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The RhoB small GTPase in physiology and disease

Francisco M. Vega a,b and Anne J. Ridley c

aInstituto de Biomedicina de Sevilla, IBiS (Hospital Universitario Virgen del Roc�ıo/CSIC/Universidad de Sevilla), Sevilla, Spain; bDepartment of
Medical Physiology and Biophysics, Universidad de Sevilla, Sevilla, Spain; cRandall Division of Cell and Molecular Biophysics, King’s College
London, New Hunt’s House, Guy’s Campus, London, UK

ARTICLE HISTORY
Received 28 September 2016
Revised 22 October 2016
Accepted 23 October 2016

ABSTRACT
RhoB is a Rho family GTPase that is highly similar to RhoA and RhoC, yet has distinct functions in
cells. Its unique C-terminal region is subject to specific post-translational modifications that confer
different localization and functions to RhoB. Apart from the common role with RhoA and RhoC in
actin organization and cell migration, RhoB is also implicated in a variety of other cellular processes
including membrane trafficking, cell proliferation, DNA-repair and apoptosis. RhoB is not an
essential gene in mice, but it is implicated in several physiological and pathological processes. Its
multiple roles will be discussed in this review.
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Introduction

The small Rho GTPase family of signaling molecules are
important regulators of cell and tissue morphology and
function, acting mainly through the cellular cytoskeleton.1,2

They are key mediators during diverse cellular and physio-
logical processes like cell division, cell migration, wound
healing or immune surveillance. The family consists of 20
members in humans and the dysregulation of their func-
tion have been linked to different human pathologies.

RhoB, together with RhoA and RhoC, forms the Rho
subfamily within the Rho GTPase family. These three
proteins have a high degree of similarity (they share
around 87% amino acid sequence identity) although
RhoB is the most divergent member of the subfamily. In
contrast to RhoA and RhoC, RhoB is encoded by a single
exon and it is believed to have arisen from a RhoA
reverse copy integration during vertebrate evolution.
While RhoA and RhoC genes are present in all verte-
brates analyzed to date, the RhoB gene is found in many
but not all vertebrates, although it is present in some
amphibians, reptiles and birds.3,4

RhoB regulation and signaling

Most of the amino acid differences between RhoB and
RhoA/RhoC are near the C-terminus, in the region

known as the hypervariable region (Fig. 1). The hyper-
variable region of RhoB contains mostly polar residues
compared to the basic residues found in RhoA and
RhoC. This affects the effector and regulatory proteins it
binds to.5 RhoB also differs from RhoA and RhoC in the
C-terminal CAAX box (CDcysteine, AD alphatic amino
acid, X D any amino acid), in which the Cys is modified
by isoprenoid lipids. RhoB can be modified by both
geranyl-geranyl and farnesyl isoprenoids, whereas RhoA
and RhoC are only geranylgeranylated. RhoB can also be
palmitoylated at Cys189 and 192. This variety of lipid
modifications on RhoB affects its localization and indeed
RhoB localizes at the plasma membrane, as well as on
endosomes and multivesicular bodies (MVB)6,7 whereas
RhoA and RhoC are localized mainly on the plasma
membrane or in the cytosol. RhoB has also been reported
to localize in the nucleus.8

Like most Rho GTPases, RhoB activity is regulated by
GTP/GDP loading. It cycles between a GTP-bound
active state and a GDP-bound inactive state. GTP-bound
Rho proteins interact with their downstream effectors to
induce cellular responses. GTP/GDP cycling is mainly
regulated by guanine nucleotide exchange factors
(GEFs), which exchange GDP for GTP, and GTPase-
activating proteins (GAPs) that promote rapid GTP
hydrolysis. GEF and GAP proteins specifically regulating
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RhoB and not RhoA or RhoC have not so far been iden-
tified, even though the different localization and lipid
modifications of RhoB compared to RhoA and RhoC
might be expected to expose it to different GEFs and
GAPs. Most GEFs and GAPs tested act on RhoA, RhoB
and RhoC, at least in vitro. The RhoGEF XPLN/ARH-
GEF3 binds to RhoA and RhoB but not RhoC.9

The chaperone protein SmgGDS binds to polybasic
C-terminal regions in several GTPases and has GEF
activity for RhoA and RhoC but does not bind RhoB.10

Of the 3 Rho guanine nucleotide dissociation inhibi-
tors (RhoGDIs), which are negative regulators of some
Rho GTPases,11 only RhoGDI-3 has been described to
bind RhoB, whereas RhoGDI1 binds RhoA and RhoC
but not RhoB.12

RhoB levels are acutely regulated in response to a
variety of stimuli. RhoB is target for ubiquitin-mediated
proteasomal degradation, with Smurf1 and the Cullin2-
RBX1 complex being its best known ubiquitin
ligases.13,14 RhoA and RhoC are also ubiquitylated,
however, RhoB protein is much more rapidly degraded
by the proteasome than RhoA or RhoC, and has a short
half-life of about 30 minutes.15 RhoB protein is nor-
mally at low steady-state levels in cells, but can be rap-
idly and transiently upregulated by several stimuli,
including UV irradiation, growth factors, cytokines and
during the cell cycle (see below). RhoB mRNA can be
regulated by several miRNAs in cancer cell lines and
endothelial cells. For example miRNA21 regulates pro-
liferation, migration and invasion of colorectal cancer

cells and miR19a promotes pancreatic cancer in vitro
and in vivo, in both cases by targeting RhoB.16,17 Inter-
estingly, several studies have shown that RhoB expres-
sion is increased after the downregulation of RhoA or
RhoC,18-21 although it is not clear if this is via miRNAs
or changes in protein stability. RhoB may also be regu-
lated by phosphorylation. RhoB, but not RhoA or
RhoC, is phosphorylated and inhibited by casein kinase
1 (CK1) on Ser185 (Fig. 1).22 RhoB has been reported
to be phosphorylated on tyrosine residues but the func-
tional relevance is not clear (Fig. 1).23

Most effectors tested in vitro bind equally well to RhoA,
RhoB or RhoC. ROCK for example is activated by all 3 pro-
teins, although a direct binding might not be required.24 By
contrast, the PRK family of protein kinases has a higher
affinity for RhoB than RhoA or RhoC, and for PRK3 this
involves interaction with the C-terminal region of RhoB.25

Interestingly, PRK1 is localized to endosomes by RhoB in
cells,26 indicating that PRKs are likely to preferentially
interact with RhoB in vivo as well as in vitro.

RhoB activity in cells can be analyzed using the Rho-
binding domain (RBD) of the Rho effector Rhotekin,
which interacts with RhoA, RhoB and RhoC, followed by
western blotting with RhoB-specific antibodies. Specific
molecular FRET biosensors for the study of RhoA and
RhoC activity have been described.27 Intermolecular
FRET between RhoB and its target mDia2 has been used
in the past for the visualization of RhoB activity on
endosomes.28 Most recently, a specific molecular FRET
biosensor for the detection of RhoB activity in intact cells

Figure 1. Schematic of RhoB protein structure highlighting the different protein domains and known phosphorylation sites. A
comparison between the hypervariable region sequence of RhoA, RhoC and RhoB is shown in the box. Red amino acid residues in RhoA
and RhoC indicate divergence from the RhoB sequence. CAAX box is also highlighted. CK1: Casein kinase 1; GG: geranylgeranylation;
P: palmitoylation; F: farnesylation.
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has been reported and used, together with RhoA/C
probes, to analyze the spatiotemporal activity regulation
of these molecules in endothelial cells.29

One of the specific cellular functions of RhoB, related
to its localization to intracellular membrane vesicles, is
the regulation of endosomal dynamics30 (Fig. 2). By con-
trolling intracellular transport, it regulates signaling by
the receptors EGFR and CXCR2, and the intracellular
kinases Src and Akt,31-34 thus affecting a variety of
physiological processes as described below (Fig. 2).

RhoB function during development

RhoB is not essential for development in mice: RhoB
knockout mice are viable and fertile.35 It is possible that
signaling by other Rho GTPases is altered in RhoB-null
mice, thereby compensating for loss of RhoB. Closer anal-
ysis of RhoB-null mice however reveals defects in specific
systems and a role for RhoB in several developmental pro-
cesses. For example, RhoB knockout mice show a reduced
thymus weight and cellularity and an increase in TGFb
signaling in the thymic medullary epithelium, where
RhoB is normally expressed, implying that RhoB contrib-
utes to thymus development and maintenance.36 In addi-
tion, RhoB-null mice have retarded vascular development
and impaired vessel sprouting in the retina, an effect
attributed to a role for RhoB in endothelial cell survival
via Akt stabilization in the nucleus.31

RhoB is expressed during mouse development in both
neural crest and neural tissues including motor neurons
and the floor plate of the neural tube. It is also expressed
in the developing endocardial cushions of the atrioven-
tricular and outflow regions of the developing heart and
its expression increases as the epithelial-mesenchymal
transition (EMT) necessary for generating the valves and
septa of the heart progresses.37 This suggests a possible
role for RhoB in the formation of the heart membrane
valves, although this has not been tested. RhoB is also
expressed in glial M€uller cells to maintain cellular
morphology, in both adult mouse and chick retina.38

In addition to mice, studies in other organisms have
demonstrated a role for RhoB in normal development.
For example, RhoB activity is necessary for the actin
reorganization required for feather bud formation and
patterning downstream of Ephrin signaling in chick
embryos.39

Where a role for RhoB has been most clearly delin-
eated is in the development of the chick neural crest.
RhoB is implicated in the delamination of the neural
crest downstream of the transcription factor Slug.35,40

RhoB has also been described to be induced indepen-
dently of Slug by the transcription factor Sox5 in the
pre-migratory chick cephalic neural crest.41 The expres-
sion of RhoB is also detected in migrating neural crest
cells in Xenopus42 RhoB is proposed to induce neural
crest delamination by stimulating cytoskeletal remodeling

Figure 2. Roles of RhoB in intracellular transport. Endosome-associated RhoB regulates the trafficking and recycling of receptor tyrosine
kinases such as EGFR and other receptors like CXCR2 or TNFR, affecting their activity. It also regulates Src activation and transport to
membranes and Akt activation and transport to the nucleus. RhoB mediates the PDGF or inflammatory responses by targeting other
Rho GTPases like Rac or Cdc42 to the plasma membrane. See text for references.
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and the formation of focal adhesions that allow the
acquisition of a migratory phenotype in pre-migratory
and migratory neural crest cells43 although these early
studies relied on the Clostridium botulinum exoenzyme
C3 transferase, which inhibits RhoA, RhoB and RhoC.
RhoB is also involved in neural crest migration itself,
although its overexpression alone is not sufficient to elicit
a migratory phenotype.37,42,44 In conclusion, RhoB
expression in the neural crest suggests a prominent role
in neural crest formation and migration to target tissues,
although the mechanism and exact role have not been
fully elucidated yet.

RhoB in inflammation and vasculogenesis

Several studies have implicated RhoB in inflammatory
responses, particularly in macrophages and endothelial
cells. RhoB but not RhoA is reported to be involved in
mannose receptor-mediated phagocytosis in human
alveolar macrophages.45 RhoB also regulates the secre-
tion of TNFa and nitric oxide by macrophages in a
model of LPS-induced inflammation in mice, possibly
through a pathway involving NFkB.46

RhoB affects cell adhesion and migration of macro-
phages by reducing cell surface expression of b2 and b3
integrins but it is not required for the assembly of podo-
somes, based on studies with primary macrophages from
RhoB-null mice.47 Macrophages lacking both RhoB and
RhoA (RhoC is not expressed in macrophages) have
impaired lamellipodial retraction and altered cell shape.
Similar to RhoB-depleted macrophages47 they migrate
faster in vitro, which correlates with increased recruit-
ment in response to peritoneal inflammation in vivo.48

RhoB expression is upregulated in mouse macro-
phages during the inflammatory response to hypoxia in
a mechanism involving JNK, ERK and the hypoxia-
inducible transcription regulator HIF1a. RhoB depletion
in these cells impairs production of inflammatory cyto-
kines both in normoxia and in response to hypoxia.49

RhoB is also rapidly activated by hypoxia and is required
for HIF1a stabilization in endothelial cells and other cell
types.50,51 Activation of RhoB by hypoxia increases
pulmonary endothelial cell contractility, induces endo-
thelial permeability and promotes cell growth in vitro,
mediating adaptive changes to chronic hypoxia in the
pulmonary vasculature in vivo.51

The farnesylated but not the geranylgeranylated form
of RhoB can activate NFkB in several cell types via its
downstream target ROCK-I,52 although whether it con-
tributes to inflammatory responses mediated by NFkB is
not known. RhoB is also needed for efficient human
cytomegalovirus production and infection of fibroblasts,

where it contributes to the actin assembly needed for
virus spread.53

RhoB also regulates endothelial cell responses to
inflammatory signals. RhoB is strongly upregulated in
primary human endothelial cells by the pro-inflamma-
tory stimuli TNFa, IL1b and LPS. It specifically regulates
some responses to the TNF receptor by controlling its
intracellular traffic, for example TNFa-mediated activa-
tion of p38MAP kinase and JNK, the latter presumably
in a coordinated manner with RhoA.54 Significant RhoB
activation in endothelial cells after TNF stimulation has
also been detected using a specific RhoB biosensor.29 The
inflammatory response in endothelial cells depleted of
RhoB is impaired, as measured by expression of the leu-
kocyte receptor ICAM-1 or production of the cytokines
IL6 and IL8. During inflammation, endosomal RhoB in
the endothelium is upregulated in response to inflamma-
tory cytokines, and RhoB activity regulates Rac1 traffick-
ing to the plasma membrane to control endothelial
barrier integrity.21

RhoB is not only implicated in endothelial cell inflam-
matory responses but also in the regulation of vascular
function and angiogenesis. Using siRNAs, RhoB has
been shown to be required for endothelial cell migration,
sprouting and capillary morphogenesis.55 The micro-
RNA miRNA-21 targets RhoB in endothelial cells to
inhibit migration and tubulogenesis.56 How RhoB exert
these functions in endothelial cells is not completely
clear. One possibility is that it acts through its effects on
the actin cytoskeleton, since RhoB is the main regulator
of stress fiber formation in endothelial cells under some
conditions.56,57 It is also possible that RhoB regulates the
activity of other Rho GTPases, like RhoA, or that it
affects endothelial cell morphogenesis by regulating
growth factor receptor trafficking and signaling, as
VEGF induces RhoB expression.55

Loss of RhoB also decreases pathological angiogenesis
in ischemic retina and reduces angiogenesis in response
of wounding. Conversely, loss of RhoB increased lym-
phangiogenesis after wounding or inflammation, indicat-
ing that RhoB has different effects in blood vessel versus
lymphatic endothelial cells.8 Both effects were linked to
RhoB-mediated regulation of gene expression through
the transcription factor VEZF1.

RhoB in cancer

Rho GTPases, including RhoB, have been extensively
studied for their contribution to cancer progression,
given their major roles in regulating cell migration and
proliferation.58-61

RhoB was first described to contribute to fibroblast
transformation downstream of the Ras onco-protein,62

SMALL GTPASES 387



but has subsequently been described to act predomi-
nantly as a tumor suppressor. Indeed, RhoB levels
decrease with tumor progression in various solid human
tumor types,58 and RhoB knock-out mice are more prone
to carcinogen-induced skin cancer.35 This could reflect
the role of RhoB in regulating cell cycle progression and
apoptosis. For example, RhoB is required for the apopto-
tic response of transformed fibroblasts to DNA damage
or taxol,63 and treatment of anaplastic thyroid carcinoma
cells with an agonist of PPARg (Peroxisome-prolifera-
tor-activated-receptor-g) induces cell cycle arrest by
RhoB-mediated activation of the cell cycle inhibitor
p21.64 RhoB also inhibits migration, invasion, metastasis
and tumor growth in some models.65,66 By contrast,
RhoB contributes to tumorigenesis in certain tumor
models. For example, RhoB knockdown has been
described to induce an apoptotic response in renal cells67

and a recent report shows that, in gliomas, RhoB deple-
tion leads to cell cycle arrest, apoptosis and reduced
tumorigenic potential in vivo, possibly through p53
activation.68 However, overexpression of RhoB did not
induce cell growth in glioma cells, arguing against a
tumor-initiating function for RhoB.

As mentioned above, RhoB expression is rapidly
upregulated in cancer cells by multiple stimuli including
UV irradiation, cytokines, growth factors or toxin
treatment (reviewed in ref. 58). These changes in RhoB
levels are mediated by gene transcription (as after toxin
A or steroid hormones treatment and after tyrosine
kinase stimulation), mRNA stabilization (like after
TGFb stimulation or during cell cycle progression) or
both (for example after UV light induction). mRNA sta-
bility is controlled by the RNA-binding protein HuR, a
substrate of the DNA damage-activated checkpoint
kinase Chk2.69,70 Epigenetic changes have also been pro-
posed to regulate the RhoB promoter: histone deacety-
lase-1 (HDAC1) represses RhoB expression and HDAC
inhibitors, known to kill tumor cells, actually induce
RhoB expression.71,72 In addition, combined inhibition
of HDACs and phosphoinositide 3-kinases (PI3Ks) in
Burkitt lymphoma cells increases RhoB expression, cor-
relating with reduced cell proliferation and migration.73

Interestingly, RhoB contributes to either cell cycle arrest
or apoptosis depending on which HDAC isoform is
inhibited,74 suggesting that RhoB may act together with
other HDAC isoform-selective targets to affect cellular
responses. On the other hand RhoB expression is
reduced by several oncogenes including Ras, EGFR or
Akt.66,75 Similarly, thyroid hormone receptor re-expres-
sion in thyroid cancer cells activates RhoB transcription
inducing cell cycle arrest and reducing invasion.76

In addition to increasing RhoB expression, genotoxic
stress rapidly activates RhoB. This appears to be

mediated by the nuclear GEFs Ect2 and Net1, as downre-
gulation of these proteins, and not 2 cytoplasmic RhoB
GEFs, abrogates DNA damage-mediated RhoB
activation.77

Distinct lipid modifications on RhoB may play a role
in its tumor suppressive role. Farnesyltranferase inhibi-
tors (FTIs) induce accumulation of geranylgeranylated
RhoB, which has been proposed to mediate FTI-induced
inhibition of proliferation78. RhoB is certainly required
for the apoptotic response to FTIs, which is in part
mediated by suppression of Cyclin B1 activity.63,79,80

For some time, it has been known that RhoB deletion
confers resistance to DNA damaging agents in vitro.63

New evidence reveals that RhoB affects DNA damage
repair and how this could at least in part explain its
tumor suppressive role (Fig. 3). A direct link between
double strand breaks (DSBs) and RhoB expression has
been described, involving RhoB mRNA stabilization by
Chk2 via its substrate HuR.70 RhoB-deficient cells fail to
repair DNA DSBs effectively by homologous recombina-
tion, and this is attributed to reduced de-phosphoryla-
tion of the histone gH2AX by the phosphatase PP2A.
RhoB can also be induced downstream of the DNA-
damage activated kinases ATR and Chk1, which sup-
press RhoB degradation by the ubiquitin ligase Smurf1,
thereby promoting RhoB stabilization and apoptosis.13

These mechanisms together offer an explanation for the
association between RhoB depletion, genomic instability
and tumor progression.

In addition to regulating the DNA damage
response, RhoB can affect cell proliferation and tumor
growth by regulating intracellular trafficking (see
Fig. 2). For example, RhoB is responsible for EGFR
sorting to lysosomes and recycling, thus modulating
the responses mediated by EGF.7 It also influences
trafficking of other signaling molecules including the
kinases Akt and Src31,33 The effectors that mediate
these functions downstream of RhoB are still not
known, although PRKs could be involved since RhoB
recruits PRK1 to endosomes.26

RhoB can also influence tumor progression by regu-
lating cancer cell migration, invasion and adhesion
(Fig. 4). The effect of RhoB on cell migration is cell type
and context-dependent, probably because it affects both
intracellular protein trafficking and actin organization.
Both RhoB deletion and overexpression appears to be
able to reduce migration in vitro, highlighting the
importance of a tight control on RhoB expression and
function.35,66 However, RhoB depletion can also increase
migration speed of prostate cancer cells.81 RhoB affects
b-integrin expression and localization, thereby modulat-
ing cancer cell adhesion and migration.81,82 RhoB
regulates signaling mediated by the Urokinase-type
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plasminogen activator (uPA), affecting uPA-induced cell
adhesion, migration and invasion of prostate cancer
cells.82 RhoB can also regulate the function of other Rho
GTPases affecting cell migration. For example, RhoB
controls the trafficking of Cdc42 and Rac to the cell
membrane in response to PDGF, mediating cell
movement.83

Given its role in neural crest development and
delamination,35,40 the possible involvement of RhoB in

epithelial-mesenchymal transition (EMT) mechanisms
during cancer progression has been investigated. RhoB
depletion in renal cells did not affect EMT, whereas
RhoA and RhoC did contribute to EMT in the same
model.67 However, RhoB depletion disrupted cell-cell
interaction in prostate cancer cells by altering E-cadherin
distribution and levels.84 RhoB depletion promoted
Rac1-dependent mesenchymal cell invasion of lung
carcinoma cells by mediating induction of the EMT
transcription factor Slug and E-cadherin repression.
Downregulation of RhoB also induced Akt activation
which in turns activates Rac1 via the GEF Trio. The
phosphatase PP2A was identified here as a RhoB effector
leading to Akt dephosphorylation.85

In summary, RhoB contributes to cancer progres-
sion in multiple ways, by regulating DNA damage
responses, apoptosis, cell cycle progression, migration
and invasion.

Conclusions and perspectives

Despite the sequence similarity with the closely related
Rho GTPases RhoA or RhoC, RhoB has proven to have
specific and pleiotropic functions in organisms from
mammalian development to DNA damage survival
responses. Although some of these roles of RhoB can be
attributed to regulation of intracellular trafficking of
signaling and adhesion molecules, the function of RhoB

Figure 4. Roles of RhoB in cell migration and adhesion. RhoB acts
on several targets (in yellow boxes) and affects the function of
adhesion molecules, receptors and/or GTPases to regulate cell
migration, invasion and adhesion processes.

Figure 3. RhoB in DNA-damage responses. Both after ionizing radiation or UV-induced DNA-damage, RhoB expression is increased due
to increased mRNA stability, direct promoter activation and reduced degradation. Active RhoB in turn participates in DNA repair and
induces cell cycle arrest or apoptosis in damaged cells. UV: ultraviolet radiation; IR: ionizing radiation. See text for references.
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extends beyond this. More information on how RhoB
activity is regulated and identification of RhoB-specific
effectors will provide new insight into RhoB function at
the cellular level. At the physiological level, it will be
important to determine whether RhoB downregulation
drives tumor progression and if its signaling could be
exploited therapeutically. Given the roles of RhoB in vas-
cular biology and inflammation, its direct involvement
in other human pathologies should also be explored.
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