labels were
replaced with permuted binary labels. We counted each prediction score (AUC) equal to or higher
than the threshold of 0.85 (which was lower than our worst prediction score on the hold-out set). Then,
we divided the resulting number by the total number of iterations (25,000) to calculate the p-value of
the permutation test:

p =
n (AUCs ≥ 0.85)

Niters
(1)

where p is the p-value of the permutation test, n () is the number of the test scores over the given
threshold, AUCs are the calculated areas under the ROC curves for each classifier on each feature
group at each iteration, and Niters is the total number of iterations (Equation (1)).

3. Results

First, 2419 focal tracer accumulations were delineated manually throughout the collective of 72
PC patients. Out of these lesions, 1629 were classified as pathological and 790 as physiological. Table 2
illustrates the distribution of the hotspots throughout different body regions. Based on these data,
the five ML algorithms were applied to the 48 training set patients. The training set patients were
randomly selected from the main cohort. Each ML algorithm was applied on all subsets of data (PET
only, CT only, and PET/CT). The results of this first train and test step using five-fold CV are shown in
Figure 2 and Table 3. As shown, highly accurate classification scores (up to 98% AUC, 96% SE, 91% SP)
were achieved. Interestingly, the contribution of the CT-based features to the results becomes apparent
by these data.

Table 2. Distribution of the 2419 annotated hotspots over different organs in the 72 patients.

Hotspot Category Subject Cohorts Total

30 Patients 42 Patients
Metastases 651 969 1620

Bladder 18 40 58
Kidney 59 81 140

Salivary Gland 116 299 415
Others 114 72 186
Total 958 1461 2419

Table 3. Accuracy measures (area under the curve (AUC), sensitivity (SE), and specificity (SP)) obtained
for ML classifiers applied to different feature groups with five-fold cross-validation. The CV cohort
contained 48 subjects.

Feature Group PET CT All

Classifier AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%)
Linear Kernel SVM 87/97/51 92/90/74 95/93/78

Random Forest 91/93/68 97/94/89 98/96/90
Extra Trees 92/96/67 98/94/90 98/96/91

RBF Kernel SVM 83/100/0 86/89/59 87/93/53
Polynomial Kernel SVM 81/100/0 86/100/0 88/100/0
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Figure 2. Mean ROC curves for five ML algorithms using five-fold cross-validation to predict
pathological vs. non-pathological hotspots using PET (A), CT (B), and all features (C). AUCs (STDs),
sensitivities, and specificities are shown for each ML method applied to each feature group.

To avoid over-fitting, a second validation step was taken. For this purpose, the remaining
24 patients were used as the validation set. As shown in Figure 3 and Table 4, accuracy measures
increase when comparing PET with CT and PET/CT (up to 98% AUC, 94% SE, 89% SP). Again, the
CT feature group showed surprisingly good results. Amongst the different ML algorithms, decision
tree-based classifiers (RF and ET) showed the best performance, regardless of the subset used.
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Figure 3. Results of final validation step: ROC curves for five ML algorithms to predict pathological
vs. non-pathological hotspots on the validation set using PET (A), CT (B), and all features (C). AUCs,
sensitivities, and specificities are shown for each ML method applied to each feature group.

Table 4. Tuned parameters and accuracy measures (area under the curve (AUC), sensitivity (SE),
and specificity (SP)) obtained for ML classifiers applied to different feature groups. The classifiers were
trained by the cohort containing 48 subjects and tested on the hold-out set with 24 subjects.

Feature Group PET CT All

Classifier Tuned Parameters AUC/SE/SP
(%) Tuned Parameters AUC/SE/SP

(%) Tuned Parameters AUC/SE/SP
(%)

Linear Kernel
SVM C = 0.5 83/93/55 C = 1 90/92/71 C = 211 94/94/77

Random Forest max_depth = 30
min_samples_leaf = 1 90/91/68 max_depth = 20

min_samples_leaf = 1 97/92/87 max_depth = 20
min_samples_leaf = 1 97/94/89

Extra Trees max_depth = 30
min_samples_leaf = 1 90/93/67 max_depth = 10

min_samples_leaf = 1 97/92/89 max_depth = 10
min_samples_leaf = 1 98/94/89

RBF Kernel SVM C = 213

gamma = 2−15 74/100/3 C = 2−5

gamma = 2−15 86/91/61 C = 2−3

gamma = 2−13 87/93/58

Polynomial Kernel
SVM

C = 1
degree = 2 71/100/0 C = 1

degree = 2 86/100/0 C = 1
degree = 2 86/100/0

To test the stability of our data upon delineation by different nuclear medicine specialists,
the inter-observer variability of the accuracy measures (AUC, SE, and SP) obtained by the different
algorithms was determined. We found that delineation by different observers does not markedly
change the AUCs and sensitivities. Therefore, the random forest algorithm was the most stable method.
However, specificity is lower compared to the same measures from CV or the final validation steps
(see Figure 4). Figure 5 shows the ranking of the 20 most contributing features regarding the extra
trees classifier to predict malignant vs. unspecific hotspots. Appearance of CT-based features in the
highest ranks suggests the importance of the morphological texture for the prediction of malignancy.
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As expected, PET-based heterogeneity parameters such as kurtosis, busyness, and coarseness play
important roles as well. Finally, the permutation test resulted in a p-value of 0.00076 after 25,000
iterations of permuted label assignment to the hotspots.
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4. Discussion

We have shown that ML algorithms are capable of discriminating between malignant or
physiological/unspecific tracer accumulations in 68Ga-PSMA-PET/CT with similar accuracy as achieved
by experienced nuclear medicine physicians. In addition, we identified the most suitable ML algorithm
for this application. For this purpose, five different ML methods were compared and tested on multiple
PET/CT data-sets. For the analysis, 40 textural features extracted from both PET- and low-dose CT
data were used. Altogether, 2419 hotspots in 72 patients were evaluated for malignancy. Our results
suggest that the combination of PET- and CT-based features improves the precision of differentiation
of malignant from unspecific and physiological tracer accumulations in 68Ga-PSMA PET/CT compared
to each single modality. However, this finding may not be surprising as the advantage of hybrid
imaging compared to single imaging modalities is well known. However, it is still remarkable that
the appearance of CT features in the highest ranks for the best classifier (extra trees) suggests that
anatomical information provided by CT scans facilitates the detection of malignancy in sites with high
tracer uptake, even when only native low-dose CTs were used for analysis. Using fully diagnostic,
contrast-enhanced CTs in the future may enhance diagnostic accuracy by means of textural parameters
even more. Therefore, further studies should also investigate the benefit of contrast enhancement in
this regard. On the other hand, radiation exposure of patients would be increased by fully diagnostic
CTs and our data indicate that native low-dose CTs yield good results. Therefore, also the use of textural
analysis of low-dose CTs without contrast enhancement should be investigated in other tumor entities.

Amongst the five different ML algorithms, the decision tree-based classifiers (ET and RF) showed
the best results. The reason for this finding could be that ET and RF apply feature selection implicitly.
Therefore, these ML-based methods are powerful automatic algorithms for the identification of
malignant hotspots and should be implemented in further algorithms.

Although this first study analyzed only 72 patients, 2419 hotspots were included in our lesion-based
analysis. This number was sufficient to demonstrate high statistical significance in our results. However,
larger studies have to be performed in the future. High AUCs and sensitivities were achieved in the
inter-observer analyses; however, the relatively low specificity scores indicate the need for studies
with more annotators as well as multi-center studies in the future. In addition, beyond the scope
of this study was the analysis of how the results can be applied on 68Ga-PSMA PET/CT scans with
different protocols or obtained with other PET scanners. Moreover, replacing the manual delineation
of the tissues with an automated segmentation method would be of further benefit. However, this was
beyond the scope of the current study.

As we have shown, ML algorithms help to discriminate between malignant and unspecific findings,
but they may also help with decisions for or against certain therapies. It may be possible to design tools
for the prediction of therapy response—for example, to 177Lu-PSMA therapy in PC patients. As a result,
it would be possible to exclude non-responders from this treatment to avoid undesirable side effects
and cost-intensive treatments without benefit for the individual patient. In this context, Khurshid et al.
reported a significant correlation between some textural parameters such as the mean homogeneity
and entropy in 68Ga-PSMA-PET scans and response to 177Lu-PSMA therapy as determined by the
reduction of prostate-specific antigen (PSA) levels [24]. Development of an ML algorithm for therapy
decision would be of high interest for general oncology and for the selection of patients for clinical
trials and could be an important further step towards individualized tumor therapy.

In the future, it will be desirable to develop ML-based tools with not only equal but superior
accuracy compared to nuclear medicine physicians. For this purpose, it will be necessary to compare
the results of the human readers as well as the ML-based tool with a gold standard such as histology
obtained from biopsies of the lesions in question. However, this will be difficult to achieve as biopsies
of multiple sites in each patient are not practicable and are highly questionable from an ethical point
of view, especially if we take into account the fact that the mean number of hotspots investigated
per patient in this study was 33.6. However, this is an important topic in the field and needs to be
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addressed in further studies. Furthermore, the presented results and implemented algorithms will be
extended to other tumor entities and applied using different PET tracers as well.

5. Conclusions

Machine learning based on PET/CT radiomics features can differentiate increased tracer uptake
in 68Ga-PSMA scans in malignant versus physiological or unspecific changes with high accuracy.
This finding is important in the context of automated detection and segmentation for radiomics analysis.
The analysis of combined PET and CT radiomics features suggests that they are superior to features
estimated in each modality alone, even just using a low-dose CT without intravenous contrast.

Author Contributions: S.M.: Study concept, data analysis and algorithm coding, and writing the manuscript.
Z.K.: Patient analysis and lesion delineation. A.E.: Patient analysis and lesion delineation. S.L.: Patient analysis
and lesion delineation. M.E.: Study concept and correcting the manuscript. T.S.: Study concept and correcting
the manuscript. R.A.B.: Study concept and correcting the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: R.A.B. is a consultant for Bayer Healthcare (Leverkusen, Germany) and Eisai GmbH
(Frankfurt, Germany). R.A.B. has a non-commercial research agreement and is on the speakers list with Mediso
Medical Imaging (Budapest, Hungary). M.E. is a consultant for Bayer Healthcare (Leverkusen, Germany) and
Eisai GmbH (Frankfurt, Germany), IPSEN, and Novartis. All other authors declare that there is no conflict of
interest also, all authors consent to scientific analysis and publication.

Abbreviations

PC Prostate cancer
PSMA Prostate-specific membrane antigen
PSA Prostate-specific antigen
NM Nuclear medicine
AUC Area under the curve
STD Standard deviation
SE Sensitivity
SP Specificity
ML Machine learning
AI Artificial intelligence
SVM Support vector machine
RBF Radial basis function
ET Extra trees
RF Random forest
PET Positron emission tomography
CT Computed tomography
RoI Region of interest
VoI Volume of interest
TLG Total lesion glycolysis
GLNU Grey-level non-uniformity
LRE Long run emphasis
BMD Bone mineral density
LZE Long zone emphasis
LZHG_LE Long zone high grey-level emphasis
SRE Short run emphasis



Diagnostics 2020, 10, 622 10 of 11

References

1. Fujita, H. AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiol. Phys. Technol.
2020, 13, 6–19. [CrossRef] [PubMed]

2. Kanazawa, K.; Kawata, Y.; Niki, N.; Satoh, H.; Ohmatsu, H.; Kakinuma, R.; Kaneko, M.; Moriyama, N.;
Eguchi, K. Computer-aided diagnosis for pulmonary nodules based on helical CT images. Comput. Med.
Imaging Graph. 1998, 22, 157–167. [CrossRef]

3. Nishikawa, R.M. Current status and future directions of computer-aided diagnosis in mammography.
Comput. Med. Imaging Graph. 2007, 31, 224–235. [CrossRef] [PubMed]

4. Li, S.; Jiang, H.; Wang, Z.; Zhang, G.; Yao, Y.D. An effective computer aided diagnosis model for pancreas
cancer on PET/CT images. Comput. Methods Programs Biomed. 2018, 165, 205–214. [CrossRef] [PubMed]

5. Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.E.; Le Rest, C.C.; Visvikis, D. Characterization of PET/CT images
using texture analysis: The past, the present . . . any future? Eur. J. Nucl. Med. Mol. Imaging 2016, 44, 151–165.
[CrossRef] [PubMed]

6. Bates, A.; Miles, K. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for
detection of transition zone prostate cancer. Eur. Radiol. 2017, 27, 5290–5298. [CrossRef] [PubMed]

7. Afshar-Oromieh, A.; Zechmann, C.M.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H.G.; Holland-Letz, T.;
Hadaschik, B.; Giesel, F.L.; Debus, J.; et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand
and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging
2013, 41, 11–20. [CrossRef] [PubMed]

8. El Naqa, I.; Grigsby, P.; Apte, A.; Kidd, E.; Donnelly, E.; Khullar, D.; Chaudhari, S.; Yang, D.; Schmitt, M.;
Laforest, R.; et al. Exploring feature-based approaches in PET images for predicting cancer treatment
outcomes. Pattern Recognit. 2009, 42, 1162–1171. [CrossRef] [PubMed]

9. Chicklore, S.; Goh, V.; Siddique, M.; Roy, A.; Marsden, P.K.; Cook, G. Quantifying tumour heterogeneity in
18F-FDG PET/CT imaging by texture analysis. Eur. J. Nucl. Med. Mol. Imaging 2012, 40, 133–140. [CrossRef]
[PubMed]

10. Werner, R.A.; Lapa, C.; Ilhan, H.; Higuchi, T.; Buck, A.K.; Lehner, S.; Bartenstein, P.; Bengel, F.; Schatka, I.;
Muegge, D.O.; et al. Survival prediction in patients undergoing radionuclide therapy based on intratumoral
somatostatin-receptor heterogeneity. Oncotarget 2016, 8, 7039–7049. [CrossRef] [PubMed]

11. Bundschuh, R.; Dinges, J.; Neumann, L.; Seyfried, M.; Zsótér, N.; Papp, L.; Rosenberg, R.; Becker, K.;
Astner, S.T.; Henninger, M.; et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy
response assessment and prognosis in patients with locally advanced rectal cancer. J. Nucl. Med. 2014, 55,
891–897. [CrossRef] [PubMed]

12. Rayn, K.N.; Elnabawi, Y.A.; Sheth, N. Clinical implications of PET/CT in prostate cancer management. Transl.
Androl. Urol. 2018, 7, 844–854. [CrossRef] [PubMed]

13. Yordanova, A.; Eppard, E.; Kürpig, S.; Bundschuh, R.A.; Schönberger, S.; Gonzalez-Carmona, M.;
Feldmann, G.; Ahmadzadehfar, H.; Essler, M. Theranostics in nuclear medicine practice. OncoTargets Ther.
2017, 10, 4821–4828. [CrossRef] [PubMed]

14. Calais, J.; Fendler, W.P.; Eiber, M.; Gartmann, J.; Chu, F.I.; Nickols, N.G.; Reiter, R.E.; Rettig, M.B.; Marks, L.S.;
Ahlering, T.E.; et al. Impact of 68Ga-PSMA-11 PET/CT on the management of prostate cancer patients with
biochemical recurrence. J. Nucl. Med. 2017, 59, 434–441. [CrossRef] [PubMed]

15. Petersen, L.J.; Zacho, H.D. PSMA PET for primary lymph node staging of intermediate and high-risk prostate
cancer: An expedited systematic review. Cancer Imaging 2020, 20, 1–8. [CrossRef] [PubMed]

16. Mattiolli, A.B.; Santos, A.; Vicente, A.; Queiroz, M.; Bastos, D.; Herchenhorn, D.; Srougi, M.; Peixoto, F.;
Morikawa, L.; Da Silva, J.L.F. Impact of 68GA-PSMA PET/CT on treatment of patients with recurrent/metastatic
high risk prostate cancer—A multicenter study. Int. Braz. J. Urol. 2018, 44, 892–899. [CrossRef] [PubMed]

17. Cho, S.Y. Proposed criteria positions PSMA PET for the future. J. Nucl. Med. 2018, 59, 466–468. [CrossRef]
[PubMed]

18. InterView FUSION: Official Company Website for the Software. Available online: https://www.mediso.de/

Interview-fusion.html (accessed on 15 April 2020).
19. SVC Method: SciKitLearn Official Website. Available online: https://scikit-learn.org/stable/modules/

generated/sklearn.svm.SVC.html (accessed on 15 April 2020).

http://dx.doi.org/10.1007/s12194-019-00552-4
http://www.ncbi.nlm.nih.gov/pubmed/31898014
http://dx.doi.org/10.1016/S0895-6111(98)00017-2
http://dx.doi.org/10.1016/j.compmedimag.2007.02.009
http://www.ncbi.nlm.nih.gov/pubmed/17386998
http://dx.doi.org/10.1016/j.cmpb.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30337075
http://dx.doi.org/10.1007/s00259-016-3427-0
http://www.ncbi.nlm.nih.gov/pubmed/27271051
http://dx.doi.org/10.1007/s00330-017-4877-x
http://www.ncbi.nlm.nih.gov/pubmed/28608163
http://dx.doi.org/10.1007/s00259-013-2525-5
http://www.ncbi.nlm.nih.gov/pubmed/24072344
http://dx.doi.org/10.1016/j.patcog.2008.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20161266
http://dx.doi.org/10.1007/s00259-012-2247-0
http://www.ncbi.nlm.nih.gov/pubmed/23064544
http://dx.doi.org/10.18632/oncotarget.12402
http://www.ncbi.nlm.nih.gov/pubmed/27705948
http://dx.doi.org/10.2967/jnumed.113.127340
http://www.ncbi.nlm.nih.gov/pubmed/24752672
http://dx.doi.org/10.21037/tau.2018.08.26
http://www.ncbi.nlm.nih.gov/pubmed/30456187
http://dx.doi.org/10.2147/OTT.S140671
http://www.ncbi.nlm.nih.gov/pubmed/29042793
http://dx.doi.org/10.2967/jnumed.117.202945
http://www.ncbi.nlm.nih.gov/pubmed/29242398
http://dx.doi.org/10.1186/s40644-020-0290-9
http://www.ncbi.nlm.nih.gov/pubmed/31973751
http://dx.doi.org/10.1590/s1677-5538.ibju.2017.0632
http://www.ncbi.nlm.nih.gov/pubmed/30088720
http://dx.doi.org/10.2967/jnumed.117.204057
http://www.ncbi.nlm.nih.gov/pubmed/29301930
https://www.mediso.de/Interview-fusion.html
https://www.mediso.de/Interview-fusion.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Diagnostics 2020, 10, 622 11 of 11

20. ExtraTrees Classifier Method: SciKitLearn Official Website. Available online: https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.ExtraTreesClassifier.html (accessed on 15 April 2020).
21. RandomForest Classifier Method: Scikitlearn Official Website. Available online: https://scikit-learn.org/

stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 15 April 2020).
22. SciKitLearn Official Website. Available online: http://scikit-learn.org/stable (accessed on 15 April 2020).
23. MinMaxScaler Normalization Method: Scikitlearn Official Website. Available online: https://scikit-learn.org/

stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html (accessed on 15 April 2020).
24. Khurshid, Z.; Ahmadzadehfar, H.; Gaertner, F.C.; Papp, L.; Zsóter, N.; Essler, M.; Bundschuh, R.A. Role of

textural heterogeneity parameters in patient selection for 177Lu-PSMA therapy via response prediction.
Oncotarget 2018, 9, 33312–33321. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://dx.doi.org/10.18632/oncotarget.26051
http://www.ncbi.nlm.nih.gov/pubmed/30279962
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Patients and Volume of Interest (VoI) Definition and Annotation 
	Classification 
	Cross-Validation (CV) 
	Inter-Observer Variability 
	Permutation Test 

	Results 
	Discussion 
	Conclusions 
	References

