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Abstract: Adiponectin is one of the most important adipocytokines secreted by adipocytes and is called
a “guardian angel adipocytokine” owing to its unique biological functions. Adiponectin inversely
correlates with body fat mass and visceral adiposity. Identified independently by four different
research groups, adiponectin has multiple names; Acrp30, apM1, GBP28, and AdipoQ. Adiponectin
mediates its biological functions via three known receptors, AdipoR1, AdipoR2, and T-cadherin,
which are distributed throughout the body. Biological functions of adiponectin are multifold ranging
from anti-diabetic, anti-atherogenic, anti-inflammatory to anti-cancer. Lower adiponectin levels have
been associated with metabolic syndrome, type 2 diabetes, insulin resistance, cardiovascular diseases,
and hypertension. A plethora of experimental evidence supports the role of obesity and increased
adiposity in multiple cancers including breast, liver, pancreatic, prostrate, ovarian, and colorectal
cancers. Obesity mediates its effect on cancer progression via dysregulation of adipocytokines
including increased production of oncogenic adipokine leptin along with decreased production of
adiponectin. Multiple studies have shown the protective role of adiponectin in obesity-associated
diseases and cancer. Adiponectin modulates multiple signaling pathways to exert its physiological
and protective functions. Many studies over the years have shown the beneficial effect of adiponectin
in cancer regression and put forth various innovative ways to increase adiponectin levels.
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1. Discovery of a Guardian Angel Adipocytokine

White adipose tissue (WAT), once regarded as the major site of energy storage and homeostasis, is
now known to be an endocrine organ producing numerous biologically active molecules and hormones,
one of the most important being adiponectin. Mainly secreted by adipocytes, adiponectin is also
produced to some extent by bone marrow, osteoblasts, fetal tissue, myocytes, cardiomyocytes, and
salivary gland epithelial cells [1,2]. The first report on adiponectin was published in 1995, where it was
denoted as an adipocyte complement related protein of 30 kDa (Acrp30), specifically expressed in the
adipose tissues and differentiated adipocytes [3]. Another group identified mouse adiponectin and
referred to it as AdipoQ using an mRNA differential display technique. They reported 247 amino acids
polypeptide coded by adipoQ cDNA specifically in adipose tissues of mice and rats. Importantly, they
also showed the reduction of adipoQ mRNA in obese mice and humans [4]. These two pioneering
papers indicated the function of adiponectin in energy homeostasis. The next few years observed
a revolutionary rise in the exploration of adiponectin. In 1996, another research group discerned
adiponectin as the most abundant transcript in the cDNA library of human adipose tissue, which
was termed as adipose most abundant gene transcript1 (apM1) [5]. In the same year, yet another

Int. J. Mol. Sci. 2019, 20, 2519; doi:10.3390/ijms20102519 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/20/10/2519?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20102519
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2519 2 of 27

group isolated adiponectin from human plasma using affinity chromatography, followed by protein
sequencing and referred to as gelatin-binding protein of 28 kDa (GBP28) [6]. Adiponectin is a small
protein composed of 224 amino acids, present in circulating concentrations as high as 2 to 10 µg/mL in
humans. The protein encompasses a signal domain followed by a variable domain which is species
specific, a collagen domain, and a globular domain.

Berg and colleagues and Yamauchi and colleagues were the first to identify the physiological
importance of adiponectin and highlighted the adiponectin axis as a possible therapeutic field for the
treatment of diabetes [7,8]. Enhanced circulating levels of adiponectin inhibits gluconeogenesis [9].
They concluded that reduced adiponectin in obese- and adipose-tissue-deficient mice serve as a
responsible factor for the development of insulin resistance [9]. The work of Yamauchi et al. [8]
reported decreased adiponectin in insulin resistance and altered insulin-sensitive mice models. In
the continuation work, Yamauchi et al. showed that in skeletal muscle, both globular as well as
full-length adiponectin are able to induce AMP activated protein kinase (AMPK), while only full-length
adiponectin can stimulate AMPK in liver cells [10]. Ahima and co-workers [11] demonstrated that
intravenous injections of adiponectin lead to an increase in the adiponectin level in cerebrospinal
fluid. Intracerebroventricular administration of adiponectin in leptin-induced obese mice caused
enhanced thermogenesis, weight loss, and decrease in serum glucose and serum lipid levels [11]. The
second decade of the 21st century observed the rediscovery of the physiological role of adiponectin.
Holland et al. [12] observed increased ceramide content in the liver of obese mice (ob/ob mice or
high-fat diet mice). An increase in ceramide is associated with insulin resistance, cell death, and
atherosclerosis [13]. Holland et al. [12] reported that adiponectin enhances the ceramide catabolism in
the liver via the ceramidase activity of its receptors, AdipoR1 and AdipoR2, which was independent of
AMPK activation. Xia et al. reported a decrease in the ceramide level in transgenic mice with genetically
induced acid ceramidase activity in the hepatic cells or in adipose tissues [14]. The contribution of
adiponectin is not only restricted to liver, but also extends to other major organs. Rutkowski et al.
showed that overexpression of adiponectin recovered the kidney podocytes rapidly and demonstrated
low intestinal fibrosis. But the lack of adiponectin caused irreparable albuminuria and damage in
kidney podocytes [15]. Adiponectin enhances the myocyte enhancer factor-2 (MEF2) induction in
cardiomyocytes via p38 MAPK (mitogen-activated protein kinases) signaling [16].

Adiponectin works by AdipoR1 and AdipoR2 receptors, which are unique and universally
expressed. AdipoR1 is most abundantly found in skeletal muscle whereas AdipoR2 is predominantly
present in liver [17]. AdipoR1 exhibits higher affinity for globular adiponectin, whereas AdipoR2
shows higher affinity for full-length adiponectin [17]. Both AdipoR1 and AdipoR2 accumulate in
homodimeric and heterodimeric complexes once bound by adiponectin [17]. Hug et al. [18] identified
T-cadherin, a member of the cadherin superfamily, as an effective receptor of hexamers and of high
molecular weight (HMW) adiponectin oligomers. Adiponectin can exert its biological functions by
directly interacting with its specific receptors that provide some organ and functional specificity to
adiponectin. In addition, multiple regulatory mechanisms tightly regulate adiponectin and further
control its biological impact on various organs in normal as well as disease state.

2. Tight Regulation of Adiponectin at Multiple Levels

2.1. The Role of Coactivators in Transcriptional Regulation of Adiponectin

Peroxisome proliferator-activated receptor gamma is an important transcription factor belonging
to the PPAR family, is a positive regulator of adiponectin transcription, and is widely expressed in
adipose tissue. Lower adiponectin levels have been associated with the P12A mutation in PPARγ.
The Thiazolidinedione class of medications (TZDs) are PPARγ agonists that stimulate adiponectin
production and are used as antidiabetics. Its efficacy has been shown in vitro as well as in vivo
studies [19–21] but could be limited by a mutation at a putative PPARγ-recognizing PPAR response
element (PPRE) site [19]. However, some reports demonstrate an increase in high molecular weight
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(HMW) adiponectin biosynthesis in response to TZDs without changing adiponectin mRNA levels
indicating a predominantly translational regulation of adiponectin synthesis. Forkhead box protein O1
(FoxO1) is another key regulator of adipocyte differentiation which is known to positively regulate
adiponectin transcription [22]. Biological functions and cellular localization of this transcription factor
is regulated by NAD-dependent deacetylase Sirt1 (sirtuin 1) and by additional post-translational
modifications including phosphorylation and acetylation. It complexes with CCAAT-enhancer-binding
proteins (C/EBPα) which in turn is stimulated by Sirt1 overexpression, consequently, activating
adiponectin promoter [23]. However, FoxO1 activity could be controlled by multiple upstream events
that can in turn regulate adiponectin levels. C/EBPα interacts with the CCAAT motif of the adiponectin
promoter recruiting co-activators, in turn stimulating transcriptional activity. Co-expression of PPARγ
and C/EBPα are known to significantly increase adiponectin expression [24,25]. Sterol regulatory
element-binding proteins (SERBPs) are membrane-bound precursors that interact with the nuclear
envelope or ER (endoplasmic reticulum) membranes. Sterol regulatory element-binding proteins
regulate the transcription of lipid-metabolizing enzymes. Binding of SREBP to the SERBP response
element (SRE) on adiponectin promoter amplifies adiponectin expression. Adiponectin promoter
is also transactivated by SREBP-1c and is prevented in case there is a mutation in the SRE motif.
Adenovirus-mediated overexpression of SREBP-1c is known to elevate adiponectin levels in 3T3-L1
adipocytes [26].

2.2. Involvement of Multiple Co-Factors in Transcriptional Repression of Adiponectin

cAMP response element-binding protein (CREB) is a master regulator of adipogenesis and has
been associated with systemic insulin resistance in obese state [27]. Camp response element-binding
protein indirectly represses adiponectin transcription by upregulating transcription factor ATF3
(activating transcription factor 3), which binds to the AP-1 (activator protein-1) site next to the
NFAT (nuclear factor of activated T-cells) binding site of adiponectin promoter [28]. Nuclear factor
of activated T-cell proteins are calcium-sensitive proteins associated with immune functions and
have been detected in 3T3-L1 adipocytes [29]. Overexpressed in obesity and diabetes, they have
been associated with WAT activity but the exact mechanism of NFAT in adiponectin regulation
is unclear. Nuclear factor of activated T-cell binding site deletion in adiponectin promoter [27]
enhances adiponectin expression while overexpression of NFAT diminishes adiponectin transcription.
Additional transcription factors involved in downregulation of adiponectin transcription include
AP-2β (activating enhancer binding protein-2β), IGFBP-3 (IGF-1-binding protein 3), and Id3 (inhibitor
of differentiation-3) [30]. Fat accumulation in obese state induces a hypoxic microenvironment,
which is known to inhibit adiponectin transcription via hypoxia inducible factor 1 alpha (HIF1α).
Obesity-induced chronic inflammation leads to overexpression of TNFα (tumor necrosis factor alpha),
IL6 (interleukin 6), IL18 (interleukin 18), and other pro-inflammatory cytokines that are also known to
inhibit adiponectin. Tumor necrosis factor alpha suppresses transcription activator PPARγ via JNK
(c-Jun N-terminal kinases)-mediated phosphorylation which reduces its DNA binding [31]. Tumor
necrosis factor alpha also promotes IGFBP-3 inhibiting adiponectin transcription and conferring insulin
resistance [32]. Tumor necrosis factor alpha has also been shown to inhibit FoxO1 and C/EBPα [30,32].
Interleukin 6 suppresses adiponectin transcription in 3T3-L1 adipocytes via p44/42 MAPK pathway [33].
Interleukin 18, on the other hand, phosphorylates and activates NFATc4, a repressor of adiponectin
transcription in a ERK (extracellular-signal-regulated kinase) 1/2 dependent manner [28].

2.3. Control of Adiponectin Expression via Post-Translational Modifications

Post-translational modifications are the most important determinants of adiponectin functionality
since different isoforms (trimeric, hexameric, and HMW multimeric forms) of adiponectin exhibit
different biological activities. While trimeric and hexameric forms mostly regulate food intake [34],
HMW forms of adiponectin mostly regulate insulin sensitivity, hepatic gluconeogenesis, and other
metabolic functions [35]. Other forms also mediate some metabolic functions. Since different forms
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of adiponectin function differently, activity of adiponectin can be modulated by changing the ratios
of different isoforms of adiponectin in serum. For example, activity of thiazolidinediones, statins,
and angiotensin receptor blockers depend on increasing the proportion of HMW adiponectin [30].
There is very little evidence to support the notion that adiponectin isoforms can interconvert after
secretion indicating that modulation of intracellular processes guiding multimerization of adiponectin
is important. Multimerization of adiponectin into HMW complexes is a complicated and active area
of research. Structurally, adiponectin has an N-terminal variable domain, a collagenous domain,
and a C-terminal globular domain. Production and secretion of HMW adiponectin is dependent on
hydroxylation and glycosylation of lysine residues of the collagenous domain [36–39]. Substitution of
lysine residues for arginine completely abolishes HMW adiponectin synthesis. Multimerization also
requires proline hydroxylation [39]. Inhibiting prolyl and lysyl hydroxylases using 2,20-dipyridyl can
completely impair adiponectin multimerization [39]. ER retention of folded adiponectin molecules
without being secreted leads to ER stress. It is very common in obese state and it is a major factor
causing low circulating adiponectin levels. ER retention of adiponectin is maintained by thiol-mediated
retention via (ER) chaperone protein 44 (ERp44) [40]. Thiol bond-reducing agents induce a 7- to
8-fold increase in secretion of adiponectin in 3T3-L1 adipocytes. Thiol-bond formation is also the
determinant of adiponectin folding and assembly prior to secretion [40]. Another important factor in
multimerization and release is intermolecular disulfide bond exchange by ER chaperone Ero-1La [41].
Increased expression of Ero-1La or inhibition of SIRT1, suppressor of Ero-1La results in increased
assembly and release of HMW adiponectin [41]. Similarly, ERp44 inhibition using TZDs may be utilized
to prevent ER retention of adiponectin and increase its circulatory levels [42]. DsbA-L (disulfide-bond
A oxidoreductase-like protein) is yet another ER chaperone known to directly bind to adiponectin and
aid HMW multimerization [43]. Though the mechanism is not completely understood, PPARα agonists
are known to upregulate DsbA-L [43]. Hence, a combination of molecular events at the transcriptional
and translational level regulate adiponectin (Figure 1).
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3. Physiological Functions of Adiponectin

3.1. A Central Role in the Reproductive System

Similar to other adipokines like leptin, resistin, and ghrelin, adiponectin plays a central role in
reproductive functions. Circulating levels of adiponectin are known to be higher in females compared
to males; testosterone exposure has been shown to reduce serum adiponectin levels. In the ovaries,
adiponectin receptors 1 and 2 have been found to be expressed in granulosa cells, oocytes, and corpus
luteum [44]. Adiponectin induces expression of cyclooxygenase 2 (COX2), vascular endothelial growth
factor (VEGF), and prostaglandin E synthase (PGES) in granulosa cells in a porcine model [1]. Similarly,
increased adiponectin and AdipoR1 gene expression was observed in immature rat ovaries in response
to human chorionic gonadotropin (hCG) [45]. Some studies also suggest a role of adiponectin in ovarian
steroidogenesis, while additional studies showed species-specific variable results. Gene expression
changes induced by adiponectin in the ovaries have been demonstrated to be modulated by AMPK
(AMP activated protein kinase) or ERK1/2-MAPK dependent pathway [45]. Adiponectin-induced
AMPK has been shown to regulate the energy requirement for follicular growth. AMPK phosphorylates
PPARγ, which structurally resembles steroid hormone receptors, repressing its transactivation [45].
PPARγ is known to influence steroidogenesis, ovulation, oocyte maturation, and maintenance of
corpus luteum [45]. AMPK and PPARγ, therefore, cooperatively regulate the energy balance in the
ovary, thus, ensuring optimum growth of ovarian follicles [46,47]. However, mice lacking functional
AdipoR1 or AdipoR2 do not demonstrate defective reproduction suggesting that adiponectin is not
indispensable for reproductive functions and evidence suggests adiponectin’s effect on the ovaries
is by virtue of its insulin sensitizing efficiency [46,47]. The essential role of adiponectin has been
explained in the early stages of fetal development [48]. Adiponectin receptor expression is higher in
the endometrial epithelium of women in the mid-secretory phase of the menstrual cycle indicating a
role of adiponectin in the endometrial changes associated with embryo implantation [49]. Additionally,
adiponectin inhibits IL-1β-mediated inflammatory response via AMPK [49] in the stromal cells of
endometrium. Adiponectin has also been detected in early developmental stages of rabbits, pigs,
and mice embryos, and improves development of pig embryo by accelerating meiosis in a p38MAPK
dependent manner. During developmental stages, adiponectin is not confined to adipose tissue but is
also expressed in epidermis, smooth muscle fibers, small intestine wall, major arterial vessels, and
ocular lens suggesting multifold functions of the hormone that remain to be understood. Gestational
diabetes, a common pregnancy-related complication is also correlated with plasma adiponectin levels.
Women who develop gestational diabetes during late pregnancy exhibit lower adiponectin levels in
early pregnancy [1]. Hypoadiponectinemia has also been associated with polycystic ovary syndrome
(PCOS), a major cause of anovulatory infertility, though reports have been inconsistent. Polycystic
ovary syndrome is known to have a strong genetic association and it has been reported that single
nucleotide polymorphism (SNP) in the adiponectin gene might be associated with increased risk of
PCOS. Polycystic ovary syndrome patients are susceptible to glucose intolerance, insulin resistance,
hypertension, and hyperlipidemia with evidently low circulating adiponectin levels [1].

3.2. Regulation of Insulin Sensitivity and Protection against Fatty Liver

Adiponectin is shown to be protective against fatty liver disease and a low circulating adiponectin
has been observed in patients with chronic hepatitis and liver steatosis; inverse quantitative correlation
between circulating adiponectin and grade of hepatic steatosis has been found. Some studies also
suggest a SNP variation in adiponectin and mutation in AdipoR2 receptor to be associated with hepatic
steatosis and fibrosis [50,51]. The most important known biological role of adiponectin is the regulation
of insulin sensitivity in muscle cells, which makes it a central player in type 2 diabetes mellitus (T2DM)
and metabolic syndrome. In humans, adiponectin is also known to be secreted by the skeletal muscles
where it regulates lipid metabolism via AMPK, p38MAPK, and PPARα pathways [52,53] resulting
in more efficient glucose metabolism via glucose transporter type 4 (GLUT4) receptor and fatty acid
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oxidation, thus maintaining insulin sensitivity [54,55]. Though both AdipoR1 and AdipoR2 have
been detected in the skeletal muscles, the relative levels of the two receptors appear to be regulated
by insulin levels, fasting–feeding cycles, and other pathophysiological situations; potentially via a
PI3K/FoxO1 mediated pathway [56]. Direct role of adiponectin in regulating insulin sensitivity and the
fact that adiponectin deficient mice are insulin resistant accompanied by lower insulin production in
response to glucose intake suggests a potential role of adiponectin in regulation of insulin production
by the β-cells which express both AdipoR1 and AdipoR2 [57]. Adiponectin receptor levels are also
lower in pancreas of genetically obese mice. Consistently, adiponectin administration increases insulin
secretion in response to glucose in experimental mice [58,59]. In vitro, adiponectin has been shown
to prevent free fatty acid induced programed cell death in β-cell lines [59]. Adiponectin, thus, plays
an important role in survival and functions of the pancreas protecting it from physiological damage,
which in turn regulates the levels of insulin in the body that is central to most metabolic processes.
In fact, Zyromski et al. [60] elegantly demonstrated that increasing circulating adiponectin in obese
rodents by cannabinoid receptor-1 antagonist leads to recovery of acute pancreatitis.

3.3. Adiponectin in the Central Nervous System

Adiponectin receptors have been detected throughout the central nervous system including the
hypothalamus and brainstem and can stimulate neuroendocrine and autonomic responses in the central
nervous system (CNS) [61]. While some studies suggest that intracerebroventricular administration
of adiponectin results in elevated energy expenditure and promotes weight loss without effecting
appetite, some other studies show adiponectin induces increased food intake and reduced energy
expenditure. While these results are conflicting, it also draws attention to the fact that adipokines by
nature are neuromodulators that signal the brain to regulate food intake and energy expenditure in a
context specific manner. Adiponectin receptors have been detected in the pituitary gland of humans
suggesting a direct role in regulation of pituitary functions. Using in vitro models, adiponectin has
been demonstrated to inhibit growth hormone (GH) and luteinizing hormone (LH) production by
rat pituitary cells [62,63]. Yet other studies have indicated a cerebro-protective role of adiponectin
via endothelial nitric oxide synthase (eNOS)-mediated pathway as well as migraine-associated
inflammation and vasodilation, though more detailed studies are required [63]. In addition to playing
important roles in normal physiology, an imbalance in adiponectin levels is associated with multiple
pathophysiological states.

4. Perturbations in Adiponectin Levels Manifest in Disease States

4.1. Association of Adiponectin with Inflammation

In contrast to most other adipokines, adiponectin is a well-known anti-inflammatory agent. Using
in vitro systems, it has been demonstrated to inhibit B cells differentiation from bone marrow and elevate
expression of anti-inflammatory cytokines IL10, IL6, TNFα, and IFNγ in monocyte-derived cell types
by inhibiting NFκB (nuclear factor kappa light-chain-enhancer of activated B cells) pathway [64–66].
However, the response is variable depending on the isoforms of the hormone and the cell type
targeted, for example, while low molecular weight adiponectin can inhibit LPS-induced IL6 and
elevate IL10 in differentiated TH1 macrophages, the multimers of the adipokine do not modulate the
abovementioned cytokines [64]. The HMW adiponectin elicit IL6 secretion from monocytes and THP-1
macrophages [64]. Reciprocal regulation of adiponectin by pro-inflammatory cytokines is equally well
known. Obesity is a chronic state of low-grade inflammation with sustained and significantly higher
level of inflammatory cytokines like TNFα that is known to directly inhibit adiponectin transcription.
A large body of research suggests that a higher level of circulating adiponectin in lean humans induces
a resistance to inflammatory stimulus in the macrophages. The context specific role of adiponectin
in inflammatory processes is also implicated by the fact that higher levels of adiponectin in serum
and synovial fluid of rheumatoid arthritis (RA) patients where a sustained inflammatory environment
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results in degradation of joints and disease severity is directly proportional to circulating adiponectin
levels [67,68]. Both adiponectin and adiponectin receptors have been detected in synovial fibroblast
of RA patients indicating a local paracrine signaling event [67,68]. In these synovial fibroblasts,
adiponectin induces IL6 and pro-matrix metalloproteinase-1 (pro-MMP1) synthesis via p38MAPK
and NFκB pathways without influencing other cytokines [69]. It has also been reported to escalate
IL8 production which can be attenuated by inhibiting AdipoR2 using RNA interference but not via
AdipoR1 [69].

4.2. Adiponectin in Cardiovascular Diseases

Cardiovascular diseases (CVDs) strongly correlate with visceral adiposity which in turn associates
with lower circulating adiponectin, verifiable in patients with cardiovascular disease [70]. Similar to
other physiological scenarios, CVD dependence on adiponectin levels is context specific. Lower levels
of HMW adiponectin correlate with incidence of CVD [71]. Hypoadiponectinemia has been associated
with severity of myocardial infraction with elevated levels of TNFα and increased apoptotic death in
myocytes and stromal cells [72]; adiponectin administration attenuates these complications and reduces
severity of infraction via the COX-2/EP4 pathway mediated by AMPK [73]. Adiponectin regulates
the cardioprotective COX-2 signaling via sphingosine kinase (SphK) signaling [73,74]. Additionally,
adiponectin has also been studied in the context of atherosclerosis. In injured blood vessels, adiponectin
has been reported to bind collagen type I, III, and V, suggesting a role in repair of vasculature [1]. It
suppresses vascular cell adhesion protein-1 (VCAM-1) expression in monocytes resulting in suppression
of TNFα synthesis, thus preventing them from adhering to the aortic endothelial cells [75]. Adiponectin
also inhibits the class A macrophage scavenger receptor in macrophages preventing them from being
converted into foam cells, the culprits of atherosclerosis. It has also been proposed that adiponectin
gene variation can be used as a predictor of coronary heart disease risk since T/T homozygotes of the
adiponectin gene were at lower risk of developing coronary artery disease compared to G/G or G/T
genotype individuals [50].

5. Obese State and Adiponectin—An Inverse Relation

In contrast to other known adipokines, adiponectin is inversely related to body mass index (BMI)
and central adiposity; the strongest negative correlation has been observed with waist-to-hip ratio [76].
Undoubtedly, a feedback loop regulates it at transcriptional, translational or post-translational level. A
similar trend in downregulation of its receptors AdipoR1 and AdipoR2 have also been observed [77].
Normal levels of adiponectin as well as its receptors are re-established post weight/fat loss. Though a
number of mechanisms have been proposed, none of them precisely explain the feedback mechanism in
adiponectin regulation. An obese state is a situation of chronic inflammation in the body characterized by
a marked increase in the levels of inflammatory cytokines IL6, IL8, TNFα, and leptin, which are directly
known to inhibit adiponectin transcription. In addition, the most important and well-understood
role of adiponectin is insulin sensitization in the skeletal muscles. Increase in visceral fat mass lowers
systemic adiponectin levels creating insulin resistance in the skeletal muscle while glucose signaling
in response to food intake stimulates elevated insulin secretion by the pancreas that is free from
adiponectin’s regulatory control due to its lower circulating concentrations. As a result, there is
increased conversion of glucose and glycogen into fats, which is then taken up by the skeletal muscles
leading to intramuscular fat accumulation, typical of type 2 diabetes. Consequently, a vicious cycle
is initiated where increased adiposity causes a drop in adiponectin levels that in turn results in fat
accumulation in muscles and vital organs like liver that further lowers adiponectin levels giving way
to cardiovascular diseases and atherosclerosis. Again, gender specific differences are evident since
lower adiponectin levels have been recorded in diabetic men compared to women which has been
partially attributed to higher testosterone levels in men.

Though both total and HMW adiponectin are downregulated, HMW adiponectin is a better
predictor of insulin resistance [78,79]. As such, individuals harboring mutations for adiponectin
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multimerization are more susceptible to type II diabetes [78]. Lipoatrophic mice lacking circulating
adiponectin were found to be hyperglycemic as well as had higher levels of insulin, both of which could
be reverted by continuous adiponectin administration. In light of genetic association, +45 G-allele of the
adiponectin gene has been shown to regulate glucose tolerance and insulin sensitivity [50,80]. Similarly,
AdipoR1 −3882 T > C polymorphism has been shown to be responsible for lower insulin resistance and
fasting glucose levels [50,80]. Adiponectin has been shown to have a direct and immediate effect on
blood pressure and lower circulating adiponectin levels can be considered a predictor of hypertension
risk. Experimentally, angiotensin II administration decreases circulatory adiponectin while angiotensin
II receptor blockade results in increase in its plasma concentrations [81,82]. Adiponectin has been
widely studied in the context of lipoprotein metabolism, a dysregulation of which is termed as
dyslipidemia. Obesity is often characterized by increased triglycerides, free fatty acids and low-density
lipoprotein (LDL), and a decrease in high-density lipoprotein (HDL). Circulatory adiponectin positively
correlates with HDL and size density of LDL, and negatively correlates with plasma triglycerides [83,84].
Hypoadiponectinemia often associates with an atherosclerotic lipid profile. The positive correlation
between HDL and adiponectin is known to be regulated by apolipoprotein A-I (apoA-I) [85]. Metabolic
syndrome is defined as the physiological state of complete metabolic dysfunction characterized by
hyperglycemia, insulin resistance, hypertension, dyslipidemia, and obesity. All these conditions are
strongly associated with lower adiponectin levels, particularly, HMW adiponectin [86,87]. It has
also been shown to be a predictor of metabolic syndrome in a 6-year follow-up study in Japan [87].
Though few studies have been successfully conducted, the physiological relevance of adiponectin
in eating disorders like bulimia and anorexia nervosa is still unclear, since both upregulation and
downregulation of the adipokines in these conditions have been reported. More detailed analyses with
special attention to the confounding factors is required to clearly delineate the inverse relationship
between obesity and adiponectin.

6. Adiponectin- and Obesity-Associated Disorders

Deregulated adiponectin production in obesity may be the leading cause of endometrial
impairment, hypertension, myocardial infarction, and other complexities of metabolic syndrome
along with cancer initiation and progression (Table 1).

Table 1. Obesity-related diseases associated with hypoadiponectinemia.

Diseases Findings

Hypertension Obese patients suffering from hypertension display lower adiponectin.

Atherosclerosis Higher incidences of cardiovascular events are associated with
lower hypoadiponectinemia.

Obstructive sleep apnea
syndrome

OSAS (Obstructive sleep apnea syndrome) patients revealed lower
expression level of adiponectin compared to control patients.

Diabetic retinopathy T2DM patients with diabetic retinopathy have lower levels of adiponectin
compared to T2DM patients without diabetic retinopathy.

Cancer Multiple evidences suggest low adiponectin levels are associated with the
threat of developing several types of cancers.

Metabolic syndrome

Metabolic syndrome represents a group of complications like obesity,
hypertension, dyslipidemia, hyperglycemia, and insulin resistance.
Enhancement of metabolic syndrome components is associated with a
decrease in adiponectin concentration in plasma [88].

Dyslipidemia

Disorder of lipid metabolism leading to high levels of LDL, serum
triglycerides, and decreased levels of HDL. Inverse association exists
between adiponectin level with LDL and serum triglycerides with a positive
association with HDL levels [89].

Hepatic disease
non-alcoholic fat

Inverse association exists between adiponectin level in liver with
non-alcoholic fatty liver disease as well as non-alcoholic steatohepatitis [90].
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6.1. Hypertension

Several factors contribute to the association of obesity and hypertension including sympathetic
activation of the nervous system, endothelial dysfunction (due to an increase in free fatty acids and
oxidative stress), and an abnormal adipokine production [88]. Adults with hypertension display lower
levels of adiponectin [89]. Total adiponectin levels were found to be lower in obese individuals suffering
from hypertension in comparison to lean and normotensive individuals [90]. Adiponectin coordinates
blood pressure by mechanisms regulated by brain and endothelium [91,92]. Studies reveal that
adiponectin suppresses TNFα and inhibits foam cell transformation of macrophages [93]. Adiponectin
prevents the atheroma formation by nitric oxide (NO) production via phosphoinositide 3-kinase (PI3K)
and AMPK pathways in endothelial cells [91,92]. Adiponectin also reduces the proliferation of smooth
muscle cells and TNF-α in macrophages [93].

6.2. Atherosclerosis

There are multiple mechanisms linking obesity to cardiovascular diseases [94,95]. Several
adipokines facilitate the cross-talk between adipose tissue, heart, and vessels in the
“adipo-cardiovascular axis”. A prothrombotic state is stimulated by the altered release of adipokines
that leads to cardiovascular disease and atherosclerosis [96,97]. Reduced levels of serum adiponectin
are interpreters of atherosclerosis and myocardial infarction. Additionally, there is a strong
correlation between hypoadiponectinemia and coronary heart diseases well supported by clinical
trials which confirm that higher incidences of cardiovascular events are associated with lower levels of
adiponectin [98]. Reports suggest HMW adiponectin to be a better independent risk factor than the
total adiponectin for cardiovascular diseases [99,100]. In vivo studies using adiponectin deficient mice
reveal severely injured arteries while adiponectin supplementation impaired neointimal proliferation.
In vitro culture studies demonstrate that platelet-derived growth factor (PDGF), heparin-binding
epidermal growth factor (HB-EGF), basic fibroblast growth factor (BFGF), and epidermal growth factor
(EGF)-induced DNA synthesis, cell proliferation and cell migration are impaired by adiponectin [101].
Adiponectin reduces inflammatory cytokines and adhesion molecules in endothelial cells. Apart
from inhibiting the conversion of macrophages into foam cells, adiponectin also decreases TNF-alpha
production as well as induces the production of the anti-inflammatory cytokine, IL-10 [102].

6.3. Obstructive Sleep Apnea Syndrome

Obstructive sleep apnea syndrome (OSAS) is a condition characterized by recurrent respiratory
disorders during sleep [103]. The level of adiponectin is undoubtedly lower in OSAS patients. A study
by Hargens et al. [104] confirmed lower adiponectin levels in OSAS patients in comparison to controls.
Yet, there are some studies which suggest that patients suffering from OSAS do not show alteration
in adiponectin levels. Intermittent hypoxia resulting in a decrease of total and HMW adiponectin is
argued to be the major cause of the reduction of adiponectin in OSAS [105,106].

6.4. Diabetic Retinopathy

One of the major risk factors for diabetic microvascular complications is obesity. Increased levels of
glucose in T2DM are thought to be a risk for microvascular (retinopathy, nephropathy and neuropathy)
and macrovascular (coronary heart disease, stroke and peripheral vascular disease) complications [107].
The most common complication of diabetic microvascular disease is diabetic retinopathy which affects
30–50% of all diabetics [107]. Both obesity and T2DM patients display decreased adiponectin levels in
circulation. Additionally, T2DM patients with diabetic retinopathy (non-proliferative and proliferative)
have reduced levels of adiponectin compared to patients without retinopathy [108].
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7. Obesity, Adiponectin, and Cancer: Interplay of Bigwigs

Multiple epidemiological evidences associate obesity with the risk of cancer development. The
study conducted by the American Cancer Society comparing individuals with a body mass index
(BMI) over 30 kg/m2 with individuals over 25 kg/m2 concluded that the relative risk of colorectal
cancer is at 1.8 for obese males and 1.2 for obese females [109]. A meta-analysis of 11 studies indicated
the probability of 6% increase in the risk of kidney cancer in men and 7% in women per unit BMI
increase with an average 36% higher risk in overweight individuals (BMI > 25 kg/m2) and 84% higher
risk in obese individuals (BMI > 30 kg/m2) [109]. Lagergren et al. reported a positive correlation
of esophageal carcinoma with increased BMI (>25.6 kg/m2 in males and >24.2 kg/m2 in females)
along with a higher risk in individuals with a BMI greater than 30 kg/m2 [109]. According to the
International Agency for Research on Cancer and the World Cancer Research Fund (WCRF), obesity
is strongly associated with endometrial cancer, adenocarcinoma of the esophagus, colorectal cancer,
postmenopausal breast, prostate, and renal cancer. Leukemia, non-Hodgkin’s lymphoma, multiple
myeloma, malignant melanoma, and thyroid tumors represent some lesser common malignancies
associated with obesity [89,110,111]. The strongest correlation between obesity and cancer risk has
been observed in the case of breast cancer. Approximately 80% of the breast is composed of adipose
tissue or fat. The mammary epithelial cells are therefore in close contact with a cocktail of adipokines
produced by the adipose tissue and any imbalance in the hormonal milieu renders the breast susceptible
to tumorigenesis. Reduced levels of total and HMW adiponectin have been shown be associated
with breast cancers irrespective of age, BMI, hormone status, and other factors which was first
reported by Noguchi and group [112,113]. Adiponectin and its receptors are known to be expressed
in breast epithelial as well as myoepithelial cells of the breast. Cytoplasmic expression of both the
AdiopRs is known in normal breast epithelial and breast cancer cells but breast cancer tissue exhibits a
higher expression of AdipoR2 which also significantly and positively correlates with vascular and
lymphovascular invasion in breast cancer. Adiponectin receptors are known to be expressed on most
breast cancer cell lines including MCF7, T47D, MDA-MB-231, MDA-MB-361, and SKBR3. While
MDA-MB-231, T47D, and MCF-7 showed higher expression of AdipoR1, MDA-MB-361 had higher
expression of AdipoR2. Adiponectin protein distribution also varied between cell lines. Insulin,
insulin-like growth factor-1 (IGF1), leptin, adiponectin, steroid hormones, and cytokines are some
host factors associated with obesity that not only influences the initiation and progression of breast
cancer, but also affects its response to therapies [114]. Reports reveal decreased adiponectin in breast
and endometrial cancer and vice versa in non-small cell lung cancer, pancreatic, liver, prostate, gastric,
renal cell carcinoma, and colon cancer [115–118]. Wei et al. [119] performed a meta-analysis of 107
studies in a random effect model to analyze the levels of circulating adiponectin in cancer patients
versus controls. They found that the circulating adiponectin levels were significantly downregulated
in cancer patients compared to control patients with a pooled SMD of −0.334 µg/mL. Further analysis
of eight different studies showed that the circulating levels of HMW adiponectin was lower in cancer
cases than control cases with a pooled standard mean differences (SMD) of −0.502 µg/mL (Table 2).

Table 2. Studies showing circulating HMW adiponectin and its association with cancer risk. RIA:
radioimmunoassay; ELISA: enzyme linked immunosorbent assay.

Cancer Type Ethnicity Sample Cases/Control Method Reference

Breast cancer Caucasian Serum sample 74/76 RIA [120]
Liver cancer Asian Serum sample 59/334 ELISA [121]
Liver cancer Asian Serum sample 97/97 ELISA [122]

Colorectal cancer Asian Plasma sample 165/102 ELISA [123]
Colorectal cancer Caucasian Serum sample 1206/1206 ELISA [124]

Multiple myeloma Caucasian Plasma sample 174/348 ELISA [125]
Endometrial cancer Caucasian Serum sample 62/124 ELISA [126]

Breast cancer Asian Serum sample 66/66 Other method [127]
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8. Adiponectin Orchestrates Multiple Biological Functions to Inhibit Cancer Progression

8.1. Inhibition of Angiogenesis

Tumor growth and metastasis are high-energy expenditure processes requiring constant supply
of growth factors and nutrients, which is ensured by profusely leaky tumor vasculature. Adipocytes as
well as pre-adipocytes are known to synthesize proangiogenic factors including leptin, TNFα, IL6, HGF
(hepatocyte growth factor), and bFGF. Vasculogenesis requires fibroblast growth factor-2 (FGF-2) for
proliferation of endothelial cells followed by migration of the endothelial cells and tubulogenesis that
is facilitated by the vascular endothelial growth factor, VEGF. Using culture-based studies, it has been
demonstrated that adiponectin is capable of inhibiting endothelial cell proliferation induced by FGF2
as well as migration of endothelial cells by VEGF. In a mouse fibrocarcinomas model, intratumoral
administration of adiponectin resulted in disruption of tumor vasculature and caspase-3-mediated
intratumoral apoptosis, possibly by nutrient deprivation of tumor cells, resulting in over 60% tumor
regression. Adiponectin inhibits in vitro proliferation of human umbilical vein endothelial cells
(HUVECs) and subsequent vessel formation. Adiponectin null mice have also been shown to exhibit
retarded tumor growth, diminished vascularization, and inhibition of pulmonary metastasis [128].
However, contradictory results have also been observed in literature and regulation of vasulogenesis
by adiponectin warrants further investigation.

8.2. Inhibition of Growth and Proliferation

Adiponectin has been shown to inhibit cell proliferation via ERK1/2-MAPK pathway in T47D cells.
In MDA-MB-231 xenografts, recombinant as well as adenovirus-mediated adiponectin overexpression,
regressed tumor development, inhibited secondary tumor development in adjacent fat pads, and
prevented lung metastasis via the GSK3β/βcatenin signaling pathway [113,129]. Kang et al. [130]
reported that inhibitory effects (growth arrest as well as apoptosis) of adiponectin have been more
pronounced in the mesenchymal-like cell line MDA-MB-231 compared to the luminal-like cell line T47D
by inducing G0/G1 cell cycle arrest. Adiponectin is thought to enhance Bax and p53 expression while
downregulating CyclinD1, blocking JNK signaling, and inducing PARP cleavage via AdipoRs [113]
Another proposed mechanism of adiponectin-induced growth inhibition and apoptosis in MCF7, T47D,
SK-BR3, and MCF10A is AMPK activation as a result of adiponectin binding to AdipoRs resulting in
p42/p44MAPK inhibition which consequently modulates p53, Bax, Bcl-2, c-myc, and cyclin D1 [113].
Grossman et al. further explain that estrogen receptor alpha (ERα) positive cell lines MCF7 and T47D
cells could be inhibited even with low concentrations of adiponectin, but to achieve similar results
in ERα negative cell line SKBR3, much higher concentrations of the adipokines are necessary. They
further investigated the role of ER in adiponectin-mediated inhibition by expressing estrogen receptor
in MDA-MB-231 which resulted in cells being responsive to adiponectin-induced growth inhibition via
a blockade of JNK2 signaling [113]. Adiponectin has also been shown to inhibit leptin-induced cell
proliferation in MDA-MB-231, MDA-MB-361, SK-BR-3, MCF-7, and T47D cells at varying doses [120].
Genetic variations in adiponectin and its receptor has also been suggested to be associated with
breast cancer risk. One study found that the women who had adiponectin rs2241766 (+45 T→ G)
TG genotype, the genotype associated with higher circulatory adiponectin, were at 39% lower risk
of developing breast cancer where as those with adiponectin rs1501299 (+276 G→ T) TG and GG
genotypes, low adiponectin genotypes, were at 59% and 80% higher risk of developing breast cancer,
respectively. AdipoR1 rs7539542 (+10225 C→ G) CC and CG genotypes were also predicted to carry a
lower breast cancer risk.

In a Chinese case control study, prostate cancer patients exhibited significantly lower levels of
adiponectin in circulation. To demonstrate the role of adiponectin in prostate cancer incidence and
progression they developed stable transfects of prostate cancer cell lines deficient for adiponectin
receptor. Adiponectin administration to parent cell line suppressed cell migration, tube formation,
and induced cell cycle arrest, while adiponectin deficiency enhanced the proliferative, migratory, and
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pro-angiogenic potential of these cells [121]. Gao et al. [122] in 2015 demonstrated that adiponectin
overexpression in prostate cancer cells results in depletion of VEGFA and vice versa via an AMPK/TSC2
mediated mechanism. Recently, Shrestha et al. demonstrated the critical role of transcription factor
FoxO3A in adiponectin-mediated growth arrest and apoptosis in cancer cells. Globular adiponectin
induces p27 but inhibits Cyclin D1 in breast cancer cell lines MCF7 and hepatic cancer cell line HepG2
along with caspase 3/7 activation and FasL expression. Silencing FoxO3A using siRNA inhibited p27 and
activated CyclinD1 while preventing caspase and FasL activation suggesting FoxO3A-mediated growth
arrest in these cells. On silencing AMPK, however, they observed an inhibition of nuclear translocation
of FoxO3A along with inhibition of adiponectin-induced cell cycle arrest and apoptosis. AMPK,
thus, acts upstream of FoxO3A in regulating adiponectin cytotoxicity in cancer cells [123]. Another
study using HepG2 and Huh7 cell lines elaborates adiponectin-induced inhibition of hepatocellular
carcinoma through JNK and mTOR pathway modulation, though upstream regulation remains to be
determined. Adiponectin-induced cell death in these cell lines is accompanied by intracellular reactive
oxygen species (ROS) accumulation and adiponectin’s effects were inhibited by N-acetylcysteine.
Levels of thioredoxin proteins, Trx1 and 2 were altered while overexpression of either of the proteins
rescued adiponectin’s effect [124].

High circulating adiponectin has also been shown to be associated with 50% lower risk of
endometrial cancer irrespective of BMI, hence, it can be considered an independent predictor of
endometrial cancer risk. Similarly, adiponectin receptors have been detected in prostate cancer cell lines
and in patients. Adiponectin in circulation was evaluated to be negatively correlated with histological
grade prostate cancer. Consistently, full-length adiponectin also inhibited growth of prostate cancer cell
lines in vitro. In models of CRC, adiponectin knockdown resulted in increased multiplicity of colorectal
polyps which were also more aggressive and metastatic with higher COX2 levels compared to their
wild-type counterparts suggesting that higher levels of circulating adiponectin could be associated
with better prognosis of colorectal cancer as well. In adiponectin-deficient mice, adiponectin inhibited
tumor progression and angiogenesis when fed an obesogenic diet but not with normal diet [125–127].
Adiponectin deficiency also aggravated azoxymethane-induced (carcinogen-induced) colon cancer in
C57BL/6J mice [131]. A series of studies by Saxena et al. demonstrated that adiponectin conferred
protection against inflammation-induced colon cancers by preventing apoptosis in the goblet cells and
promoting differentiation of epithelial cells to goblet cells [132,133]. In HCT116, HT29, and LoVo CRC
cell lines, adiponectin induces G1/S cell cycle arrest with concurrent overexpression of p21 and p27 via
AMPK phosphorylation; inhibition of adiponectin receptors freed the cells of adiponectin-induced
growth arrest [134]. Moreover, adiponectin rs266729 (−11365 C→ G) GG and GC genotypes have been
reported to be at 27% lower risk of encountering colorectal cancer compared to individuals with CC
genotype, though results in this regard have been inconsistent [135].

8.3. Inhibition of Invasion, Migration, and Metastasis

Owing to its strong negative association with multiple cancers and its role in tumor angiogenesis
and vasculature development, many research groups have studied the involvement of adiponectin in
cancer invasion and metastasis. However, not many studies have specifically examined the role of
adiponectin in cancer metastasis. Adipokine leptin is a strong predictor of poor outcome in breast cancer.
Adiponectin has been shown to counteract the effect of leptin by inhibiting leptin-induced migration
and invasion in breast cancer in addition to leptin-induced clonogenicity and anchorage independent
cell growth. Adiponectin pretreatment suppresses leptin-induced ERK and Akt signaling. Additionally,
it amplifies the protein tyrosine phosphatase 1B (PTP1B) expression and activity, physiological leptin
inhibitor and PTP1B inhibition restores leptin activity. Adenoviral adiponectin treatment retards
tumor progression in xenograft [136]. In endometrial cancer cell line SPEC-2, adiponectin reverses its
metastatic phenotype. Adiponectin inhibits leptin-induced proliferation as well as invasion potential
of the SPEC2 cells. Mechanistically, adiponectin prevents leptin-induced invasion by inhibiting
signal transducer and activator of transcription 3 (STAT3) phosphorylation and MAPK-mediated
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nuclear translocation [137]. In liver cancer xenografts, adiponectin inhibits tumor progression and
reduces lung metastasis. Adiponectin inhibits hepatic stellate cell activation, intratumoral macrophage
infiltration, and diminishes tumor vascularization by downregulating ROCK/IP10/VEGF signaling and
inhibition of lamellipodia formation [138]. In non-small cell lung carcinoma (NSCLC), adiponectin
prevents migration and invasion of cancer cells by inhibiting epithelial-to-mesenchymal transition
(EMT). Adiponectin upregulates epithelial marker expression and decreases mesenchymal markers
which could be reversed by knocking down Twist, AdipoR1, and AdipoR2 [139]. Though compelling
experimental evidence support metastasis inhibitory effects of adiponectin, results across studies are
still inconsistent and more detailed investigation is warranted.

9. Molecular Mechanisms Mediating Adiponectin’s Effects in Cancer

The literature clearly suggests that adiponectin can activate several pathways like AMPK, MAPK
and PI3K/AKt. AMPK affects cell growth via mammalian target of rapamycin (mTOR), thereby
inhibiting the induction of tumor formation. Adiponectin induces growth arrest and apoptosis
by activating AMPK in various cell lines in a p53 and p21 dependent manner. In vitro studies of
adiponectin on several colon cancer cell lines (HCT116, HT29, and LoVo) show that adiponectin inhibits
colon cancer cell proliferation and impairs the cell cycle at G1/S transition phase by inducing p21
and p27 [134]. Adiponectin induces the tumor suppressor gene, LKB1, thereby resulting in AMPK
activation and inhibition of cell adhesion, invasion and migration in breast cancer cell lines [140,141].
Adiponectin-mediated LKB1 upregulation is also involved in the induction of cytotoxic autophagy
leading to tumor inhibition [142]. The role of adiponectin on MAPK signaling remains debatable.
The study by Daniele et al. reveal higher adiponectin in the serum samples of chronic obstructive
pulmonary disease (COPD) patients compared to control subjects [143]. Adiponectin treatment
downregulates ERK1/2 signaling leading to reduction of cell viability in breast and endometrial cancer
cell lines [144,145]. Adiponectin-treated MCF7 cells reveal a decrease in the expression level of c-myc,
cyclin-D1, and Bcl2 with an increased expression of p52 and Bax, thereby leading to cell cycle arrest [145].
JNK, a member of MAP kinases, has a role in tumor development by regulating cell proliferation
and apoptosis [146]. It is also involved in obesity and insulin resistance [146,147]. Similarly, STAT3
(signal transducer and activator of transcription 3) is also involved in cell survival and proliferation
and the deregulation of STAT3 leads to tumor progression and metastasis. Saxena et al. reported that
adiponectin treatment enhances JNK activation and causes apoptosis in hepatocellular carcinoma cell
line in a caspase-3 dependent manner [148]. Reports reveal that adiponectin treatment reduces STAT3
and Akt phosphorylation in liver and prostate cancer cell lines [149]. Adiponectin-treated breast and
colorectal cancer cell lines reveal a decrease in PI3K and Akt phosphorylation [150]. At the same time,
adiponectin also induces AMPK and inhibits mammalian target of rapamycin (mTOR) cascade in
colorectal cancer cell lines [151]. The Wnt signaling pathway plays a proven role in self-renewal and
differentiation in different cancer models. The binding of WNT ligand to frizzled activates the signaling
cascade by inhibiting glycogen synthase kinase 3 beta (GSK-3β) which is a negative regulator of
β-Catenin. The inhibition of GSK-3β promotes the nuclear translocation of β-Catenin, thus, activating
WNT signaling. Wang et al. reported that adiponectin inhibits GSK-3β phosphorylation and prevents
β-Catenin nuclear translocation in MDA-MB-231 triple-negative breast cancer cells [129]. Liu et
al. showed that adiponectin treatment induces Wnt inhibitory factor 1 (WIF1) in a time-dependent
manner and results in the decrease of cell proliferation, nuclear translocation of β-Catenin, and reduces
expression of cyclin-D1 in breast cancer cells [152]. One of the major anti-apoptotic pathways is
the NF-Kβ pathway. Ouchi et al. reported that human aortic endothelial cells pre-incubated with
adiponectin show reduced phosphorylation of TNF-alpha-induced Ikappaβ-α, thereby suppressing
NFKβ activation via cAMP accumulation. This effect is blocked in the presence of adenylate cyclase
or protein kinase A (PKA) inhibitor [153]. Adiponectin modulates various signaling mechanisms to
inhibit cancer growth and progression (Figure 2).
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10. Potential Therapeutic Modulation of Adiponectin

Obesity and metabolic syndrome have grown to be the root cause of most life-threatening
diseases ranging from type 2 diabetes, cardiovascular diseases, and cancer. Obesity leads to hormonal
dysregulation and insulin resistance which initiates a cascade of events leading to failure of the
metabolic machinery of the body, hence morbidity. Therapeutic regulation of adiponectin may be
achieved either by administration of exogenous recombinant adiponectin or using pharmacological
agents to induce increased production of exogenous adiponectin [36]. However, similar to most
biologics, mass production of functional adiponectin is challenging since within the biological system
it is under intense post-transcriptional and post-translational modifications which are hard to mimic
in vitro [36,154]. Bacterial systems lack mammalian protein synthesis machinery and fail to produce
functionally active adiponectin. Exploitation of the mammalian culture system for mass production is
not a scalable process. In addition, adiponectin has a short half-life in circulation making exogenous
administration of recombinant adiponectin a non-feasible approach [36,155]. The only practical mode
of adiponectin therapy is, therefore, to induce increased production of endogenous adiponectin using
either natural means or pharmacological interventions. The most natural means of boosting adiponectin
production is weight loss since adiponectin is the hormone secreted by the lean adipose tissue and is
suppressed by leptin and other inflammatory cytokines produced by obese adipose. Multiple effective
interventions of weight loss, discussed later, have been strategized in recent years but weight loss
remains to be a difficult hurdle. The most feasible method of adiponectin therapy would therefore
be the use of pharmacological intervention to enhance adiponectin biosynthesis, bioavailability and
bioactivity. The key to designing adiponectin enhancing therapies is to understand its transcriptional
and translational regulation. The adiponectin promoter is known to bind a number of transcription
factors capable of modulating its activity [30]. It is composed of a PPAR responsive element [19], a
CCAAT box [156], multiple C/EBPα enhancers and a sterol regulator element or SRE [157]. Several
pharmacological agents have been developed to target or modulate adiponectin machinery.
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10.1. Pharmacological Agents

Though results from clinical trials are conflicting, statins including pravastatin [158],
simvastatin [159], rosuvastatin [160], and atorvastatin [161] have been reported to be effective in
increasing circulating adiponectin. Statins function by releasing cellular oxidative stress resulting in
increased multimerization and release. These include ramipril [162], Quinapril [163], Losartan [164],
Telmisartan [164,165], Irbesartan [165,166], and Candesartan [166], all of which have shown promising
results in clinical trials. They function by enhancing adiponectin secretion via PPARγ, though some are
also known to induce transcription. Pioglitazone and Rosiglitazone are known to enhance circulating
adiponectin levels 2–4 fold [167,168]. TZDs function by inducing transcription of adiponectin via
PPARγ. They have also been found to enhance secretion of folded adiponectin by inhibiting ERp44 and
upregulating Ero1-La and DsbA-L. Other potential drugs include non-statin anti-hyperlipidemic drugs
like Fenofibrate and Zetia, non-TZD anti-diabetic drugs, such as Acarbose [36] and the sulfonylurea
Glimepiride [169] and Sulfonylureas. Androgen blockers have also been proven to be effective at
increasing HMW adiponectin and can be used in cases of prostate cancers.

10.2. Weight Loss Interventions

Caloric restriction has been the most commonly implemented intervention for weight loss. It
creates an energy deficit forcing the body to utilize energy stored in adipose tissue to fuel basal
metabolic activities. However, with the surge in obesity research and better understanding of hormonal
regulation of metabolic processes, the therapeutic significance of caloric restriction has been questioned.
It has been observed that with constant intake of low energy food, the body activates a coping
mechanism by lowering the basal metabolic rate and develops resistance to fat catabolism. As a result,
the metabolic processes do not switch, they merely slow down; consequently, there is no change
in hormonal milieu of the body. In addition, only recently have we started to fully appreciate the
hormone central to all metabolic processes, insulin. It is now believed that an obesogenic diet is one
with higher glycemic index rather than caloric density and insulin responds to a spike in blood glucose
by directing cells to store energy in the form of fat. The glycemic index of food is determined by
its macronutrient composition, precisely the ratio of carbohydrates, fat, protein, and fiber (a form of
complex carbohydrate). While caloric restriction may promote some weight loss, it does not seem to
have therapeutic benefit.

In recent years, intermittent fasting and ketogenic diets have been shown to have immense health
benefits and have also been utilized as therapeutic regimens. Intermittent fasting refers to a form of
diet when food is consumed within small windows of time of a few hours followed by long hours of
fasting without calorie restriction. As a result, insulin levels remain constant for long time intervals
with a limited period of insulin spike preventing fat storage. During periods of fasting, fat metabolism
is induced resulting in weight loss. This mode of feeding has been shown to improve metabolic
functions, improve insulin sensitivity, and restore hormonal balance. A recent study suggests that
intermittent fasting induces beiging of white adipose tissue via microbiome modulation [170], such
change could probably induce adiponectin synthesis and lower leptin levels. Ketogenic diet, on the
other hand, relies on dietary fat as a major energy source. It is composed of 60–80% fat, 20% proteins,
and only 5–10% carbohydrates most of which is dietary fiber. It works on the principle of insulin
response; the glycemic index of macronutrients varies in the order of carbohydrates (minus fibers) >

protein > fat. Since fats are the main energy source, insulin response to the diet is minimal, shutting
down the process of fat storage. Utilizing fat as the source of energy, the body adapts to fat utilization
rather than depending on glycogen stores in hours of need, thus it results in fat loss. Fats and proteins
are known to induce high levels of satiety resulting in appetite reduction which also promotes weight
loss. A combination of intermittent fasting and a ketogenic diet has been shown to be most effective
in promoting weight loss and rewiring metabolic dysfunctions. Body fat loss and increased insulin
sensitivity are the most effective and natural methods of reversing obesity-associated inflammation and
leptin downregulation, and thus, adiponectin upregulation. Physical activity and exercising is another
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reliable method of weight loss and is known to reduce inflammation [171]. A recent meta-analysis
comprising 2996 individuals investigated metabolic regulation in diabetes patients and how it is
affected by exercise [172]. Of all exercise modalities, only aerobic exercise was found to increase
adiponectin and decrease leptin levels [172]. Collectively, these studies indicate that combination
regimens of diet, exercise, and fasting can help boost adiponectin levels in hypoadiponectinemia.

11. Conclusions

Adiponectin, an important adipocytokine mainly produced by lean adipocytes, is considered
a guardian angel adipocytokine owing to its protective functions against various disease states
associated with obesity. Adiponectin inversely correlates with obesity and is under tight regulation at
transcriptional and translational levels. Though important in most chronic diseases including CVD
and T2DM, the role of adiponectin in cancers is most critical. Women who are genetically wired
to have lower levels of circulating adiponectin live with a significantly higher risk of breast cancer
irrespective of BMI and adiposity. Similar associations have also been observed in other cancers
including CRC, prostrate, and hepatic malignancies. Modulation of adipose-secreted hormones
regulates metabolic functions of the body, and therefore have direct consequences on cancers which
survive by hijacking host metabolic machinery. However, as detailed in this review, adiponectin works
in concert with other important hormones including insulin, leptin, and various cytokines making
its pharmacological exploitation more difficult. Various strategies have been developed to modulate
adiponectin levels in disease state to harness its beneficial effects including pharmacological agents
functioning at transcriptional and post-translational levels as well as weight loss strategies. Evidently,
adiponectin intervention alone is not sufficient to confront these chronic conditions; it definitely plays
an important supportive role in these pathologic states and deserves attention. While pharmacological
interventions can prove helpful in treatment of patients genetically deficient in adiponectin, weight
management strategies including aerobic exercise and ketogenic diets could be effective in conjunction
with other systemic therapies and medications.
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GBP28 Gelatin-binding protein of 28 kDa
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PPARγ Peroxisome proliferator-activated receptor gamma
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PPRE PPAR response element
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FoxO1 Forkhead box protein O1
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SERBP Sterol regulatory element-binding proteins
SRE SERBP response element
CREB cAMP response element-binding protein
ATF3 Activating transcription factor 3
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NFAT Nuclear factor of activated T-cells
AP-2β Activating enhancer binding protein-2β
IGFBP-3 IGF-1-binding protein 3
Id3 Inhibitor of differentiation-3
HIF1α Hypoxia inducible factor alpha
TNFα Tumor necrosis factor alpha
IFNγ Interferon gamma
IL Interleukin
JNK c-Jun N-terminal kinases
ERK Extracellular-signal-regulated kinase
MAPK Mitogen-activated protein kinases
ERp44 ER chaperone protein 44
Ero-1La ERO1-like protein alpha
DsbA-L Disulfide-bond A oxidoreductase-like protein
COX2 Cyclooxygenase 2
VEGF Vascular endothelial growth factor
PGES Prostaglandin E synthase
hCG Human chorionic gonadotropin
AMPK AMP activated protein kinase
PCOS Polycystic ovary syndrome
SNP Single nucleotide polymorphism
GLUT4 Glucose transporter type 4
CNS Central nervous system
GH Growth hormone
LH Luteinizing hormone
eNOS Endothelial NOS
NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells
MMP Matrix metalloproteinase
CVD Cardiovascular disease
EP4 Prostaglandin E2 receptor 4
SphK Sphingosine kinase
VCAM-1 Vascular cell adhesion protein 1
BMI Body mass index
LDL Low density lipoprotein
HDL High density lipoprotein
apoA-I Apolipoprotein A-I
NO Nitric oxide
PI3K Phosphoinositide 3-kinase
PDGF Platelet-derived growth factor
HB-EGF Heparin-binding epidermal growth factor
BFGF Basic fibroblast growth factor
EGF Epidermal growth factor
OSAS Obstructive sleep apnea syndrome
T2DM Type 2 diabetes mellitus
IARC International agency for research on cancer
WCRF World cancer research fund
SMD Standard mean differences
RIA Radioimmunoassay
ELISA Enzyme linked immunosorbent assay
HGF Hepatocyte growth factor
bFGF Basic fibroblast growth factor
FGF-2 Fibroblast growth factor-2
HUVEC Human Umbilical Vein Endothelial Cells
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mTOR Mammalian target of rapamycin
ROS Reactive oxygen species
Trx Thioredoxin
CRC Colorectal cancer
PTP1B Protein tyrosine phosphatase 1B
NSCLC Non-small cell lung carcinoma
EMT Epithelial to mesenchymal transition
PKA Protein kinase A
IGF1 Insulin like growth factor-1
COPD Chronic Obstructive Pulmonary Disease
STAT3 Signal transducer and activator of transcription 3
GSK3β Glycogen synthase kinase 3 beta
DsbA-L Disulfide-bond A oxidoreductase-like protein
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