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H I G H L I G H T S
� Pertussis-related Google Trends Data (GTD) showed a weak but significant correlation with the reported weekly number of pertussis cases.
� We fitted a SARIMA models to estimate reported weekly pertussis case numbers
� The GTD-expanded models achieved significantly better predictive accuracy than the traditional model over a one-year-period.
� Corrected Akaike Information Criteria also favored the GTD-Expanded SARIMA model.
� The use of GTD should be considered as a method to enhance pertussis forecasting.
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A B S T R A C T

Background: Alternative methods could be used to enhance the monitoring and forecasting of re-emerging con-
ditions such as pertussis. Here, whether data on the volume of Internet searching on pertussis could complement
traditional modeling based solely on reported case numbers was assessed.
Methods: SARIMA models were fitted to describe reported weekly pertussis case numbers over a four-year period
in Germany. Pertussis-related Google Trends data (GTD) was added as an external regressor. Predictions were
made by the models, both with and without GTD, and compared with values within the validation dataset over a
one-year and for a two-weeks period.
Results: Predictions of the traditional model using solely reported case numbers resulted in an RMSE (residual
mean squared error) of 192.65 and 207.8, a mean absolute percentage error (MAPE) of 58.59 and 72.1, and a
mean absolute error (MAE) 169.53 and 190.53 for the one-year and for the two-weeks period, respectively. The
GTD expanded model achieved better forecasting accuracy (RMSE: 144.22 and 201.78), a MAPE 43.86, and 68.54
and a MAE of 124.46 and 178.96. Corrected Akaike Information Criteria also favored the GTD expanded model
(1750.98 vs. 1746.73). The difference between the predictive performances was significant when using a two-
sided Diebold-Mariano test (DM value: 6.86, p < 0.001) for the one-year period.
Conclusion: Internet-based surveillance data enhanced the predictive ability of a traditionally based model and
should be considered as a method to enhance future disease modeling.
1. Introduction

General introduction to pertussis: Pertussis, also known as whooping
cough, is an acute, highly contagious respiratory tract illness. It results
from infection with Gram-negative bacteria of the Bordetella genus;
predominantly B. pertussis, and to a lesser extent B. parapertussis [1]. The
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consequences of infection can be severe, especially in infants. In infants,
pertussis is associated with high levels of mortality, particularly in those
under three months of age. The number of infected infants requiring
hospitalization and intensive care remains high [2, 3].

Historically, the disease was a major cause of childhood morbidity
and mortality. Pertussis is now a vaccine-preventable disease. Whole-cell
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vaccines that induce long-lasting protective immunity were introduced in
the 1950's. These were replaced in the 1990's by acellular vaccines. The
effectiveness of these declines over time and they possibly provide less
protection against carriage. However, acellular vaccines are considered
associated with fewer side effects [4].

Despite widespread vaccination, pertussis has made a comeback;
there has been a resurgence in incidence in many developed countries in
recent decades [5]. In 2018, the countries reporting the highest number
of pertussis cases were China (22,507), India (13,208), Germany (12,
907), followed by Australia (12,555) [6]. However, the number of re-
ported cases represents only the tip of the iceberg; in developed countries
many cases go unrecognized meaning the true extent of pertussis infec-
tion is unclear. In developing countries pertussis continues to be a major
cause of infant and childhood mortality. In 2014 there were an estimated
24 million cases and 160,000 deaths from pertussis in children younger
than five years old worldwide [7].

Pertussis is probably underreported, especially in adults, because of
the wide variability in disease presentation [8, 9]. Initial symptoms are
non-specific and mild, often mirroring those of other minor illnesses,
meaning misdiagnosis easily occurs. Previously vaccinated individuals
experiencing infection exhibit atypical symptoms; another important
reason why pertussis is often easily missed [10].

Several factors possibly account for the resurgence in pertussis inci-
dence in recent years, including the rise of vaccine hesitancy, the waning
in the effectiveness of acellular vaccination over time, and better
methods of infection detection through PCR [11]. An epidemiological
shift in infection may also have occurred, with fewer children becoming
infected but more adolescents, adults, and infants [12]. This may be
because the effectiveness of the newer acellular vaccination declines over
time, meaning that children, vaccinated at preschool age remain well
protected, but adolescents and adults not recently vaccinated are more
likely to experience mild infection. They may then transmit the infection
to unvaccinated infants [5]. Despite high vaccination rates, periodic
epidemics occur, suggesting that vaccination is effective at preventing
the worst of the symptoms but not in preventing further transmission of
disease.

Background to the use of Internet search data for disease surveillance: The
re-emergence of pertussis in recent decades indicates that there is a need
to enhance monitoring and forecasting using novel methods. Using data
related to Internet searching is one such potential avenue for investiga-
tion. The Internet is now the primary information source for those
seeking health care information; with Internet searching creating large
amounts of data relating to the topics sought for [13].

Researchers were quick to investigate the use of such data in the
monitoring and forecasting of infectious diseases [Reviewed:
13&ndash;16]. A notable, and well known, early attempt was Google Flu
Trends (GFT), which attempted to use such data to predict likely influ-
enza occurrence [17]. Although offering great potential, GFT was
plagued with problems, primarily due to overfitting [18]. Internet search
data has been used in numerous later studies for various other conditions
[19, 20, 21].

Several studies have examined the potential utility of such Internet
search data in the surveillance of pertussis. One of the first was a study
which used Google search predictors to model pertussis in California
[22]. A methodology similar to that employed by GFT was utilized, with
data being selected from Google Trends with the use of Google Correlate,
then Pearson correlation selecting those used in modeling. Predictors
were added to a linear model in a stepwise fashion. The authors
concluded that using Google Trends “cautiously offers a complementary,
real-time signal to enhance pertussis surveillance”.

Other studies examining the effectiveness of Google Trends data
(GTD) in the modeling of pertussis include a study forecasting pertussis
incidence for mainland China using Auto Regressive Integrated Moving
Average (ARIMA) and Exponential Smoothing time series modeling [23].
A later study used SARIMAmodeling, the seasonal variation of ARIMA, to
show that GTD could enhance models based solely on case numbers for
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Australia [24]. A later study by the same lead author used lagged weather
variables, as well as Internet search data [25]. Predictions made using
SARIMA modeling and regression trees were improved by elegantly
integrating online activity data along with traditional surveillance in-
formation, leading to more accurate forecasting. Another study combined
SARIMA modeling with Nonlinear Autoregressive Network (NAR)
modeling, finding that combining these approaches resulted in better
modeling [26].

Other studies have described the relationship between searching
volume and pertussis incidence, but not performed modeling. For
example, a recent study examined pertussis cases and deaths
across Europe, finding a strong correlation with GTD [27]. However,
no forecasting was performed. Another examined the correlation be-
tween GTD and pertussis case number across the U.S.A.; strong corre-
lations were found, but the strength of these varied greatly between
states [28].

Here, the aim was to confirm that Internet search data could enhance
modeling of pertussis, but in a European context. Can the predictive ac-
curacy of traditional models based solely on case numbers be enhanced
with the addition of GTD? Comparing models both with andwithout GTD
avoids the pitfalls seen in previous studies, which have modeled using
only Internet data. Earlier attempts using solely search data were plagued
with problems when fitting search activity data into seasonal patterns. It
is important to emphasize that this study uses search data in addition to
(and not in lieu of) the reported case numbers used in traditional
forecasting.

Here, ARIMA modeling was chosen as the method with which to
examine this research question; this is a widely used and well understood
method of modeling [29, 30], often favored in disease forecasting. This
method has also been used in other pertussis modeling studies, thus
allowing some comparison [24, 25, 31]. As pertussis cases are likely
underreported, the use of Internet-based resources may provide greater
clarification of the underlying epidemiological trends than is apparent in
reported case numbers.

2. Methods

Data: The weekly number of pertussis cases in Germany was down-
loaded from the database of the Robert Koch Institute (RKI), the German
organization responsible for the recording of infectious diseases (Surv-
Stat@rki 2.0; https://survstat.rki.de/Content/Query/Create.aspx) for
the dates from the 13th of April 2014 to the 17th of March 2019. A query
was created on the 8th of April 2019, with ‘Keuchhusten’ as the disease
(the usual German term for pertussis), and ‘Jahr und Meldewoche’
(German for ‘Year and Week of notification’) as the time unit. Thus, data
from a total of 258 weeks were obtained.

Data on Internet searching on pertussis was obtained from Google
Trends on the 8th of April 2019 (https://trends.google.com/trends/),
with ‘Keuchhusten’ as the search term, with ‘Germany’ as country, and
‘last five years’ chosen as timespan category. The values are integers of
the relative weekly search ‘volume’, where 100 represents the highest
search activity.

Both datasets were divided into training and validation parts.
Training data covered the period from the 13th of April 2014 to the 26th
of March 2018 and thus contained 207 data points. The validation
dataset was from the 26th of March 2018 to the 17th of March 2019 and
contained 52 data points.

Time series decomposition: Data collected over time can be broken
down to show the underlying cyclical or seasonal patterns, trends, and
random noise it contains. Such decomposition allows trends and patterns,
which might otherwise be obscured, to be identified and studied. The
weekly pertussis case number was decomposed to reveal trend and sea-
sonality components using multiple 'Seasonal and Trend decomposition
using LOESS' (STL) decomposition [32, 33]. LOESS (locally estimated
scatterplot smoothing) creates smooths for each component of the time
series.

https://survstat.rki.de/Content/Query/Create.aspx
https://trends.google.com/trends/


D. Nann et al. Heliyon 7 (2021) e08386
The STL method was preferred due to its flexibility; patterns present
within time series do not have to occur within standard time frames, such
as monthly, with use of this method. This is the case for pertussis, where
regular cycles occur, but not within standard weekly or monthly time
frames. Another advantage of using STL is that decomposition is not
overly affected by the presence of outliers in the data.

Contemporaneous correlation: The level of contemporaneous correla-
tion between the GTD and weekly case numbers was ascertained in an
exploratory investigation, being assessed with Kendall τ correlation.
Normality of pertussis case number data was checked with a Shapiro-
Wilk test.

Model selection: Time series data was modeled using a seasonal
autoregressive moving average model, after differentiation if needed
(SARIMA) [34], similar to the method described previously [35, 36].

The necessary steps of differentiation needed to achieve stationarity
was ascertained with a KPSS test for the non-seasonal part (up to 2 dif-
ferences) and with a seasonal strength test for the seasonal part (with
maximally 1 differentiation). In the instance that models with and
without search volumes required a different number of differentiations,
the bigger number was forced in both cases, so that both models used the
exact same dataset for learning.

Selection of optimal seasonal and non-seasonal autoregressive and
moving average order on the stationary process was performed auto-
matically. The optimal model was selected by minimizing the corrected
Akaike Information Criterion (AICc) (order was maximally five non-
seasonally and maximally two seasonally; the selection was done in a
stepwise fashion) [34]. The whole procedure was then repeated, entering
GTD into the original model as an external regressor, expanded with
B-splines to handle non-linearity.

Residual diagnostics: Residual diagnostics were checked visually for
autoregression, and to check the pattern of distribution. Autoregression
was also assessed with the Ljung-Box test.
Figure 1. Weekly pertussis case numbers and Google Trends data; weekly pertussis ca
are shown with a red curve. LOESS smoothers representing trend lines with 95% CI
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Forecasting: The predictive performances of the original and GTD
expanded models were compared using RMSE (root-mean-square error),
and MAPE (mean absolute percentage error). Predictions were directly
compared using the modified Diebold-Mariano test [37].

Validation: We also performed a second, short term forecast for the
first two weeks of the validation dataset. Additionally, evaluation on a
rolling forecasting origin was performed [33], using the whole dataset, a
forecasting horizon of one, and a window width of 100 weeks.

Prediction errors of the two models (with and without GTD) were
compared visually and using RMSE values.

All statistical analyses were performed in R version 3.4.4 using the
forecast package version 8.7 [33]. The script and the dataset are available
online at https://github.com/msulyok/GoogleTrendsPertussis, and
detailed in the Supplementary Material.

3. Results

Descriptive statistics: Figure 1 shows the weekly reported number of
pertussis cases over the time period examined and the corresponding
patterns in Internet searching on ‘Keuchhusten’ from Google Trends.
Clear seasonal patterns in pertussis case numbers are apparent through
observation; pertussis case numbers rise in Winter months and decline in
Spring. An overall rise in cases is apparent over the time period exam-
ined. GTD showing volumes of Internet searching on pertussis shows a
similar seasonal pattern with clear increases during Winter months.

Time series decomposition: After STL decomposition of weekly case
numbers, these patterns in the overall trend and seasonality were even
more apparent (Figure 2). Decomposition revealed an increasing trend
throughout 2016 and into 2017, with a decrease in 2018. The overall
trend peaked in 2017. The peak of the seasonal component corresponded
to the month of February. Annually, case numbers rose during the Winter
months.
se numbers are shown with a blue curve; relative Google Trends search volumes
-s (shown with the same colour).

https://github.com/msulyok/GoogleTrendsPertussis
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Figure 2. STL time-series decomposition of weekly pertussis case numbers; trend, seasonal and random components of the reported case numbers are shown.
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Contemporaneous correlation: The Google search volume showed a
significant contemporaneous correlation with reported weekly case
numbers (τ ¼ 0.398; p < 0.001) (Figure 1).

Model selection: Examination of the pertussis time series clearly shows
that it is non-stationary, and thus that differentiation is required. The
results of KPSS testing indicated that taking the first differences was
required to achieve stationarity. Thus 1 level of differentiation was used
for both non-seasonal and seasonal data.

Examination of the ACF plot for the pertussis time series confirmed
that pertussis incidence is clearly seasonal in nature, as indicated by the
strongly significative peak at lag 1.00. This suggests a strong seasonal
component occurring on a 12-monthly basis. Additionally, the presence
of geometric decay observable in both the ACF and PACF plots suggests
that a seasonal moving average component is required when establishing
an ARIMA model (Figure 3).

This was confirmed by automatic selection of the optimal model;
which identified a SARIMA (1,1,3) (0,1,1)[52] as being optimal.

The detailed model selection process is shown in the supplementary
material. The optimal model had a non-seasonal component with single
autoregressive, three moving average, and one differentiation order. The
seasonal component had zero autoregressive, a single moving average,
and single differentiation order (i.e., it was SARIMA (1,1,3) (0,1,1)[52]).
The number of autocorrelation and moving average orders selected was
also confirmed visually using the ACF and PACF plots. These indicate
modeling requiring both AR andMA components. Significant coefficients
for the traditional model were the autoregressive term, the first and third
moving average term, and the seasonal moving average term. When the
spline described external regressor of GTD was added, autoregressive
order 1 and 2, moving average order 1 and 2, and the seasonal moving
average term were significant.

The AICc of the traditional model was 1750.98, while that of the GTD-
extended model was more favorable: 1746.73 (Table 1).
4

Diagnostic checking: The residuals of both models (with and without
GTD) showed random walk and were normally distributed. However,
significant autocorrelation was detected at lags 11 and 50 with the
traditional model, and at lags 11, 42 and 44 of the GTD-extended
model; the results of Ljung-Box tests for the traditional model (p ¼
0.28) indicated independence, but for the GTD-extended model (p ¼
0.048) it was significant. This suggests a certain level of autocorrela-
tion in the GTD-enhanced model; however, this was anticipated given
that the same model components were selected for with the GTD-
enhanced model as with the traditional model (instead of selecting
the best model based on AICc). Using the same model components
throughout provided the best comparison of GTD and non GTD-
enhanced models. Residual diagnostic plots are shown in the supple-
mentary material.

Forecasting: Forecasted values for the one-year period for both models
are presented graphically, together with the weekly pertussis case
numbers in Figure 4. Predictions of the traditional model, comparing
forecasted values with the reported ones, resulted in a residual mean
squared error (RMSE) of 192.65, and mean absolute percentage error
(MAPE) of 58.59. The values from the model expanded with Google
search data achieved a better forecasting accuracy (RMSE: 144.22,
MAPE: 43.86). The two-sided Diebold-Mariano test showed significant
differences between the two predictive performances (DM value: 6.86, p-
value < 0.001).

For the shorter, two-weeks interval we obtained similar results. The
RMSE, MAPE and MAE values were more favorable with the GTD-
extended model (Table 1), however the predictive performance was
not significantly different (DM value: 1.4, p-value 0.39).

Validation: Evaluation on a rolling forecast origin revealed an RMSE of
82.8 for the traditional model and 30490 for the GTD-extended one. The
smoothed error terms showed however similarity to the traditional one
(Figure 5)



Figure 3. Autocorrelation (ACF) and partial autocorrelation function (PACF) plots of the reported weekly pertussis case numbers. Upper left: Undifferentiated ACF;
Upper right: Undifferentiated PACF; Bottom left: Differentiated ACF; Bottom right: Differentiated PACF.
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4. Discussion

Study findings: Here, patterns in pertussis incidence and correspond-
ing levels of Internet interest from Google Trends were examined for
Germany over a four-year time period. A significant contemporaneous
correlation between GTD and the reported weekly case numbers of
pertussis was observed. Decomposition revealed the cyclical character of
pertussis. The seasonal nature of pertussis occurrence was apparent, with
a notable peak in reported cases in the Winter months. An increasing
overall trend was also apparent. Reported cases of pertussis peaked in the
Winter of 2017 in Germany; a corresponding increase in the trend can be
seen up to this period. This contrasts with other studies, which report
peaks in late summer and autumn [38, 39].

The predictive accuracy of a forecasting model for pertussis was
enhanced by the inclusion of data relating to the volume of Internet-
based searches about the disease. Examination of the pertussis time se-
ries indicated that a SARIMA (1,1,3) (0,1,1)[52] model was the most
accurate. Comparison of AICc indicates that models using either pertussis
case numbers only, or with the addition of GTD have similar qualities.
However, the predictive accuracy of the GTD-enhanced model was
greater, as seen by the improvement in RMSE, MAPE and MAE values.
Overall, the GTD-extended model proved to be superior not just in terms
of model quality measures, but in the significant difference in predictive
performance also, as indicated by the modified Diebold-Mariano test for
the one-year period.

German context: In line with other European countries, incidence
rates for pertussis have risen in recent decades in Germany. According
5

to WHO, 12,907 cases were reported in 2018, the third highest
country case number in the world [6]. Could this be a legacy of pre-
vious poor rates of vaccination? Before unification in 1989, rates of
vaccination against pertussis varied notably between East and West
Germany [40]. In East Germany vaccination rates were high and re-
ported case number low (<1 case/100,000/year). Whereas in West
Germany concern about the safety of whole-cell vaccination [41]
resulted in lower vaccination rates, and thus a correspondingly higher
number of estimated cases (160–180/100,000/year). Today, vaccina-
tion against pertussis in Germany is recommended by the Standing
Vaccination Committee. Vaccination rates are comparable to those
seen in other European countries; 94,9% for children beginning school
in 2015 [42], but only 55% for the booster given at between nine and
17 years of age 42 [43].

Wider context: Pertussis remains of considerable epidemiological and
economic concern worldwide. Pertussis in infants is associated with great
morbidity and mortality, frequently requiring hospitalization and
intensive care [2, 3, 44]. In many developed countries there has been an
increase in pertussis incidence in recent decades [45]. The epidemio-
logical profile of those affected has altered; with infection becoming
more common in adolescents and adults [47]. Those experiencing
infection have often been previously vaccinated, and experience milder
often atypical symptoms [10]. It has been suggested that this epidemi-
ological shift has occurred due to increased vaccination of infants, Bor-
detella strains that produce greater levels of pertussis toxin becoming
more common, or due to the introduction of less long-lasting acellular
vaccination in the 1990's. Pertussis is probably underreported in



Table 1. Summary of the model using case numbers only, compared with the
GTD-enhanced model.

Model without GTD Model with GTD

Model formula ARIMA (1,1,3) (0,1,1)
[52]

ARIMA (1,1,3) (0,1,1)
[52] with errors

AICc 1750.98 1746.73

Training set RMSE 57.55 54.86

Validation set RMSE
(for 52 weeks; for 2
weeks)

192.65; 207.8 144.22, 201.78

Validation set MAPE
(for 52 weeks; for 2
weeks)

58.59, 72.1 43.86, 68.54

Validation set MAE
(for 52 weeks; for 2
weeks)

169.53, 190.53 124.46, 178.96

Covariates Coefficient
(standard error)

p-value Coefficient
(standard error)

p-value

Autoregressive
order 1

0.949 (0.049) <0.001 0.611 (0.151) <0.001

Moving average
order 1

-1.449 (0.085) <0.001 -1.179 (0.142) <0.001

Moving average
order 2

0.095 (0.136) 0.487 -0.051 (0.149) (0.734)

Moving average
order 3

0.378 (0.075) <0.001 0.350 (0.077) <0.001

Seasonal moving
average

-0.332 (0.121) 0.006 -0.321 (0.12) 0.007

Spline GTD
coefficient 1

295.81 (546.06) 0.588

Spline GTD
coefficient 2

208.82 (477.725) 0.662

Spline GTD
coefficient 3

609.176 (493.187) 0.217

Spline GTD
coefficient 4

243.98 (484.016) 0.614

Spline GTD
coefficient 5

259.709 (481.836) 0.589
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Germany and elsewhere [8, 9, 46, 47], further illustrating the importance
of, and the requirement for, precise data on this condition.

SARIMA modeling: Here, seasonal ARIMA modeling was purposely
chosen as the vehicle to ascertain whether the inclusion of Internet based
search data could be used to enhancemodeling using solely pertussis case
numbers, as is traditionally the case. Since its widespread adoption from
the 1970's onwards, ARIMA modeling, which combines autoregressive,
integrative, and moving average components, has become one of the
most reliable methods of time series analysis for infectious diseases [48].
The seasonal version of the ARIMA model is ideal for a condition such as
pertussis which, as was shown here, is seasonal in nature. SARIMA
modeling provides better forecasting accuracy when the time-series
being studied is non-stationary in nature, and exhibits clearly seasonal
trends [34].

Thus, although more advanced modeling exists, such as Neural Net-
works, SARIMA provides the obvious choice to answer our research
question [24, 25, 26].

Additionally, it permits comparison with other studies using SARIMA.
Our findings extend the excellent work of Zhang et al. [24]. Initially
testing various search terms, they finally selected “whooping cough” as it
showed the highest correlation with the incidence numbers. They then
used data from Google Trends relating to this search term to extend their
SARIMA (2,0,2) (1,0,0) model. The external regressor improved BIC and
RMSE and showed an overall agreement of 81% (sensitivity: 77% and
specificity: 83%) to the validation dataset (monthly incidence for 36
months). However, they did not report the predictive performance of the
model without GTD, and thus provided no comparison with the
6

GTD-extended model. Since the more favorable BIC and better fitting to
the training dataset does not necessarily mean a better fit to the valida-
tion dataset, in our opinion, a direct comparison would be warranted. A
major strength of our study was that such a direct comparison of fore-
casting accuracy was conducted. Another advantage is that here data was
examined at a higher resolution (weekly compared to monthly), meaning
there were more observations to train and validate the models. Zhang
et al. [24] used data over a longer time span (108 months training; 36
months validation) than here (47 months training; 12 months valida-
tion); but data was examined only monthly.

Other types of modeling: Already mentioned is a study which utilized
linear regression modeling, fitting data from Google Trends in a meth-
odology similar to GFT [22]. However, we believe that the method they
chose; fitting linear regression models to non-linear and non-stationary
time series is not as effective as using time series modelling ap-
proaches, such as ARIMA, as we have done here. The use of linear
regression does not allow modeling of dynamic behavior (such as
seasonality).

Another recently published work also identified online search activity
as a significant correlate to pertussis incidence in Jinan city, China [25].
This modeling also incorporated meteorological data and used a SARIMA
(1,0,2) (1,0,0) model and a regression-based tree model to identify cut-
offs. However, a direct comparison of predictive performances was also
not published.

Comparison of the SARIMA models used in previous studies [24, 25]
along with the results presented here suggest that Internet search data
enhances model performance. Additional modification of SARIMA
models used in previous studies [24, 25] with the German pertussis data
done out of personal interest, also suggests that such Internet based data
enhances models, regardless of the exact structure of model chosen
(Suppl. Material). That models using such data outperform ones based
solely on case numbers, irrespective of geographical location (or type of
search engine for the online-activity based data) is quite remarkable, and
suggests the widespread utility of such data.

The nature of the GTD used here seemed to complement the SARIMA
modeling for pertussis. The GTD exhibited seasonal trends, possibly
enhancing the ability of the SARIMAmodel to anticipate trends that were
likely to occur and thus make more accurate forecasts.

SARIMA models integrate seasonal components, essentially back-
shifting the seasonal parts of the time series [34]. This was the case here,
with the pertussis dataset exhibiting clear seasonal trends. Clear trends in
Internet searching are apparent from the GTD, and these appear to
complement the seasonal nature of the pertussis time series, thus
enhancing forecasting when integrated with it. Use of SARIMA comple-
ments other studies examining both pertussis [25] and other infectious
diseases, and further confirms that seasonal modeling techniques are
appropriate here.

Predictions of AR-based models can lag behind what actually occurs;
they have only past observations with which to work with and thus un-
able to anticipate shifts in trend that may occur. Thus the advantage of
SARIMA models; through integrating seasonal patterns, expected
changes can be anticipated which generally results in a greater fore-
casting accuracy.

Strengths and limitations: The main strength of this study is that it
quantifies and statistically compares the predictive performances of a
traditional model using solely case numbers with a GTD-enhanced
model. The results are also validated with different validation ap-
proaches. The emphasis is less on descriptive correlations, more
on shedding light on forecasting accuracies. This contrasts with
other studies which have concentrated on comparison of model types
[25, 26].

The main limitation is a low number of time series observations, and
that it uses only a single dataset from a single country. Validation con-
firming the utility of GTD in pertussis modeling could be performed using
data on pertussis incidence from other countries, over different time
frames, and would be a productive area of further investigation.



Figure 4. Forecasting of the optimal SARIMA model with traditional data (top); the Google Trends Data extended SARIMA (middle), and both models (bottom)
compared to the reported weekly Pertussis case numbers (black curve). Shaded areas illustrate þ/- 80 and 95% prediction error bounds.
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Of note, evaluation on a rolling forecast origin revealed a worse
predictive performance for the GTD-extended model. This is clearly the
result of some outliers in the GTD data. This may shed light on the main
problem of such studies; the effect of outliers in online activity-based
data. If the error terms were smoothed, the two curves showed a high
degree of similarity. An important limitation of this internal validation
method was the wide rolling window applied; this has limited the
strength of this method considerably.

Another limitation is that although forecasting can predict the
likely future number of notified cases of pertussis, this is nevertheless
likely to be an underestimate as this condition is thought to be
underreported. Thus, further, long-term validation is warranted.
Additionally, GTD is probably influenced by related media activity;
we suspect the peak value of 100 in 2017 is probably a result of such
an effect. However, such media interest probably reflects ongoing
disease activity, although with some background 'noise'. Further
7

improvements could be made by adding more external regressors and
even performing geospatial analyses. Alternative forecasting ap-
proaches like State-space models or neural networks could also be
utilized.

We have to emphasize that our intention was not to establish a model
to reach the highest possible predictive accuracy. The focus of this paper
was rather to assess the possibility of online-activity -based data to
improve traditional data-based modelling.

Advantages of Internet based search data for disease surveillance: This
study illustrates the potential use data relating to Internet search data
could play in modeling of conditions whose epidemiological character-
istics mean forecasting is particularly tricky. The true level of pertussis
incidence, for example, is difficult to ascertain due to the large number of
asymptomatic, subclinical, or misdiagnosed cases [3]. The integration of
Internet data in the modeling of such conditions could be particularly
useful in mitigating such gaps in knowledge.



Figure 5. Evaluation on a rolling forecast origin-comparison of the SARIMA models. Note the peak in errors caused by an outlier at the beginning of 2017, and
favorable effect of smoothing (less distance from the horizontal 0 error line).
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Several recent reviews have highlighted the growing body of research
examining the use of Internet search results for epidemiological sur-
veillance and other healthcare problems [13, 14, 15, 16]. There are many
advantages of using such Internet based data. Such data is often of
minimal cost or even freely available [16]. Internet search results are
easy to obtain, often through simple Internet searching [14]. Such data is
often up to date, with data being automatically updated thus providing
real time relevance [49, 50]. The ARIMA based modeling used here is
straightforward, and it is not inconceivable that desktop bound epide-
miologists with minimal modeling expertise, could utilize it at a local
level for small scale predictive purposes [48].

Future research: The aim in this study was to examine whether inte-
gration of data relating to online search activity could enhance modeling
forecast accuracy. Further research could determine which modeling
techniques result in the highest forecasting accuracy, and the influence
such online activity data has on different model types. A good next step
would be to examine the potential of the technique outlined here in other
contexts. An obvious initial starting point, considering the study exam-
ined pertussis in Germany, would be to utilize such modelling at the state
level. Germany is organized federally, with individual states having re-
sponsibility for epidemiology and disease control. An advantage of
ARIMA based modeling is that it is simple enough to be widely under-
stood, and thus locally based epidemiologists could integrate GTD into
modeling on a regional level; state wise comparison of model predictive
accuracy should be possible. Also of interest would be a comparison of
model performance at both short and long term forecasting, and which
models are most suitable over different time-spans.

5. Conclusion

In conclusion, integrating Internet search data could be a potentially
promising avenue of investigation when refining traditionally based
forecasting models, especially for conditions such as pertussis where the
true levels of incidence are unclear. Here, the predictive accuracy of a
model integrating such Internet search data, obtained from Google
Trends, was contrasted with one based solely on reported cases numbers.
The integration of such data into a SARIMA model was found to improve
forecasting accuracy and demonstrates the potential such data sources
offer for further modeling. Such data is up to date, easily accessible, and
of minimal cost. The use of Internet search data could anticipate possible
8

future rises in incidence, meaning more timely allocation of healthcare
resources could occur.
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