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Abstract: Indoor Positioning Systems (IPS) using Bluetooth Low Energy (BLE) technology are
currently becoming real and available, which has made them grow in popularity and use. However,
there are still plenty of challenges related to this technology, especially in terms of Received Signal
Strength Indicator (RSSI) fluctuations due to the behaviour of the channels and the multipath
effect, that lead to poor precision. In order to mitigate these effects, in this paper we propose and
implement a real Indoor Positioning System based on Bluetooth Low Energy, that improves accuracy
while reducing power consumption and costs. The three main proposals are: frequency diversity,
Kalman filtering and a trilateration method what we have denominated “weighted trilateration”.
The analysis of the results proves that all the proposals improve the precision of the system, which
goes up to 1.82 m 90% of the time for a device moving in a middle-size room and 0.7 m for static
devices. Furthermore, we have proved that the system is scalable and efficient in terms of cost and
power consumption. The implemented approach allows using a very simple device (like a SensorTag)
on the items to locate. The system enables a very low density of anchor points or references and with
a precision better than existing solutions.

Keywords: BLE; BLE Tag; trilateration; frequency diversity; Kalman filtering; indoor positioning
system; accuracy

1. Introduction

By 2019, the estimated value of the indoor positioning market will increase to $4.4 billion [1].
The possibility of tracking people’s paths in commercial areas or knowing the position of a given asset
in an industrial building is becoming of interest for many companies.

Regarding the challenges that positioning systems face in indoor environments, there are many
factors that might impair the propagation of the signals. According to [2] these issues are mainly
caused by:

• Reflection and diffraction around objects (including walls and floors) within the rooms that can
cause multipath and fading effects respectively.

• Transmission loss through walls, floors and other obstacles.
• Channelling of energy, especially in corridors at high frequencies.
• Motion of persons and objects in the room, including possibly one or both ends of the radio link.

There are several approaches for Indoor Positioning Systems (IPS): WiFi-based positioning systems
(WPS), Bluetooth Low Energy (BLE) solutions, Radio Frequency Identification (RFID)-based systems
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and Ultra-Wide Band (UWB) or Visible Light Communication (VLC) technologies [3,4]. The topic we
present in this paper is related to wireless technologies.

We can use either the Time of Flight (TOF), or the Received Signal Strength Indicator (RSSI), to
estimate the position of the device being tracked. The current work will focus on Received Signal
Strength Indicator (RSSI). The RSSI can be measured from periodic broadcasted signals (like for
example beacons from a WiFi access point or a BLE device) or from frames transmitted in unicast. If the
transmitted power is known, once the RSSI is measured, it is possible to estimate the propagation losses.
Then applying a propagation loss model we can infer the distance from the sender and the receiver.

In IPS there are three important factors to take into account: the arrangement of the transmitters
and receivers, the RSSI analysis and the wireless technology (e.g., WiFi, BLE) that will be used for
the deployment.

Regarding the arrangements there are two possible scenarios, one based on a set of reference
points or anchors that transmit beacon signals to the device to be located, and another where the
anchors receive the signals from the devices to track. The first arrangement is more complex since
it means that the devices to be tracked have to measure the signals from the anchors and transmit
back the location information. Nevertheless, this solution is the most commonly used, since in many
applications the object to be tracked is a person equipped with a mobile phone.

The RSSI analysis can be done in two main ways: by mapping the radio propagation losses to
distance according to the propagation model, and by means of fingerprinting techniques.

In the first case, we consider that the signal is transmitted according to the propagation model
and we get the distance by finding and isolating it on the model and solving the equation [5–17].
The main problem with this approach is the difficulty of choosing which indoor propagation model is
the most appropriate (free space path loss model, Log-Distance Path Loss model, Log-Distance Path
Loss model with shadowing or two-ray ground reflection model, among others). The disadvantage of
this method is that with the distance from one reference point we offer a very poor precision on the
location, although it is possible to improve it by estimating the distance to several ones and applying
trilateration techniques.

In the second case, the fingerprinting method [18–32], several measurements are taken at each
possible position, so that there is a pre-established map of distance-RSSI values. With this approach
the accuracy of the system is greater compared to the previous one, but we need an exhausted
characterization of the environment. Furthermore, it is very susceptible to any change, which causes
having to characterize the medium again.

Both, the arrangement of the transmitters and receivers, and the RSSI analysis, should be chosen
to best fit the wireless technology. The most popular technologies used for IPS are WIFI, BLE, RFID
and UWB, and they all have their pros and cons:

• In the case of WiFi solutions, the main advantages are: (a) they are already deployed in many
places, so there is no need for a new network infrastructure, and (b) they have a long range
compared to the other solutions. The main drawback of WiFi solutions lies in its poor accuracy,
from 5 m to 15 m when using fingerprinting. In order to increase the accuracy more access points
are needed which increases the cost of the deployments.

• In the case of BLE technology, its main strength lies in its low cost and low power consumption,
even though with an acceptable accuracy (1 m error). However, this technology usually needs
additional equipment (deployment of a BLE network) and it has a short range, up to 20–30 m.

• In the case of RFID systems, its accuracy is the best among all the technologies (error below 0.1 m)
within its lifetime (no battery needed). Its main drawback is the short range (below 1 m) and the
extensive and expensive installation of large amount of readers to cover large areas.

• In the case of UWB technology, the most important features are: (1) its accuracy (error below
0.3 m); and (2), its range, up to 150 m, which is the highest among the technologies presented here.
However, its main disadvantages are: (1) high power consumption; and (2) high cost.
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Although WiFi solutions have been popular in the past, BLE devices offer such a low cost and low
power alternative [5], that they have become attractive for places that do not offer WiFi infrastructure.
WiFi does make possible the transmission of high data rates, however, the type of data typically
required to be sent for a positioning system does not require high throughput, therefore BLEs offering
of 1 Mbit/s for their data transmission are acceptable. Consequently, BLE represents a cheaper
and more energy-efficient option to implement indoor-outdoor detection and position applications
(by means of systems like BlueDetect [33]) than WiFi solutions.

Fast fading or multipath effects have a special impact on the propagation of BLE signals, since
the indoor environments contribute to RSSI fluctuations. In [18], an analysis that shows that the BLE
signals suffer from a−30 dBm drop caused by the multipath effect was presented. Focusing on this fact,
the multipath attenuation is not constant and it can vary at any distance without any pattern. All of
the effects mentioned before make it difficult to model an indoor mobile radio channel, because the
channel varies significantly with the environment. Therefore, in order to use the relationship between
distance and RSSI for and IPS, it will be necessary to understand and deal with all the fluctuations of
the signals so that a precise system can be implemented.

As regards IPS with BLE, we should take into account that this technology usually uses RSSI to
estimate the location. The authors in [6] detailed the reliability of this assumption. They compared a set
of different mathematical methods, such as moving average method or weighted average method, with
a theoretical reference curve, in order to verify the reliability of RSSI measurements. Their experiments
show that considering RSSI values as the only input to reliably compute the location of a node is not
enough. In addition, they state that when using trilateration techniques, both antennas, sender and
receptor, must be isotropic.

In this paper, we propose and present an implementation of an IPS that uses BLE technology
with CC2650 SensorTags [34,35] as the devices sending BLE beacons, Raspberry Pi as receivers with
Adafruit sniffers [36] to get the BLE beacons, and a server platform in charge of processing the distances.
Our main goal with this implementation is to develop a complete IPS with low cost and high accuracy
independently of the environment the system is placed on. In order to do so, we have defined and
implemented the following features:

• The use of channel diversity as a way of mitigating the effect of fast fading, as well as the effect
of interferences during RSSI measurements. Instead of choosing only one BLE communication
channel, we use the three BLE advertisement channels (Channel 37, Channel 38 and Channel 39)
available to send BLE beacons. They are sent in small lapses of time (the three advertisements
in 3 ms intervals), so that channel characteristics are quite the same, and then the effect of fast
fading can be minimized by combining them. After that, we compute the channel having the
best accuracy in terms of distance-RSSI, and use that one for positioning calculations. By the
knowledge of the authors there is no other proposal using this approach and achieving such
an accuracy.

• The use of a trilateration method based on weights. Trilateration works perfectly when the
measurements taken converge to a single point. However, in most of the cases we have an
area of possible locations instead of a single location point. Our proposal improves the accuracy
of trilateration by considering as more reliable the information provided by the closest receivers
to the sender and move the estimated position to the position that receiver suggests.

• The use of Kalman filtering (KF) to avoid incoherent computation of the location. Sometimes, we
may get wrong RSSI measurements leading to wrong and very unlikely estimated positions. KF is
a well-known method to help reduce the impact of wrong measurements on the system.

The estimation of the cost in an IPS is affected by several factors. There is the infrastructure, the
installation and the maintenance costs. In the most commonly used applications, where the item to be
tracked is a person, or better said the smartphone of a person, the infrastructure to be deployed is a set
of beacons or anchors that can be battery powered and that do not require any connectivity. In this use
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case, the device tracked is costly, requires connectivity and the batteries have to be recharged quite
frequently. If this solution is adopted to track objects, we can say that the infrastructure cost depends
on the area to provide service and the number of objects or items to be tracked. A density of one beacon
every 20 square meters with a precision between one and two meters is common. The installation
cost is low since no connection or main power is required, but the maintenance cost is high since
the recharging of batteries in the objects to be tracked is required. Moreover, the calibration of the
propagation environment is needed (it is common to use fingerprinting). In the system we propose,
the cost of the infrastructure depends on the coverage area and the number of devices also, but in a
different manner. In our case, the device to be tracked is similar in cost to the beacons used in the
previous example, and ranges from 15€ to 30€ depending on the battery size (the system has low
power consumption). The devices that are fixed and receive the beacons require three BLE radio
interfaces and a system with Ethernet or WiFi connectivity. For our setup, the cost is around 150€ per
device, assuming that they are connected to the power mains. The density of these devices that are
fixed and receive the beacons can be low, due to the radio processing technique we employ (BLE),
being around one node every 200 square meters for a precision of one to two meters. The system
does not require frequently recharging the battery, and no periodic calibration is needed. Using a
different radio technology for implementing tracking is possible. One interesting candidate is UWB,
specifically the one based on IEEE802.15.4a. In this case, and assuming the most common method, the
device to be tracked requires a device that costs between 100€ and 150€, and a set of fixed devices that
should be powered and connected to the network, with an estimated cost of 120€ each. The density of
fixed devices is of one every 600 square meters. The precision in this case can be between 0.5 and one
meters. The system does not require calibration, but, as the power consumption is significantly higher
than with BLE, the battery of the devices to be tracked must be replaced/ recharged quite frequently.
The figures we have provided show that if we have a large number of devices to be tracked, which
should work unattended our proposed solution is the best in terms of cost.

The rest of the paper is organised as follows: Section 2 presents the state of the art of WiFi and
BLE IPSs. In Section 3 we detail our implementation. In Section 4 we discuss the used methodology
and the theoretical basis of the implementation. Also in Section 4 we present the tests carried out in
the different scenarios, and the corresponding results. Finally, we present the conclusions of the study,
summarising the performance of the system, in Section 5.

2. Related Work

Most of the literature refers to systems using either BLE or WiFi technologies, since they are the
ones that perform better in terms of quality and cost. Furthermore, the most common way to estimate
the position of a device in almost all the systems is by means of RSSI. In the following sections, we
present the related work taking into account the main technique used in each paper and the comparison
with our proposal. In most of the research works, beacons refer to the fixed anchors or references that
send the beacon signals to be received by the device to be tracked. In our proposal, beacons are the
devices that we want to track, and that send the beacon signal.

2.1. Fingerprinting Approaches

One of the most common methods of positioning is by using a fingerprinting algorithm. A first
approach of IPS with BLE and this technique is described in [19]. In the paper, the authors describe a
massive deployment of fixed BLE beacon devices in a room, with around 0.8 m distance between them,
to ensure a good location of the mobile node being monitored. The main goal of the research was to be
able to decide if a BLE device is in the room or not. Although they achieve this objective, we consider a
disadvantage that the cost of the deployment is high, and that an RSSI template matching method like
fingerprinting is used. The average result between device position and estimated position is 2.4 m.

In [20], the authors proposed another system using the fingerprinting technique. Their system
achieves a position error lower than 1.58 m when walking from a fixed position to another. It uses
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a smartphone as the device to capture the BLE beacons. The main drawback of this solution is the
fingerprinting method, which requires intensive offline measurement to characterize the environment.
There is another approach where authors use fingerprinting [21], reaching an estimated error of 4.12 m
90% of the time. Those results are not good if we take into account the extensive characterization of
the environment that is needed. Another conclusion they reach to is that the orientation of the BLE
device (i.e., the directivity) is an important factor.

In [29], the RSSI of the different channels is processed separately, and its data is kept in a database
that was later used for fingerprinting. The scenario used was a corridor.

The authors in [22] propose a combination scheme of BLE and WiFi fingerprinting obtaining an
enhanced estimation position. Results show an accuracy of 2.33 m at the cost of having to deploy both
BLE and WiFi networks. In [23] we find the opposite: WiFi fingerprinting makes the roughly position
estimation and the BLE is in charge of enhancing the accuracy of the system. The results are promising
at the cost of duplicate BLE and WiFi devices.

In [37] the authors make a comparison between BLE with particle filtering and fingerprinting.
Their results show that fingerprinting outperforms particle filtering in a 1.5 m × 12 m corridor,
but particle filtering outperforms fingerprinting with an accuracy of less than 4 m in 90% of time in an
8 m × 6 m room.

In [25], the authors monitored the forty BLE channels using a spectrum analyser. A BLE scanner
was also used to listen to the three advertisement channels. They used fingerprinting-based techniques
and the tests were performed in two environments: an anechoic chamber and an office. The conclusion
they achieved was that the results for both scenarios were very similar.

There are other authors who analyse the number of devices that should be deployed to improve
the accuracy of the IPS system. In [26], the authors provided a study of BLE fingerprinting using
beacons distributed around 600 m2 to calculate the position of a device. In this case, the conclusion is
that the more beacons were deployed, the more accurate the calculated positions are.

In [30] the advertisement channels are treated separately when the measurement of the RSSI
is done. The authors develop a separate channel advertising scheme to measure RSSI on each
advertisement channel. The technique consists in putting a mask on two of the three channels.
For this research, the fingerprinting method was also used, an individual database for each of the
advertisement channels was build. In the estimation stage, the RSSI values captured (one for each
channel) were compared to the ones kept on each of the individual databases, in order to estimate the
locations. The RSSI used to build the database were selected by calculating the mean of a series of
RSSI values captured in the desired position. Tests were performed in corridors where four beacons
and two receivers were deployed. The results showed a high number of errors due to the fact that,
with the fingerprinting technique, the position can only be calculated if the user is inside the positions
saved on the database. The authors indicated that the system proposed had an accuracy of 2.56 m
at 90% of the time with one beacon each 9 m. The negative side of this study, and all the ones that
use the fingerprinting method, is the fact that a characterization process needs to be performed to
build the database, as also shown in [31], where authors include deep learning with its corresponding
training phase.

In [28] the authors conclude that the number of BLE beacons is crucial for accuracy purposes.
Moreover, they compare the accuracy of using only one BLE advertising channel and the accuracy
when using the mean over all the channels, to conclude that considering the information of all the
channels increases the probability of a good position estimation. In [32], researchers try to solve the
problem of environment characterization for fingerprinting approaches. To do so, they use what they
call Dynamic RSS feedback algorithm to characterise the environment, using part of the measurements.
They achieve an estimation error of 1.5 m in a cafeteria without considering obstacles, and 2.3 m when
considering them. Researchers in [24] highlight the importance of the transmission power settings
on beacons, and how changing them can help avoiding refractions and multipath. Another paper
concluded that there is an important relationship between the number of installed beacons and their
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positioning with the accuracy of the system [27]. The authors estimated a practical path loss model
using four beacons. The measurements were taken during a minute at different reference distances
from one to 13 m. For the distance calculation, the Log-Distance Path Loss model not considering the
shadowing effects was used. The path loss exponent was characterised for the environment.

In [18], the authors carried out a more theoretical analysis also using a fingerprinting method.
They provided a comparison between the BLE and WiFi fingerprinting methods considering physical
aspects. Tests were performed in a corridor, where no obstacles were present. To mitigate the
multipath effects, the mean of the RSSI values of the captured data were calculated. They concluded
that processing data from different channels gave better results than doing it with only one.
They demonstrated that BLE fingerprinting method achieves an accuracy of less than 2.6 m in 95% of
the time when walking in a room, much better compared to WiFi accuracy, which is about 8.5 m, 95%
of the time. Again, the authors reveal the most important drawback of any fingerprinting method:
degradation of the performance over time due to environment changes.

2.2. Non-Fingerprinting Approaches

In [7], the authors analyse the energy consumption of using BLE tags as beacons, and conclude
that it is one of the main advantages of the devices. They also consider the necessity of post-processing
the RSSI measurements due to the dropping accuracy for distances larger than 3 m. Another interesting
study is done in [38], where the authors compared the accuracy of signals at different frequencies
(WiFi 2.4 GHz, BLE channel frequencies and 5 GHz). The goal is to detect the floor where a user is, and
to estimate his/her position, but the results are poor, especially for 5 GHz signals. The researchers
in [8] describe the problem related to RSSI sensibility to receivers, and propose a location scheme based
on advertising beacons with different transmission power levels to improve the coverage of the signal
and to decrease the location error.

In [9], the authors propose an equation to enhance the accuracy of the distance when BLE beacons
are used. Instead of using the already known propagation models, the authors take the RSSI values
captured and, accordingly, they implement a fitted distance curve to perform the distance calculation.
The equation they propose is only useful for the analysed environment. The results were not favourable
since they were not able to obtain accurate positions.

An example of a commercial indoor positioning system is presented in [10], in which the authors
point out it to be an accurate and a robust positioning and tracking system using commercial mobile
devices with an integrated feature of route finding. In the analysis, the beacons with the strongest RSSI
measurements from a grid are taken. The data is saved on the database (MAC and position of the
beacon). Iterative Least Squares Trilateration (LST) is applied to obtain the position. The disadvantage
of this proposal is that it requires a learning phase.

A different technique called stigmergy was introduced in [11]. The principle is that the trace left
in the environment by an action stimulates the performance of the next action. Applied to IPSs, it takes
into account the previous states of different nodes being tracked to estimate the current position of
the present node. It also uses the Min-Max localization algorithm. This algorithm maximizes the
minimum gain of a system when we do not know how the system will behave. In this case, it minimises
the positioning error when we have fading in the channel. Min-Max combined with the mentioned
stigmergy method leads to acceptable location accuracy with a position error lower than 1.8 m during
75% of the time when moving around a room. However, the solution uses of a large amount of BLE
beacon devices, increasing the overall cost of the solution.

In [12], the key point is the use of several antennas for RSSI stabilization. Taking into account the
high dispersion on RSSI values due to refractions, fading and shadowing, among others, the research
considers the use of multiple antennas to mitigate this problem. Furthermore, the research states
some interesting RSSI combination techniques such as Equal Gain Combiner, i.e., the mean of the RSSI
obtained at the different antennas, or the Maximum Ratio Combiner (MRC), which weights each RSSI
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depending on its signal quality. The research concludes that this method, MRC, is the one achieving
the best results on RSSI stability.

In [13], its authors introduced a KF to improve the accuracy in the position calculation. The authors
develop an Android app to locate a user inside a building. The key point of the research is the use of
KF as a way to reduce RSSI fluctuations. The authors state that KF greatly helps to obtain a stabilized
RSSI they use to accurately locate the user. However, they are still unable to locate the exact position of
the user inside a room.

Finally, we find some different approaches for indoor localization. In [17] the main proposal
is adaptive ranging, a device to device communication scheme to obtain information about the
environment and use the information to select the best parameters for the propagation models.
Additionally, the authors introduce multi-lateration along with particle filter, to estimate the final
position. The authors in [39] use BLE for activity recognition, relating the location of the user with a
particular activity.

2.3. Similar Studies to Our Proposal

Projects that use a similar architecture to the one proposed in our paper can be found in [5,14,15].
In [5] the authors analyse the operation of BLE tags for IPSs. They conclude that their low cost makes
them attractive for the deployment of IPS. The authors in [14] show the usage of CC2650 SensorTags to
implement an IPS in a 12 m corridor. Their positioning calculation results offered low accuracy, but
they stated that this BLE tag are ideal for IPS, since they not only allow broadcasting RSSI values, but
they can also be used to control environmental variables (temperature and pressure) with low cost.
In [15], the authors propose a smoothing algorithm to decrease the effects of the environment on the
RSSI values by locating a device using also CC2650 SensorTags. A database with the captured RSSI
data was build and used to characterise the path loss exponent to the environment. They calculated the
distance to the different tags and used trilateration as the location algorithm. The testing scenario was
a wide space with metal and wood obstacles in which four BLE tags were fixed. The authors stated that
the accuracy of their system was high (error of less than 1.162 m). These results were obtained after
doing the characterization of the environment, which is a process that complicates the deployment of
the system.

The research in [16] has a similar structure than the one presented in our paper. However, the main
difference with our work is that they use devices with BLE modules as advertisers and a mobile phone
as a receiver. We use BLE tags as advertisers and Raspberry Pi with the same BLE modules as receivers.
Another difference is that the authors propose a system using BLE modules at fixed positions within
KF to filter the RSSI. In addition to filtering, they use trilateration and dead reckoning as algorithms
to locate the node. Additionally, they integrate those algorithms into what they call “Kalman-based
fusion”. The results of their experiments show that trilateration and Kalman-based fusion have the
best performance of the three methods (trilateration, dead reckoning and Kalman-based fusion), with
an error below 0.75 m. However, they consider a corridor whose first 6 m have a width of 2.3 m and
a height of 2.65 m and after that the width is increased to 3.6 m, which is pretty small considering
real environments, and they place the BLE modules very close to each other, increasing the final cost
of the solution. Beyond accuracy, researchers also state advantages and disadvantages between the
methods. Regarding precision, trilateration and fusion methods achieve a nearly constant error while
when using dead reckoning, which requires no additional hardware, the error grows with time.

2.4. Comparison of Related Work Studies

Table 1 summarises some of the studies presented in this section, including a comparison of some
relevant research with the implementation we present in this paper.
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Table 1. Sum up of most relevant related work. “-“ when information is missed.

Reference Scenario (m × m) Number of Beacons Precision (%Time and Meters) Technology/Used Methodology/Algorithm
(When Specified)

[6] 12 × 3 - 99% below 1.68 m -/Inertial navigation/-

[19] 10.5 × 15.6 44 96.6% below 0.8 m BLE/Fingerprinting/-

[11] 6 × 6 8 75% below 1.8 m BLE/-/Stigmergy and Min-Max/

[20] 44 × 22 9 1.58 m total averaged BLE/Fingerprinting/-

[18] 45 × 12 19 95% below 8.5 m (WiFi)
95% below 2.6 m (BLE) BLE/WiFi/Fingerprinting/-

[13] unknown 13 Unknown/Only whether a device is in a room or not BLE/-/KF

[21] 16.8 × 12.6 10 90% below 4.12 m BLE/Fingerprinting/-

[31] 17.5 × 9.6 10 90% below ~2 m BLE/Fingerprinting/Deep learning

[28] 10 × 7 3 Unknown/Probability of true localization BLE/Fingerprinting/Ray launching based simulation model

[22] 160 m2 4 2.33 m BLE/Fingerprinting and WiFi/-

[37]
1.5 × 12 3 90% below 3 m BLE/-/Particle filtering

8 × 6 4 90% below 4 m BLE/Fingerprinting/-

[32] 3.6 × 20 6 90% below 2.25 m BLE/Fingerprinting/RSS Feedbacks

[24] 9.3 × 6.3 5 Unknown/Probability of being in a given sector BLE/Fingerprinting/Transmission power settings

[23] 40 × 8 7 90% below 3.58 m BLE and WiFi/Fingerprinting/-

[17] 32.5 × 19.2 10 80% below 3.02 m BLE/-/Adaptive multi-lateration

[27] 100 × 100 From 10 to 100 From 5 m to 50 m averaged BLE/Fingerprinting/-

[15] 12 × 3 3 Unknown/Only whether a device is in a room or not BLE/-/-

[10] 1200 m2 6 90% below 3.8 m BLE/Machine learning/-

[16] 3.6 × 15 8 1 m averaged BLE/-/KF, dead reckoning

[29] 60 × 40
20 90% below 2.57 m BLE/Fingerprinting /Polynomial Regression model,

Extended KF, Outlier Detection8 90% below 4.16 m
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From the research presented in this section we can reach some important conclusions. Some of
the studies mentioned before characterized the environment in order to obtain a higher accuracy in
their results. This characterization was done through the implementation of a fingerprinting method
or through the characterization of the propagation model variables. The problem with characterization
is that resulting systems can only be used in the scenario where the characterization was performed.
They cannot be immediately deployed in other scenarios because a learning phase is always needed
to collect all the relevant data. This means that an extra investment of time and resources will be
necessary. Another important aspect that stands out in most of the researches, is that their tests were
performed in corridors without obstacles where the results will always be better in absence of obstacles
and with better signal propagation.

The system we propose does not require the characterization of the environment, and it has been
tested in different scenarios to show that we have consistent results that can be extrapolated. Regarding
the use of BLE tags over beacons in [5,14,15] we were able to see the advantages that come with the use
of these devices: high accuracy, low power consumption, low price and different applications. As it
was mentioned, with a BLE tag an IoT deployment that calculates the position and other environmental
variables could easily be implemented.

In this paper we present an implementations of a BLE IPS that offers high accuracy in the
positioning calculation, while using a low cost and energy efficient device.

3. Proposed IPS BLE Based System

The objective of the system proposed is to track the position of a device by means of BLE in indoor
environments. In order to do so, the system places L receivers (BLE modules) in fixed positions, while
the senders (BLE SensorTag modules) move around the scenario. These senders represent the devices
that are being tracked. The BLE SensorTag modules act as BLE beacons.

Regarding the receivers, three measurements are needed, in order to apply the trilateration
method so that a minimum of three receivers is mandatory for each room.

As we mentioned in the introduction, our main goal is to deploy a full working system with low
cost and low error. We define the error e as the euclidean distance from the estimated position pe to
the real position, pr:

e =

√(
prx − pex

)2
+
(

pry − pey

)2
, (1)

where the subindices x and y correspond to the x and y axis, respectively. To improve the accuracy, we
propose the use of frequency channel diversity, a weighted trilateration method and Kalman filtering.

3.1. General Overview of the System

The BLE indoor positioning system is composed of the elements shown in Figure 1. The first
element is one or several senders (BLE SensorTags), who send the BLE advertisements, therefore the
senders are acting as BLE beacons. The second element is a set of at least three receivers. Each receiver is
a Raspberry Pi with three sniffers, in order to listen the three BLE advertisements channels (Channel 37,
38 and 39). Each sniffer is programmed so it only processes one channel advertisement. Finally,
a platform (server) is needed to receive the distances computed by each receiver to estimate the current
position of the sender nodes (BLE beacons).

As a sender, the SensorTag CC2650 [34,35] an IoT device developed by Texas Instruments is used.
It has sensors for temperature, humidity, pressure, magnetometer, gyroscope and accelerometer, which
make it a powerful tool for many applications. In our system, the SensorTag CC2650 is the one in
charge of sending the BLE beacons. For each time interval (time between advertisements, that can
be configured), this device transmits the beacon messages (non-connectable advertisements) through
each of the channels (37, 38 and 39) sequentially, within an interval of 3 ms [40]. Therefore, the changes
of RSSI in each channel are only due to the frequency used. The messages sent in the same beacon
interval (one for each channel) have the same counter ID so that the receiver can identify them to apply
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channel diversity accordingly. Every sender has a unique MAC address used to differentiate messages
from different senders.
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Regarding the sender, firstly we have to take into account the directivity of the antenna of the BLE
Tag. Even though the datasheet shows it is almost omnidirectional, tests that we performed showed
that there is a difference of up to 8 dB in some cases. For a system that fully relies on omnidirectional
directivity, this is a huge drawback. Secondly, the transmission power of the device, can be set up to
5 dBm maximum, while the BLE standard allows it up to 10 dBm. When dealing with environments
full of people, walls and interferences, 5 dBm are not enough, in which case we must increase the
number of receivers.

The SensorTag CC2650 has been programmed using the TI Code Composer Studio to send
advertisement beacons each 100 ms at maximum power of 5 dBm. Moreover, it has been programmed
to detect if the device is moving or not. In the first case it keeps sending beacons at the same rate, but
in the second case it changes the frequency to beacon every 5 s instead of 100 ms to save battery.

As receivers, we used Raspberry PI (RPi) with three Adafruit sniffers [36] in each, responsible for
sniffing the beacons sent by the senders in channels 37, 38 and 39. As we devote one sniffer per channel,
the sniffer is continuously listening the channel to decode any transmission. As every advertisement
has the sequence number introduced by the sender, the time of arrival to the sniffer is not relevant
to differentiate advertisements. The RPi’s are programmed in Python, to turn on the sniffers and
configure them to listen to a particular channel in order to take advantage of the channel diversity.
When beacons are received, the RPi runs a script, computes the distance to the sender and sends the
information to the platform. In the rest of this section we detail how we obtain an accurate position
from the received RSSI form the BLE beacon.

The Adafruit sniffers are low cost BLE devices. These modules are based on the Nordic nRF5182
BLE chipset with relatively poor RSSI measurement accuracy (max. ±6 dB [36]). Comparing this value
with other devices, we can see that it is a common value, for example, the CC2650 BLE chipset [35] has
a typical value of ±4 dB and others like the Cypress PSoC 4XX7_BLE family [41] have a typical value
of ±5 dB. The poor RSSI measurement accuracy can affect the overall RSSI accuracy of the system,
and is another reason to design and implement other methods than can improve the accuracy on the
positioning system. Moreover, accuracy on BLE beacon power is another issue to take into account in
overall accuracy. In our system both effects are not a critical issue, since both senders and receivers can
be calibrated. In others systems, for example, when receivers are mobile phone based, this calibration
cannot be performed.

The system uses the platform to estimate the position of each of the senders according to the
information received from the receivers. First of all it creates a socket connection with each receiver,
identified by its MAC address. Then it listens to the incoming information from the receiver, which
sends to the platform its distance to each sender. In order to keep tracking the different senders
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without crossing of information, all of the senders are in turn identified by their MAC address as stated
before. Thanks to this, the system is able to, both, keep the track of different devices, and use different
receivers, at the same time. We use C as the programming language in the platform to maximize
performance and scalability. The number of RSSI samples that we consider in each position calculation,
as well as how often we update the sender position is a system parameter that can be tuned depending
on the application requirements.

3.2. Channel Diversity

As BLE transmits in three advertisements channels (37, 38 and 39), the receiver checks the RSSI
in the different channels and applies a combination scheme explained later to obtain the best results,
taking advantage of channel diversity to improve the performance of the system.

In our system, the BLE Tags send advertisements for the three BLE channels, 37, 38 and 39.
All these advertisements are identified by the MAC of the sender and the counter ID for channel
diversity. In reception, the Adafruit sniffers capture the different frames and each RPi extracts sniffers
frames, and insert them into a circular matrix for each identified sender (we use the MAC of the
sender to this purpose). Table 2 shows the circular matrix of one receiver for one specific sender.
The RSSI values in each row correspond to the counter ID, so that we can apply channel diversity.
In each performed test we will specify the size of the matrix and how we use this matrix to estimate
the position. Due to transmission errors, some rows are not completed and can have only one or
two values.

Table 2. Circular matrix for RSSI values, for each sender.

Counter ID Channel 37 Channel 38 Channel 39

1 RSSI37 RSSI38 RSSI39
2 RSSI37 RSSI38 RSSI39

. . . . . . . . . . . .
N RSSI37 RSSI38 RSSI39

3.2.1. Combination Algorithms

Unlike all the approaches we reviewed in Section 2, in the present paper we will use channel
diversity as a way of improving performance. We could select, either randomly or using some scheme,
a particular advertisement channel (Channel 37, 38 or 39) and use it as the reference. Nevertheless, we
think we can use all the information we have about the channels and combine them in either of the
following ways:

• Select the one providing the biggest RSSI value (biggest algorithm). In this case we consider as the
best channel the one whose related RSSI is the biggest among all the channels. In other words, it
takes the RSSI of the channel that performs better:

RSSImax = max(RSSIch 37, RSSIch 38, RSSIch 39) (2)

• Take the mean between all the channels (mean algorithm). Now we compute the mean value of the
RSSI values of the three channels. Since we are using propagation models, we could get closer to
a model by taking the mean instead of only using one channel:

RSSIaverage =
1
3

39

∑
i=37

RSSIch i (3)

• Obtain a RSSI value from the Maximum Ratio Combining (MRC) algorithm (MRC algorithm).
This approach is to weight the channel in such a way that, when combining them, we trust more
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the ones with bigger RSSI values than the ones with smaller values, but we still take these into
account in the final RSSI computation. The RSSImin value in the numerator has been chosen
according to the sensibility of the channel sniffers [36]:

RSSIMRC =
39

∑
j=37

RSSIj − RSSImin

∑39
i=37 RSSIi

RSSIj (4)

3.3. Distance Estimation from RSSI

Once we have selected the optimum RSSI measurement using channel diversity, we need
to calculate the corresponding distance from the sender to the receiver. We have selected three
propagation models [18,42,43], looking for the most accurate one to estimate the distance (d) from the
RSSI value. The first one is Log-Distance Path Loss model with shadowing showed in Equation (5),
valid for distances d > d0:

RSSI = RSSI(do) + 10nlog
(

d
d0

)
+ Xσ, (5)

where RSSI(do) is the RSSI at a reference distance d0 = 0.8 m (calculated with the free space
propagation model), the parameter n is the path loss exponent and Xσ zero-mean Gaussian distributed
random variable with standard deviation that attempts to compensate the random shadowing effects.
The parameters n and Xσ have been chosen according to the different scenarios and following the
recommendations of [42].

The second one is the International Telecommunication Union (ITU) model for indoor
environments showed in Equation (6):

RSSI = 20 log f + Nlog(d) + Pf(n)− 28, (6)

where f is the frequency in MHz, N is the distance power loss coefficient and Pf(n) the floor loss
penetration factor. N and Pf(n) have been chosen according to the different scenarios and following
the recommendations of the ITU [43].

The third one is the empirical model shown in Equation (7):

RSSI = 10nlog(d) + A, (7)

where A is the empirical measured RSSI at a distance of 1 m between sender and receiver considering
Line-of-Sight (LOS), n is the path loss exponent. The empirical model relies on the characterisation of
the scenario. Even though the idea of our research is not to use any type of characterisation to avoid the
disadvantages it implies (constants calculation, changes on the environment, etc.), we have considered
this model since it has not a strong characterisation and will provide us a reference performance level.

In our case, we compute A as the RSSI at a distance of 1 m from the sender to the receiver, which
we consider to almost be invariant, as both, sender and receiver, are really close one another, and the
conditions cannot affect much at that distance. A comparison between all the models is presented in
Section 4.

3.4. Weighted Trilateration

Once we have the estimated distance from the sender and each receiver, we must next estimate the
position of the BLE device. As we stated before, mathematical trilateration is not always possible since
there is not always a single intersection of the three estimations but rather an area of possible locations.
In this paper we present a method that calculates the location by trusting more in the measurements
from the devices that are estimated to be closer to the sender. We call the method weighted trilateration.
It can be used with L receivers, being L greater or equal to 3, since we need at least three distances for
trilateration. When more receivers are placed, we consider only the three receivers whose calculated
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distance to the sender is the smallest, according to our approach of trusting more the devices closer to
the sender. The use of more than three receivers improves the accuracy of the system.

Given three different measurements (i.e., distances), r1, r2 and r3, from receivers R1, R2 and R3, to
the sender S, we calculate the associated pair-wise weights between R1, R2 and R3 as follows:{

wa b = ra
rb

i f ra < rb

wb a =
rb
ra

i f rb < ra
with a = 1, 2, 3; b = 1, 2, 3 (8)

Depending on the case of trilateration we move from the initial estimated point, which is in many
cases the middle point in the probable location area, to the receiver that is closer to the sender, that is,
the one which provided the smaller distance d to the sender S, a distance proportional to the weights
calculated in Equation (8).

In order to clarify the method, we explain the main cases we may face when dealing with location
computation using trilateration with three obtained distances.

• Circles intersect at one single point: The ideal case is shown in Figure 2, where all the circles
intersect in one point.
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Figure 2. Trilateration: three circle intersection.

We can see in Figure 2 that circles C1, C2 and C3 intersect at point P. For these circles, we have the
following set of equations:

r1
2 = (x− x1)

2 + (y− y1)
2

r2
2 = (x− x2)

2 + (y− y2)
2

r3
2 = (x− x3)

2 + (y− y3)
2

(9)

where r1, r2 and r3 are the radius of the circles C1, C2 and C3 respectively, and the tuples (x1, y1),
(x2, y2), and (x3, y3), are the centre of the same circles. In the case we have L receivers, the set of 3
equations of (9) becomes a set of L equations from which we take the three equations related to the
receivers closer to the sender.

When the three circles intersect in one point, the set of equations in (9) can be solved, leading to
one single point P = (x, y) given by:
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x =

∣∣∣∣∣
(
r1

2 − r2
2)− (x1

2 − x2
2)− (y1

2 − y2
2) 2(y2 − y1)(

r1
2 − r3

2)− (x1
2 − x3

2)− (y1
2 − y3

2) 2(y3 − y1)

∣∣∣∣∣∣∣∣∣∣ 2(x2 − x1) 2(y2 − y1)

2(x3 − x1) 2(y3 − y1)

∣∣∣∣∣
(10)

y =

∣∣∣∣∣ 2(y2 − y1)
(
r1

2 − r2
2)− (x1

2 − x2
2)− (y1

2 − y2
2)

2(y3 − y1)
(
r1

2 − r3
2)− (x1

2 − x3
2)− (y1

2 − y3
2)
∣∣∣∣∣∣∣∣∣∣ 2(x2 − x1) 2(y2 − y1)

2(x3 − x1) 2(y3 − y1)

∣∣∣∣∣
(11)

In this case there is no need to compute any weights since there is only one possible location.

• Circles intersect in an area: In the case shown in Figure 3, there is not a single point P but an area.
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In order to minimize the error we propose the location as the centroid of the triangle formed by
the three points P1, P2 and P3:

Px =
P1x + P2x + P3x

3
(12)

Py =
P1y + P2y + P3y

3
(13)

plus an adjustment based on weights. After computing the middle point between them (point MP),
we take the intersection point related to the closest receivers to the device being tracked, that is, the
intersection of circles C2 and C3 at point P2 (these circles have the minimum radius). Then, we go from
MP to P2, the distance between them multiplied by the calculated weight using the distances of the
closest receiver (RPI in circle C3) and the further one (RPI in circle C2). We consider the distance r3 of
C3 instead of the distance r1 of C1 because, although both intersect in P2, C3 has smaller radio and
therefore we trust it more:

w3 2 =
r3

r2
(14)

Px = Px + (1− w3 2)× d× cos(θ)Py = Py + (1− w3 2)× d× sin(θ) (15)

being θ the angle of the line between points and the x axis, and d the distance from MP to P2.
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Thus, when the radius of the further receiver goes to infinite, but it still intersects, the weight
is 0 and we choose P2 as the most probable point. When we estimate the same distance from all the
receivers to the sender, the weight is equal to 1 and we choose the middle point as the estimated
position. Using this method we take into account the information provided by all the receivers and we
rely more on the closest receiver to the device.

• Two circles intersect in an area, the other does not intersect: This case is shown in Figure 4.
Analysing RSSI values, we estimate the distance from the sender and each receiver. This estimation
is based on RSSI by applying a propagation loss model that provides a circular area centred at the
receiver. The RSSI can be affected by multipath, and so the receivers can estimate the sender is
closer that it really is, therefore, circles may not intersect.
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Again we face a situation in which there is not a single point. Furthermore, now choosing the
middle point between P1 and P2 as the best estimation is not the optimal solution, because we would
not take into account the measurements of the receiver on circle C2. Instead, we calculate points P1
and P2. Then, we obtain:

x =
1
d
(C3x − C1x)±

h
d
(
C3y − C1y

)
+ C1x (16)

y =
1
d
(
C3y − C1y

)
± h

d
(C3x − C1x) + C1y (17)

where:
d =

√
(C1x − C3x)

2 +
(
C1y − C3y

)2 (18)

l =
r1

2 − r3
2 + d2

2d
(19)

h =
√

r1
2 − l2 (20)

and r1, r3 are the radius of C1 and C3 respectively and Cix, Ciy, are the coordinates x and y of the centre
of the circle Ci.

Once P1 and P2 are calculated, the distance between the centre of C2 and these points is computed
(d1 and d2 in Figure 4). Finally, the location chosen as the best one is the point whose distance to the
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radius of the circle C2 is smaller. In this way, not only do we consider measurements provided by C1
and C3, but we also use the information provided by C2. Point P2 is more likely to be the right one
than P1, since P2 is closer to C2 than P1. In this case, we do not consider weights because there is no
closer point to C2 than P2, so we do not need to compute the weighted position.

• Circles do not intersect: In this case, we get three distances whose related circles around the
receiver do not intersect. As explained before, the position I is estimated based on RSSI by
applying a propagation loss model that provides a circular area centred at the receiver. The RSSI
can be affected by multipath, and so the receivers can estimate the sender is closer that it really is,
therefore, circles may not intersect.

As it can be seen in Figure 5, the sender will be placed somewhere in the middle. In order to
compute the location, we may start from the closest receiver and move towards the other receivers
depending on the radius of them and the distance between receivers.
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To compute the location of the sender (point P), we first compute the weights of C2 and C1 respect
to C3, since it is the more reliable one (smaller radius):

w3 1 =
r3

r1
(21)

w3 2 =
r3

r2
(22)

Then we estimate the location as the point laying a distance d1 from the point P1 towards point
P2 of the circle C1 and a distance d2 from there to the circle C2:

d1 = a× w3 1 (23)

d2 = b× w3 2 (24)

where a is the closest distance between the circumferences of C1 and C3, and b is the distance from the
point resulting of moving from P1 to P2 and the closest point of the circumference C2.
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The rest of the possible (but unlikely) cases are also implemented: circles intersect in pairs (i.e.,
C1 with C2 and C3 and no intersection between C2 and C3), two circles intersect and the third one is
contained in any of the others but also intersecting the remaining one, two circles intersect and the
third one is contained in any of the others but without intersecting the remaining one, the circles are
contained each other (i.e., C1 inside C2 and C3, C2 inside C3), one circle isolated and one of the other
ones inside the remaining one (i.e., C1 isolated, C2 inside C3).

3.5. Kalman Filtering

Once we have the estimated location from the weighted location algorithm, we intend to use the
KF to smooth the calculations of the position. We have designed a second order filter to track position,
velocity and acceleration in x and y axis, with no external control input. Through experimentation
it was determined that the best values to initialize the filter are those detailed in Equations (25)–(30).
We have to mention that tuning of the initial values is not a critical aspect since the KF adapts some of
them over the time.

For the state variables x, we set them with the initial values of the variables we are measuring.
In our case, for testing purposes, we set the position in x and y as the starting position of the device
during the test. Velocity and acceleration are set to 0 as the initial values for our environment.
Depending on the application, these values may change:

x = [0 0 0 0 0 0 ]T (25)

Therefore, the used state transition function matrix F is:

F =



1 t 1
2 t2 0 0 0

0 1 t 0 0 0
0 0 1 0 0 0
0 0 0 1 t 1

2 t2

0 0 0 0 1 t
0 0 0 0 0 1


(26)

The state covariance P indicates how much the state variables influence the values each other.
We have chosen medium values for the initial matrix P so that the system does not depend on the
initial state values:

P =



10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10


(27)

Note: the columns are defined as position, velocity and acceleration in x and position, velocity
and acceleration in y.

The process noise matrix Q is not updated in every step. Since we consider F to be accurate
enough to define the movement process, the values of Q are defined small according to some performed
empirical tests in all scenarios:

Q =



0.1 0.1 0.1 0 0 0
0.1 0.1 0.1 0 0 0
0.1 0.1 0.1 0 0 0
0 0 0 0.1 0.1 0.1
0 0 0 0.1 0.1 0.1
0 0 0 0.1 0.1 0.1


(28)
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The measurement function H defines the mapping from the states variables to the measurements.
z is the measurement vector, and x the states variables. The H function is used to obtain from the state
variables vector x the values that are being measured, in this case the position:

H =

{
1 0 0 0 0 0
0 0 0 1 0 0

}
z = Hx (29)

Finally, the matrix R is related to the introduced noise in position measurement. We have
performed some tests to tune this value, obtaining the best results for the matrix expressed in
Equation (30):

R =

{
4 0
0 4

}
(30)

The Kalman gain K can be calculated as expressed in Equation (31):

K = PHT
(

HPHT + R
)−1

(31)

All those parameters are combined during the prediction step, Equations (32) and (33), and the
update step, Equations (33) and (34), to get the current state of the system:

x̂k = Fk x̂k−1 (32)

where x̂k is the estimate of x at current step k:

Pk = FkPk−1FT
k + Qk (33)

where Pk is the estimate of P at current step k:

x̂′k = x̂k + K
(→

z k − Hk x̂k

)
(34)

P′k = Pk − K′HkPk (35)

where x̂′k and P′k are the updated of x and P respectively at current step k. K is also updated in the k
current step of the system, as showed in Equation (36), obtaining K’:

K′ = Pk HT
k

(
HkPk HT

k + Rk

)−1
(36)

4. Test Scenarios

The objective of this implementation was to provide a system able to display good performance in
terms of accuracy, cost and energy consumption in any environment. We have selected three different
indoor scenarios, shown in Figure 6, to present the performance we have obtained.

• Scenario #1. Indoors medium sized room environment. There are not any obstacles between
sender and receivers but we observe interferences from the WiFi and other electronic devices as
well as refraction and multipath due to pillars and walls. Its size is a 6 m × 4.8 m.

• Scenario #2. Laboratory room. This is a laboratory full of computers, with people around using
electronic devices with WiFi, Bluetooth, etc. causing interferences. Its size is 9.19 m × 6.18 m.

• Scenario #3. Conference room. Unlike scenario #2, now we have a bigger room where the receivers
are further away than before. Its size is a 16.50 m × 17.60 m. The interferences are similar to those
in Scenario #2.
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All tests are performed in the presence of people, interference signals from electronic devices and
rotating the BLE devices that act as senders since we know that the antenna is not fully omnidirectional.
Therefore we perform tests in a realistic situation that can be considered as the worst case. The results
we have presented are obtained in LOS conditions except for people presence. To extend our system in
case we have no LOS, more receivers must be placed to obtain the same accuracy as is possible in a
RSSI-based system. Tests are performed when senders and receivers are in the same plane. In the case
this is not possible, then we have to apply 3D trilateration schemes not implemented in this version
of the system, otherwise we must add a position estimation error. For a 3D location an additional
reference is needed. This case has not been implemented since we consider this is not an interesting
use case for our solution, since the attenuation due to floors introduces a significant error that can be
sufficient to misplace the sender to a different floor level, becoming the location system useless.
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We have selected the parameters of the Log-Distance Path Loss model with shadowing and the
ITU model according to the recommendations of [42] and [43], while for the empirical model we have
selected A as the average RSSI value at the receiver one m away from the receiver after applying the
biggest algorithm, and n is the experimental value that better matches the RSSI values. The equations
for each model are described in Section 3.3, Equations (5), (6) and (7) respectively. The parameters are
shown in Tables 3–5.

Table 3. Log-Distance Path Loss model with shadowing.

Scenario N Xσ

1 2.6 14.1
2 2.6 14.1
3 2.6 14.1

Table 4. ITU model for indoor environment.

Scenario N Pf(n) n

1 28 10 1
2 30 14 1
3 30 14 1

Table 5. Empirical model.

Scenario n A

1 4 −51.12
2 4 −54.18
3 4 −58.22
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4.1. Estimation of the Most Accurate Propagation Model and RSSI Selection Algorithm

In order to evaluate the best propagation model and RSSI selection algorithm, we use scenarios #1
and #2. We have moved the sender away from the receiver from 0.5 to 5 m in steps of 0.5 m, taking
500 RSSI measurements at each step, as shown in Figure 7.Sensors 2017, 17, 2927 20 of 33 
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Figure 7. Scenarios to estimate the most accurate propagation model and combination scheme. (a) 
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Figure 7. Scenarios to estimate the most accurate propagation model and combination scheme.
(a) Scenario #1; (b) Scenario #2, (c) Scenario #3.

The scatter plots of the 500 RSSI values at each distance for each scenario are illustrated in
Figures 8–10. Plotting all the channels together, we have the overall dispersion and the mean for
each channel.
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Figure 10. Scatter plot of RSSI measurements for different distances from sender to receiver at scenario
#3 for different channels.

Figures 8–10 show high fluctuations in RSSI, not only along the distances, but also within the
same distance. These results prove the need of a combination scheme that reduces spread of the RSSI
and ensures that the system uses the best channel to estimate the most accurate position. The results
of applying the combination algorithms we are considering (detailed in Section 3.2.1), are shown in
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Figures 11–13. In this case we have combined the three values of each row of Table 2 according to the
biggest, mean or MRC algorithm in each case, to obtain the RSSI value presented in the Figures 11
and 12 for each scenario.
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(a) Biggest; (b) Mean; (c) MRC.

Comparing Figures 11–13 with Figures 8–10, we visually observe that the difference between the
maximum and minimum values of the RSSI measurement scatter plot is reduced when applying the
different combination schemes over the three channels. Moreover, for example, for scenario #2, Table 6
shows the RSSI standard deviation as a dispersion measure. RSSI standard deviation is maintained or
reduced in all the cases applying a combination algorithm. There are several techniques to use so as to
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minimize the fast fading effect, such as antenna diversity or frequency diversity. Thanks to the fact
that the advertisement message is transmitted almost simultaneously in three different frequencies, we
can apply the frequency diversity by free. The three combination schemes are commonly used against
fast fading. As we compensate the fast fading, we reduce the variability of the RSSI. Therefore, we
demonstrate that this combination has an impact on RSSI dispersion, and we conclude that we reduce
the dispersion when applying the different combination schemes over the three channels.

Table 6. RSSI standard deviation for scenario #2.

Distance in Meters

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

CH 37 6.59 4.58 5.45 4.52 4.72 7.09 5.61 4.25 6.48 4.54
CH 38 3.79 4.41 4.83 2.85 5.42 4.26 3.41 4.68 6.35 4.01
CH 39 4.79 4.38 3.37 3.51 4.78 3.42 2.76 6.95 8.01 6.84

Biggest 3.79 3.15 4.89 2.93 3.57 3.9 2.92 4.41 5.83 3.08
Mean 4.01 2.51 3.81 2.39 3.59 2.74 2.87 3.92 5.26 2.88
MRC 3.67 2.48 3.28 2.19 3.37 2.4 2.44 3.66 5.06 2.34

Figure 14 shows the correlation between the propagation models and the combination schemes we
have proposed. We observed that in scenario #1 the Log-Distance Path Loss model with shadowing fits
better with the biggest algorithm than any other combination of propagation model and combination
scheme. In scenario #2 there is almost no difference between ITU and Log-Distance Path Loss models
with or without shadowing, and both perform well. Nevertheless, in scenario #3 we observe that the
RSSI values are smaller and they do not match well with neither the ITU nor the Log-Distance Path
Loss model. The best model the RSSI values match is with the empirical model, as expected since it
considers some characterization. This last model is the one that performs the best.Sensors 2017, 17, 2927  2 of 3 
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However, to be precise, we want to check the position estimation error for any combination
of propagation model and combination scheme. According to Equation (1), we have computed the
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Cumulative Distribution Function (CDF) of the error average over all the distances from 0.5 m to 5 m.
Figure 15 shows the results. CDF represents the probability that the error average takes a value less
than or equal to the error average in meters. From Figure 15 we observe that, as expected, the best
propagation model is the empirical one. However, the improvement in the accuracy is not as high as
the drawback, in terms of characterization, that this propagation model entails. Respect to the other
two models, ITU and Log-Distance Path Loss model with shadowing, we came around a dilemma.
In scenario #1 the Log-Distance Path Loss model achieves a better accuracy than the ITU model (2 m
during 90% of the time against 3 m during 90% of the time). In scenario 2 there is almost no difference
between models, but in scenario #3, the ITU model is the one outperforming the Log-Distance Path
Loss model for around 2 m (ITU gets 4 m accuracy 90% of the time while Log-Distance Path Loss
model with shadowing gets an accuracy of 6 m during 90% of the time).

Since one of our main objectives is to build a system as independent of the environment as
possible, we recommend using the Log-Distance Path Loss model with shadowing. While the ITU
model considers different values for its parameters N and Pf(n) according to the type of the building,
the number of floors it has, and the frequency, the Log-Distance Path Loss model with shadowing
takes its parameters n and Xσ depending on the frequency and the type of the building.

Therefore, from now on, the Log-Distance Path Loss model with shadowing and the biggest RSSI
algorithm are the propagation model and the channel diversity combination scheme we are going to
use, respectively.

4.2. Performance of the System

Once we have selected the propagation model and the combination scheme, we must measure
the performance, by means of position error, of the overall system. In order to do this we have selected
scenarios #2 and #3, as they have the same interference conditions, to check the behaviour of the
system in two different sized indoor environments. In this case, we have placed four receivers in each
scenario. In the trilateration algorithm, we have used the three receivers whose calculated distance to
the sender is the smallest, according to our approach of trusting more the devices closer to the sender.
Using more than three receivers increases the accuracy, but also increases the cost of the system.

The performed tests will calculate the position of the senders every time interval. This time
interval can be greater than the advertisement interval (in the tests set to 100 ms). The results presented
calculate the position of each sender every second. This is why we have up to N = 10 rows of the
matrix of Table 2 to estimate the sender position. Therefore, we can decide how to use this amount
of data. For testing purposes we use the measurements of seven rows (21 RSSI measurements), to
obtain an optimized RSSI each second. This value has been chosen as a compromise of accuracy, used
memory and delay in the position computation.

The procedure is as follows: we start from a given position and we move with the sender at a
constant velocity of 0.3 m/s following a defined path in each scenario as shown in Figure 16, with the
purpose of calculating the CDF. Then we compare the estimated positions with the one we should be
at each second and perform the CDF of the averaged error.

To show the improvements of the different proposals, we have tested the system using raw
values (i.e., without diversity, without KF, without weighted trilateration or a combination of those
techniques), only diversity, diversity plus weighted trilateration or KF, and finally all of them together.
We have performed four trials for each technique to compute the averaged results. In case we do not
use diversity, we have selected one channel randomly, and to compute the position we have used the
basic trilateration algorithm. Table 7 shows the results for the 90% and 95% in both scenarios.
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Table 7. Precision comparison.

Technique

Error(m)

Scenario 2 Scenario 3

90% of Time 95% of Time 90% of Time 95% of Time

Raw 3.22 3.8 7.46 8.84
Diversity 2.76 3.14 7.08 7.78

Diversity & Kalman 2.18 2.56 5.18 5.78
Diversity & Weighted 1.94 2.68 8.16 9.66

Diversity & Kalman & Weighted 1.82 2.0 4.6 5.06

Figure 17 shows that our proposal, that includes channel diversity, Kalman filtering and weighted
trilateration, improves the estimation error compared to the other approaches. In scenario #1, an
improvement of 43.47% is achieved when comparing errors at 90% of the time. Furthermore we
observe that, while the error in scenario #2 is low, below 1.82 m during 90% of the time, in scenario #3
the error goes up to 4.6 m during 90% of the time. This issue is due to the fact that accuracy of the RSSI
measurements decreases drastically as the distance between the sender and the receiver increases from
5 m on. This is a design trade-off so that we could decrease the error by adding more receivers if the
application requires greater accuracy, but increasing the cost.

4.3. Power Consumption Analysis and Application Examples

Apart from performance and location error, the device lifetime is one of the most important
aspects in a system like the one we propose. For this reason, in this section we do an estimation of the
power consumption of the system. Texas Instrument has developed a tool [44] to do an estimation of
the power consumption of SensorTag CC26xx series. For a device with a power source voltage of 3 V,
a CR2032 coin cell battery, considering only non-connectivity advertising at 100 ms 24 h/day, with an
output power level of 5 dBm (the maximum) and advertising in the three BLE channels using frames
of 30 bytes, we show the current consumption and device lifetime estimation in Table 8.



Sensors 2017, 17, 2927 28 of 32
Sensors 2017, 17, 2927 28 of 33 

 
(a) 

 
(b) 

Figure 17. CDF. (a) Scenario #2; (b) Scenario #3. 

Table 8. Current consumption and device lifetime when considering only non-connectivity 

advertising at 100 ms 24 h/day, with an output power level of 5 dBm. 

Days Months Years Peak TX Current [mA] Average Current [mA] 

53.138 1.771 0.146 9.3 0.18035 

Depending on the user application, the advertising interval can be greater or smaller. However, 

100 ms advertising interval is already a high value. Table 9 shows current consumption and device 

Figure 17. CDF. (a) Scenario #2; (b) Scenario #3.

Table 8. Current consumption and device lifetime when considering only non-connectivity advertising
at 100 ms 24 h/day, with an output power level of 5 dBm.

Days Months Years Peak TX Current [mA] Average Current [mA]

53.138 1.771 0.146 9.3 0.18035

Depending on the user application, the advertising interval can be greater or smaller. However,
100 ms advertising interval is already a high value. Table 9 shows current consumption and device
lifetime for applications where the advertising requirements are not so high and the BLE tag can
advertise each 500 ms.
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Table 9. Current consumption and device lifetime when considering only non-connectivity advertising
at 500 ms 24 h/day, with an output power level of 5 dBm.

Days Months Years Peak TX Current [mA] Average Current [mA]

259.923 8.664 0.712 9.3 0.03687

Different applications and environments under several conditions where our system may be
useful as well as the device lifetime, are explained as follows:

• Tracking assets in a factory where workers move them from one building to another, and they
want to track that all the assets are where they are supposed to be. Each asset must have a BLE tag
on it or in its container. If we want to track in which building the assets are at every moment, we
need to have the device on 24 h but we do not need an extreme location precision, so we transmit
advertisements from the BLE tag every 5 s instead of every 100 ms. Under these conditions (24 h
running, 5 s advertisement, low transmission power of−20 dBm), the assets could stay monitored
for 6.238 years.

• Tracking people inside a building where, for security reasons, we want to have the control of
where the people are at every moment. People must have a BLE Tag. We have considered a
real operation time of the system of 10 h per day. In addition, we know we will have many
interferences and occlusions from people moving and the devices they carry, so we need to set
the advertising interval to a low value (100 ms) and the transmission power to 5 dBm so that the
accuracy does not drop. In this case the device lifetime is about 4.2 months.

• Tracking customers in a mall to know users’ preferences and offer them the products that they
are interested in. The IPS may be used to track the path of the customers. With the information
obtained, companies of the mall may, for example, redistribute the different shops in a way that
is more comfortable for the customers, or place together shops that are usually visited in a row.
Taking into account that malls usually open 12 h per day, and that we need a medium precision
for this purpose (500 ms advertisement interval and medium transmission power of 0 dBm), we
obtain a device lifetime for the BLE tags of 1.4 years.

Moreover, the BLE SensorTag chosen for this project can be programmed so that it stops
advertising frames when it is not in movement.

5. Conclusions

In this paper we have presented a survey of different IPS BLE based systems. Then we have
proposed and implemented a novel IPS BLE system that improves accuracy while reducing costs.
In our research, we have proposed three different techniques to enhance the precision of a BLE
indoor positioning system: channel diversity, Kalman Filtering and a weighted trilateration method.
With channel diversity our main goal is to reduce the dispersion of the RSSI measurements inherent to
this kind of systems. We use Kalman Filtering as a way to mitigate the effects of unlikely or impossible
location estimations due to wrong RSSI measurements, so that we can track the location of a device
with more precision. Finally, the weighted trilateration is an improvement of the basic trilateration
algorithm, since not always the three measurements converge to a single point. Our results prove that
combined together, the precision is increased by 43.47% in a medium-size room scenario and by 38.33%
in a big-size room scenario compared to precision without using any of the proposed techniques.

If we compare the results of our experiments to those reviewed in the literature, we observe
that most of the systems use fingerprinting, since it is the technique that achieves the best results in
terms of precision. For example, [19] shows a precision under 0.8 m during 96.6% of the time which
is far better than the results of our proposal at 95%, of two m in scenario #2 and 5.06 on scenario #3.
Nevertheless, there are two important factors which make our system a good choice: the number
of beacons and the characterization of the scenario. In [19], they use 44 beacons which implies a
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more expensive solution compared to our four beacons. In addition to the cost, their system is highly
dependent of characterization, as any other fingerprinting approach, while our proposal does not need
any characterization.

When comparing our solution to other BLE systems using propagation models without
characterization, we observe that, in general, ours is the most balanced one in terms of precision
and cost. Comparing with [11] we see that our proposal outperforms it in every metric, namely
number of beacons, size of the room, and accuracy. Finally, the authors in [17] used 10 beacons in a
bigger room than ours in scenario #3, and the precision was 3.02 m during 80% of the time. In our case,
the precision in scenario #3 is around 4 m during 80% of the time. However, we still have to consider
that they are using six more beacons that, again, increase the final cost. As the result of applying all
the techniques proposed in our work, we achieve an estimation error for a device moving lower than
1.82 m during 90% of the time for a 54 m2 room, and lower that 4.6 m during 90% of the time for a
290 m2 room, in both cases using only 4 beacons. An estimation of the cost of BLE devices used in
the system is between 15€ to 30€ each BLE beacon (one per sender), and about 120€ per each receiver.
The comparison of the system we have proposed with other studies has proved that our solution is
better as a trade-off between precision and cost, as the density of receivers is very low for the accuracy
achieved. From the figures provided it is clear that if we have a large number of low power tracking
devices, which should work unattended, the proposed solution is the best in terms of cost.
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