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A B S T R A C T

We present a Monte Carlo simulation model of an epidemic spread inspired on physics variables such as
temperature, cross section and interaction range, which considers the Plank distribution of photons in the
black body radiation to describe the mobility of individuals. The model consists of a lattice of cells that can
be in four different states: susceptible, infected, recovered or death. An infected cell can transmit the disease
to any other susceptible cell within some random range 𝑅. The transmission mechanism follows the physics
laws for the interaction between a particle and a target. Each infected particle affects the interaction region a
number 𝑛 of times, according to its energy. The number of interactions is proportional to the interaction cross
section 𝜎 and to the target surface density 𝜌. The discrete energy follows a Planck distribution law, which
depends on the temperature 𝑇 of the system. For any interaction, infection, recovery and death probabilities
are applied. We investigate the results of viral transmission for different sets of parameters and compare them
with available COVID-19 data. The parameters of the model can be made time dependent in order to consider,
for instance, the effects of lockdown in the middle of the pandemic.
1. Introduction

The COVID-19 pandemic, that has so far caused over six million
deaths worldwide (Hui et al., 2020; Anon, 2022a), has recently induced
numerous studies on the mathematical modeling of temporal distribu-
tions of infected cases and fatalities (Garin et al., 2020; Cooper et al.,
2020b,a; Langel, 2021; Purkayastha et al., 2021). Various statistical
models for pandemic spread and their predictive power have been
benchmarked against data (Flanders and Kleinbaum, 1995; Amaro
et al., 2021).

The SIR (susceptible–infected–recovered) model – developed by
Kermack and McKendrick (1927) – and derived models are the most
widely used to study viral spreading of contagious epidemics or mass
immunization planning (Weiss, 2013; Chauhan et al., 2014; Chao and
Dimitrov, 2016) since they provide mean values of the cumulative
incidence as a function of time in a deterministic way. SIR models
belong to the compartmental type, where the equations only involve
the time variable, and the incidence functions refer to the total number
of individuals in each compartment or subset of the total number of
individuals in the system.
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E-mail addresses: amaro@ugr.es (J.E. Amaro), jnorce@uwc.ac.za (J.N. Orce).
URLs: http://www.ugr.es/~amaro (J.E. Amaro), https://nuclear.uwc.ac.za (J.N. Orce).

Generalization to more realistic models of the infection transmission
process requires solving spatio-temporal equations (Ganesan and Sub-
ramani, 2021) in a two-dimensional space representing the surface of a
region under epidemics. Such individual-level models were first studied
by Kendall (1957) and Bartlett (1957, 1956), who also considered
both deterministic and stochastic kind of descriptions (Allen, 2008;
Andersson and Britton, 2000a).

Some stochastic approaches are based on SIR epidemic models
with stochastic perturbations (Rao, 2014). The SIS model allows the
infectivity to fluctuate around a mean value by introducing external
fluctuations in the SIS epidemic model (Otunuga, 2019). Another ex-
ample is the stochastic SIRC epidemic model with discrete time delay
(Rihan et al., 2020).

Stochastic epidemic models can also be formulated in terms of
continuous-time Markov chains (CTMC), stochastic differential equa-
tions (Allen, 2017), multivariate stochastic processes (Kim et al., 2018),
or Brownian motion (Ming et al., 2016). A recent CTMC study of the
transmission dynamics of the COVID-19 in Wuhan, China was presented
in Olabode et al. (2021) (see Ref. Andersson and Britton (2000b)
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and references therein for a general description of stochastic epidemic
models and methods for their statistical analysis).

In this paper we present a study of space–time propagation of a
viral infection using a new stochastic model inspired by concepts of
statistical physics and nuclear physics. This model is compared to a
simple compartment model developed in Ref. Amaro et al. (2021) (the
D model), where we studied the accumulated fatalities for a series of
countries during the first COVID-19 wave.

The purpose of this work is to present the Monte Carlo Planck (MCP)
model in order to study the stochastic behavior of the spatio-temporal
propagation, to test the predictive power of these kind of models with
respect to COVID-19 available data as well as to assess the validity of
the D model.

Further Monte Carlo-type studies have been developed to simulate
the pandemic transmission (Xie, 2020; Maltezos and Georgakopoulou,
2021), but use other approaches such as, for instance, a 2D-random
walk Monte Carlo simulation based on proximity infection spread. In
the present MCP model we take a physical point of view, where the
infection is a result of an interaction, and it follows to some extent
statistical laws similar to the interaction in a system of many particles.
Thus we model the infection as a likely result of a physical interaction.
We apply concepts taken from statistical and nuclear physics such as
interaction range, energy, temperature, and interaction cross section.
These concepts, adapted to the present case of interest, are useful to de-
scribe probability distributions and interaction coefficients in physical
systems, which are here characterized by epidemiological probabilities
of infection, recovery and death.

Therefore, the novelty of the present approach with respect to previ-
ous stochastic models is that we describe the spread of the disease using
magnitudes and concepts taken from physics. Our approach is that the
epidemic occurs in two steps: i) by interaction between individuals in
a population, followed by (ii) a probability of infection subsequent to
the interaction. Without interaction there would be no infection.

In our model the population would be similar to a low-density gas
with molecules that interact through elastic or inelastic scattering that
can change the internal state of the molecule (infection). A fundamental
microscopic variable that determines the epidemic is the number 𝑁int
of interactions for each particle per day (𝛥𝑡 = 1 day is the chosen
time step). This number is computed randomly for each particle of the
system and for each time interval [𝑡𝑖, 𝑡𝑖+1 = 𝑡𝑖 + 𝛥𝑡]. In our model, the
value of 𝑁int is determined by three parameters, temperature, range
and cross section.

1. In physics, the temperature 𝑇 of a system determines the average
value of the energy of a particle. Particles with more kinetic
energy move faster and are more likely to interact. Thus in
the case of a population, we define energy as a number, 𝑛 =
0, 1, 2,…, describing the mobility of individuals. People who
often go out (𝑛 > 0) for a walk, shopping or for work will
be more likely to interact than people who rarely leave home
(𝑛 = 0). In our model the energy, 𝑛, follows the same probability
distribution as the number of photons in a radiant cavity with
temperature 𝑇 (Planck’s law) as described in the next section.

2. The range 𝑅0 is a geometrical parameter giving the average
distance that the particles move away from their equilibrium
position. People who move within a larger range can spread the
infection over greater distances, for example if they travel often,
as opposed to people who stay in the vicinity of the home.

3. The cross section 𝜎 in physics is proportional to the probabil-
ity of interaction between two particles. For example, when a
photon strikes an atom or molecule there is a probability of
interaction by absorption or scattering, or it may pass through
without interaction. The concept of cross section can be illus-
trated with the following example. Imagine an experiment in
which we randomly throw 𝑛 darts over a target of cross section
𝜎. If the beam of projectiles spans a cross-sectional area 𝑆. The
2

probability that a dart hits the target (interaction probability) is
𝑝 = 𝜎∕𝑆 and the expected number of darts hitting the target is

𝑁int = 𝑛 𝜎
𝑆
. (1)

Similarly, in the case of a population we will characterize the
probability of interaction between individuals by a cross section
𝜎. The interaction probability quantifies in our model the expo-
sure to the disease, which depends, for example, on protective
measures such as keeping a distance, wearing gloves and a mask,
etc.

The three ‘‘physical’’ parameters of the model, 𝑇 , 𝑅0 and 𝜎, to-
ether with the ‘‘epidemiological’’ parameters, probability of infection,
ecovery and death, will be fitted to the data of daily deaths in several
ountries.

The paper is organized as follows: Section 2 introduces the MCP
odel. In Section 3 we present results of the simulation applied to
OVID-19 fatalities data for several countries. Finally in Section 4 we
raw our conclusions.

. The Monte Carlo Planck model

We consider the system of a two-dimensional lattice or grid, where
ach unit cell has two coordinates 𝑘 = (𝑘1, 𝑘2), with 𝑘𝑖 = 1, 2,… , 𝐿,
here 𝐿 is the total size of the system, with surface 𝐿2. Each cell 𝑘 is
ccupied by an individual, who can be in any of four states or classes:
usceptible, infected, recovered or dead. This state is specified by four
ields or matrices 𝑠(𝑘), 𝑖(𝑘), 𝑟(𝑘), and 𝑑(𝑘) that can take the values 1 or

(state quantum numbers), depending whether the individual in cell
belongs or not to the corresponding class. The model can be easily

xtended to include other classes or intermediate states.
In the initial state, for 𝑡 = 0, all the individuals are susceptible. Then

(𝑘) = 1, 𝑖(𝑘) = 𝑟(𝑘) = 𝑑(𝑘) = 0 (2)

or all 𝑘 except for one initially infected cell 𝑘0, where

(𝑘0) = 0, 𝑖(𝑘0) = 1. (3)

e choose the initial infected cell at the center of the grid, but in the
odel it can be chosen randomly or even to be several infected cells.

In the simulation we compute the state of the system in time
ntervals of 𝛥𝑡 = 1 day. At the end of the day, 𝑡 = 1, 2, 3,…, we compute
nd store in the matrices 𝑠, 𝑖, 𝑟, 𝑑 the current state of the system. We
lso store the total number of susceptible 𝑆(𝑡), infected, 𝐼(𝑡), recovered,
(𝑡) and dead, 𝐷(𝑡) and the daily increments, 𝛥𝑆(𝑡), 𝛥𝐼(𝑡), 𝛥𝑅(𝑡), 𝛥𝐷(𝑡),
nd repeat the calculation for the next day.

In the simulation for day 𝑡 we apply the following algorithm to each
ell 𝑘.

1. If it is not infected, 𝑖(𝑘) = 0, do nothing.
2. It it is infected, 𝑖(𝑘) = 1, then we assume that it can infect

only people in other cells within a finite region of size 𝑅. The
value of the range 𝑅 takes into account the zone of influence of
individuals in one day. To simplify the algorithm in Cartesian
coordinates we assume that the region is a square of side 2𝑅,
centered at the cell 𝑘, but it could be also circular or other shape.
Now the Monte Carlo starts by computing the value of 𝑅 ran-
domly with some probability distribution. We assume an expo-
nential law

𝑃 (𝑅) = e−𝑅∕𝑅0

𝑅0
, (4)

which indicates that is less probable to move far away from the
average interaction range 𝑅0 of the individuals. This is one of
the parameters of the model.
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3. Once 𝑅 is chosen for an infected particle, it can interact ran-
domly with any of the 𝑁

𝑅
individuals within the region with

area 𝑆
𝑅

. As in particle physics, we characterize the interaction
between individuals by a cross section 𝜎. The number of possible
interactions is then given by the probability formula when 𝑛
particles are shot over a target containing 𝑁

𝑅
particles (see

Eq. (1)),

𝑁int = 𝑛𝑁
𝑅

𝜎
𝑆

𝑅

= 𝑛𝜌𝜎, (5)

where 𝜌 = 1 is the surface density and the number of shots 𝑛
is related with the mobility of the individual within its zone
of influence, indicating if it has a narrow social behavior and
how often it moves around each day. We call this property the
energy of the individuals. For instance, Young people have more
energy than old people, or people with a job where they interact
often with other people. We compute the value of the energy 𝑛
randomly with an energy distribution. In analogy to the Planck
law for photons from statistical physics, we write the energy
distribution in a simplified form as

𝑃 (𝑛) = e−𝑛∕𝑇

e1∕𝑇 − 1
, (6)

where the parameter 𝑇 is the temperature of the system that
determines the average energy or number of shots.
Eq. (6) arises from Planck’s hypothesis for the probability of
an electromagnetic wave with frequency 𝜈 to have quantized
energies of 𝜖𝑛 = 𝑛ℎ𝜈.

𝑃𝑛 =
1
𝐴
𝑒−

𝑛ℎ𝜈
𝑘𝑇 , (7)

where 𝐴 is determined by demanding that
∞
∑

𝑛=0
𝑃𝑛 = 1. (8)

In our model Plank’s constant, ℎ, Boltzman’s constant, 𝑘, and the
frequency, 𝜈, are not relevant and we have taken them equal to
one.
Thus for each infected cell its energy is obtained as a random
number 𝑛 = 0, 1, 2,… generated with the probability distribution
in Eq. (6).
In this work we choose unit cells and therefore assume 𝜌 = 1 in
arbitrary units, but the model can be modified to include specific
densities and sample population sizes with known number of
individuals. In the model the information on the density is
included in the range 𝑅0. To increase the density is equivalent to
increase the range and the temperature. The result of this work
are given for unit density and the values of 𝑅0 and 𝑇 should be
appropriately re-scaled to apply the results to different densities.

4. Once we know the range 𝑅 and the number of interactions 𝑁int
of an infected cell, we choose randomly 𝑁int cells, with coordi-
nates 𝑘′, within the interaction region. If cell 𝑘′ is susceptible,
𝑠(𝑘′) = 1, it can be infected with probability 0 ≤ 𝑝𝑖 ≤ 1. We
then decide randomly it it is infected or not according to that
probability. In case that it becomes infected, we change the value
of the corresponding matrix elements 𝑠(𝑘′) = 0 and 𝑖(𝑘′) = 1.
We also store the time it becomes infected in the infection time
matrix 𝛩(𝑘) = 𝑡. This matrix is important for the next step in
deciding when the particle becomes recovered or dead.

5. After interacting with all the 𝑁int individuals within the range
𝑅, along the day, finally we decide if cell 𝑘 becomes recovered
or dead at night. The removal probability is the probability
of recovery or death. It must be a function of time with the
condition that it is very small for 𝑡 = 0 and is equal to 1 for
large t. In our model we use the following function that verify
these conditions:

𝑃 (𝑡) = 1 , (9)
3

rem 1 + e(𝑡𝑟−𝑡)∕𝑏
where 𝑡𝑟 is the time such that 𝑃 (𝑡𝑟) = 1∕2 and 𝑡𝑟 ≫ 𝑏, so that
the removal probability is very small for low times, and later
it increases with time at a rate driven by the parameter 𝑏. For
𝑡 → ∞, the removal probability is one. All the individuals recover
or die.
Therefore we randomly decide if 𝑘 is removed at the end of the
day with a probability 𝑃rem(𝑡 − 𝛩(𝑘)) that depend on the time
𝑡 − 𝛩(𝑘) that particle 𝑘 has been infected. In case 𝑘 is removed,
we change the state quantum number in the infected matrix,
𝑖(𝑘) = 0.

6. In the final step, after particle is removed we randomly decide
whether it dies or recover. The probability of death is a param-
eter with 0 < 𝑃𝐷 < 1. In the death case the function 𝐷(𝑡) is
increased by one. Otherwise it is recovered. Finally we store the
matrices 𝑟(𝑘) = 1 (0), and 𝑑(𝑘) = 0 (1) accordingly.

7. We repeat the procedure on the next cell.

The algorithm so defined depends on the following parameters

• The size of the system 𝐿, The unit of length in natural units,
is the average distance between individuals. This determines the
number of cells 𝐿2.

• The range of interaction 𝑅0, indicating the maximum distance
on average that the infection can propagate in one day. This
parameter can be time dependent, and, by changing it, one can
simulate for instance lockdown or long travels in holidays.

• The cross section 𝜎 measures the probability of interaction be-
tween two individuals. In the case of classical particles interacting
with contact forces the cross sections is just the effective geomet-
rical area of the pair. For long range forces the cross section is
larger. In our case it is typically much larger than the geomet-
rical human size, because this parameter takes into account the
human behavior. Humans move and are social increasing its cross
section, like a long range force.

• The temperature of the system, 𝑇 determines the average energy
of the individuals, which is related to the mobility within its range
of interaction.

• The infection probability 0 ≤ 𝑝𝑖 ≤ 1
• The removal probability parameters 𝑡𝑟 and 𝑏 (two parameters).
• The death probability of removed 𝑝𝑑

These are in total 8 parameters 𝐿, 𝑅0, 𝜎, 𝑇 , 𝑝𝑖, 𝑎, 𝑏 and 𝑝𝑑 . In
addition, each one of these parameters can be easily made time de-
pendent to study the effects of political enforcement, lockdown, social
distancing, large events, etc. The model could also be modified easily to
include coordinate dependence of the parameters to specify for instance
a large event in some region by increasing the temperature or the cross
section in that region.

Actually one can argue that increasing temperature, increasing cross
section and increasing the infection probability are expected to produce
similar effects on the pandemic evolution, and that the pandemic evolu-
tion is effectively driven by less parameters, perhaps six or less, unless
time or space dependence (or non constant densities) is introduced in
them.

In the next section we fit the parameters of this MCP model to
describe data from the first wave of the COVID-19 pandemic.

3. Results

Firstly, the MCP model requires fixing the number of individuals,
which is equal to the area 𝑁 = 𝐿2 of the square lattice (each individual
occupies one square). To make the calculation manageable, we chose
an initial size of 𝐿 = 300, that is 𝑁 = 90,000 individuals in the
sample, although we latter also consider the effect of making L larger.
Obviously, if the number of deaths exceeds this figure, to study a more

realistic case, a size comparable to the population of the country in
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Fig. 1. Fit of the P-model to the cumulative deaths and deaths per day by COVID-19 in Spain during the first wave. The red points are the data compiled up to May 25, 2020.
The two yellow lines in the left panel are the two D-functions appearing in the D2 model, Eq. (10).
Fig. 2. Fit of the P-model to the cumulative deaths and deaths per day by COVID-19 in Sweden during the first wave.
question should be considered. But in this first simulation we prefer
to make the model as simple and manageable as possible in order to
investigate whether under these simplifications it is still possible to
describe the data.

An important detail is that, given the probability of death 𝑝𝐷, the
expected mean number of deaths is fixed from the beginning 𝐷(∞) ≃
𝑝𝐷. If this value is not known experimentally, we first fix it by fitting
SIR-type model to the incomplete data. Specifically, we apply the D-

nd D2-models of Ref. Amaro et al. (2021), which consist of sums of
ogistic functions, to estimate the probability of death before doing the
onte Carlo. The death number as a function of time in the D-model

s

(𝑡) = 𝑎
e−(𝑡−𝑡0)∕𝑏 + 𝑐

, (10)

where the three parameters 𝑎, 𝑏, 𝑐 are fitted to data and the initial time
𝑡0 is arbitrary. In the case of the D2-model we fit the sum of two D-
functions with six parameters 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 in total. This provides
a method for estimating a prediction for the total number of deaths
𝐷(∞) = 𝑎∕𝑐 (𝑎1∕𝑐1+𝑎2+𝑐2 in the case of the D2-model). This value 𝐷(∞)
is used as input to set the parameters of the Monte Carlo simulation
since we know that the D model works well as a starting point for
pandemic forecasting (Amaro et al., 2021). Thus the Monte Carlo will
be useful to study the stochastic distribution of daily cases, since the SIR
models only provide the mean values without statistical fluctuations.

The simulation was started assuming that in the initial instant 𝑡 = 0
there is an infected individual in the central cell of the array and all
the others cells are susceptible. The algorithm of the previous sections
is then applied by assuming time steps 𝛥𝑡 = 1 day. In Fig. 1 we show
the results of the Monte Carlo simulation of the deaths-per-day, 𝛥(𝑡), in
Spain. We fitted the data until May 30, 2020, where clearly the first
4

COVID-19 wave had practically ended. We first fitted the D2 model (as
the sum of two logistic functions) to the data to better estimate the end
of the epidemic, and then we fitted the MCP parameters to the curve of
total accumulated deaths 𝐷(𝑡) of the D2-model. It is worth mentioning
that fitting the Monte Carlo to the accumulated deaths curve is more
reliable than fitting the daily data, 𝛥𝐷(𝑡), and gives better results. This
is because the cumulative curve data has less fluctuations and less error
than the daily data.

The MCP parameters are given in Table 1. The parameters of Table 1
have been tuned to describe the experimental data, including the
lockdown. In general The Monte Carlo points have to be shifted in
time (𝛥𝑡 = 12 days in the Spain case) to agree with the center of the
experimental peak, that has a different time origin. This is so because
there is an arbitrariness regarding the start of the pandemic.

For Spain, the MCP simulation includes lockdown effect on day
20, where the value of the range was reduced to 𝑅0 = 3 (fitted also
to the data). In Spain the lockdown started on day 14M (March 14),
corresponding to day 7 in the plot of Fig. 1, and the maximum of the
daily deaths, 𝛥𝐷(𝑡), occurred on 2 A (April 2), corresponding to day 26
in the plot. The distance between maximum and lockdown therefore is
𝑡max − 𝑡𝐿 = 26 − 7 = 19 days. In the MCP simulation this distance is 15
days.

From the results of Fig. 1 we see that the MCP and the D2 models
present the same trend. Both models describe the death data, both total
and daily deaths, very similarly. This means that the hypothesis of the
MCP model that the spread of infection can be described by physical
interactions in a system of many particles is correct, since it agrees
with the statistical model of the SIR type and is able to describe the
experimental data of the pandemic.

The main difference with the D2 statistical model is that the MCP
acquires random statistical fluctuations, which the SIR models do not
have, since they only describe mean values. We also see that the fluctu-

ations in the data are much larger than in our model, even considering



BioSystems 218 (2022) 104708J.E. Amaro and J.N. Orce
Table 1
Parameters of the MCP model for Spain, Sweden and South Africa.

𝐿 𝑅0 𝜌𝜎 𝑇 𝑡𝑟
(days)

𝑏
(days)

𝑝𝑖 𝑝𝑑

Spain
First wave 300 8 (3) 0.1 20 20.7 4.5 0.2 0.3

Sweden
First wave 300 10 0.3 20 (15) 24 4 0.2 0.3

South Africa
First wave 300 2.9 0.09 20 20 4 0.15 0.2
Second wave 300 3 0.1 20 20 4 0.15 0.5

The value of the range 𝑅0 during lockdown in Spain and the temperature 𝑇 during gathering restrictions
in Sweden are in parentheses.
Fig. 3. Fit of MCP model to the cumulative deaths by coronavirus in South Africa during the first (left) and second (middle) pandemic waves, together with the overall daily
deaths (right). Data from (Anon, 2022a) fitted up to Feb. 10 2021.
Fig. 4. Monte Carlo Plank model simulator for Androids illustrating how the pandemic spreads in a lattice of length 𝐿 = 300 – which corresponds to a population of 𝐿2 = 𝑁 = 90,000
– as a function of time.
the statistical errors of the daily data. These values have been taken
from the Poisson distribution 𝛥𝑛 =

√

𝑛. However it must be taken into
account that the official death data have systematic errors due to the
data collection methods and delays, and that these errors could be quite
large. In such cases it may be reasonable to first compute a moving
average of the data over three or more days to reduce fluctuations
before fitting the models.

Concerning the values of the parameters, the death probability 𝑝𝐷 =
0.3 is fixed by the total fatalities. In Spain the three physical parameters
are the following. The initial range 𝑅0 = 8, later changed to 𝑅0 = 3 after
the first week to take into account the lockdown. The temperature or
mobility 𝑇 = 20, means that in average 20 shots are used to compute
the interaction in Eq. (4). The cross section multiplied by the density
gives the probability of interaction between cells 𝜌𝜎 = 0.1. This means
5

about 2 interactions in average. The infection probability is 𝑝𝐼 = 0.2.
Finally the recovery time is 𝑡𝑟 = 20.7 days and the recovery interval
𝑏 = 4.5 days These parameters give an idea of how long the infection
lasts, until there is recovery or death, which is around three weeks.

In Fig. 2 we show a simulation of the case of Sweden. In order
to keep the probability of death equal to the Spanish one, we have
randomly chosen 85% of the cells with total lockdown, which produces
the same effect as reducing the size of the susceptible ones, in order
to obtain the number of deaths from the first or 4500. As a result,
the value obtained for the range is larger than in Spain 𝑅0 = 10, and
also the value of 𝜌𝜎 = 0.3. In Sweden there was no lockdown and this
value does not change in time. But in Sweden there was a gathering
restriction that no more than 10 people could meet. This has been
simulated in the Monte Carlo by lowering the temperature from 𝑇 = 20
to 𝑇 = 15 during gathering restrictions. The gathering day here has
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been taken equal to 40. The recovery time 𝑡𝑟 = 24 is about three days
larger than in Spain.

In Fig. 3 we present results in the case of South Africa. The first and
second waves are well differentiated and each of them can be described
separately with model D. This is what has been done in the figure,
adjusting the data for each wave separately. In the same way, the MCP
model has been adjusted here separately for each of the two waves.
The first Monte Carlo was adjusted for data through August 30, 2020.
The second Monte Carlo was adjusted for data from the second from
this date through February 10, 2021. Each Monte Carlo simulation has
been adjusted independently with a lattice of 𝐿 = 300. That is why the
probability of death in the first wave is 0.2 whereas in the second wave
is 0.5, since the number of deaths according to these models would
be in a 5:2 ratio between the second and first waves. The remaining
parameters of the Monte Carlo have not changed from those of the
first wave, except for one decimal in the case of the range 𝑅0 and the
xposition 𝜌𝜎. The right panel in Fig. 3 is a Monte Carlo prediction of
he second wave daily deaths from the data up to February 10, 2021.

Note the similarity between the parameters of the model for the
hree countries that are shown in Table 1. This shows some universality
n the physical characteristics that describe the process in our simplistic
odel. A more realistic model would require describing the geographic
etails and the average population distribution according to a more
ealistic geometry than that taken on a square lattice with constant
ensity. But in view of the results obtained there is hope that this model
ill be useful to describe a more realistic case, but requiring some more
ork.

To finish, we have also developed (Anon, 2021c) an educative
ndroid app to demonstrate the virus propagation interactively by
lotting the daily grid evolution (Fig. 4) using a color for each cell state:
usceptible (green), infected (red), recovered (blue) and dead (black).
he resulting SIR functions S(t), I(t) and R(t) computed with the MCP
odel are also displayed in the app screens, as well as the daily deaths

nd cumulative deaths. The initial pandemic parameters are given by
he user in the initial screen of the app. The Monte Carlo is started by
ressing the running button and the grid evolution is shown day by
ay on the screen. Here the user is allowed to change interactively the
arameter range, 𝑅0, exposition, 𝜌𝜎, and mobility, 𝑇 , to observe the

effect of contention measures and stop the pandemic from spreading.
More information, including online lectures and the Fortran code, can
be found at UWC’s nuclear GitHub (Anon, 2022d).

4. Conclusions

In this work we have presented a Monte Carlo model (MCP) of the
spread of an infection, based on interaction parameters inspired by
the physics of many particles. Starting from physical quantities such
as interaction range, cross section and temperature, we translate these
concepts to the mathematical description of a pandemic under the
names of range, exposition and mobility.

The model consists of individuals in a rectangular lattice that can
interact with their neighbors within a range and at a certain speed, with
a certain probability of interaction, which in turn can produce infection
with the result of recovery or death.

The model fits only for daily deaths, although it could be adapted
to fit other infection data. In this work we have proceeded to calculate
the simplest case with certain simplifications to keep the calculation as
simple and short as possible. In particular, we have set a square lattice
with 90,000 individuals, with which the probability of death is fixed
by the data when they are adjusted to a SIR-type model.

In general, the model is capable of describing the experimental
data as well as the SIR-type models, with the difference that the
MCP has a stochastic behavior, as it is a Monte Carlo simulation
subject to probabilistic parameters. It also allows the inclusion of
parameter modifications over time to simulate mobility restrictions or
quarantines.
6

The model parameters have been adjusted to describe pandemic
waves in Spain, Sweden and South Africa, with similar results for
the parameters, showing a certain universality of the physical process
involved in the pandemic.

In future work we will study the dependence of the results with the
parameters of the model, as well as extensions to describe larger pop-
ulations, of the order of magnitude of complete countries to determine
parameters in more realistic cases.
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