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Abstract: The last decade has witnessed dramatic growth in the number of reactions 
catalyzed by gold complexes because of their powerful soft Lewis acid nature. In 
particular, the gold-catalyzed activation of propargylic compounds has progressively 
emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been 
optimized and show significant utility in organic synthesis. Thus, apart from significant 
methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives 
have become an efficient tool in total synthesis. However, there is a lack of specific review 
articles covering the joined importance of both gold salts and alkynol-based compounds for 
the synthesis of natural products and derivatives. The aim of this Review is to survey the 
chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility 
in total synthesis, concentrating on the advances that have been made in the last decade, 
and in particular in the last quinquennium. 

Keywords: gold catalysis; alkynols; total synthesis; natural products 
 

OPEN ACCESS



Molecules 2011, 16              
 

 

7816

1. Introduction 

Organic synthesis has as one of its major points of interest the study of naturally occurring 
substances, and this remains both a source of information and an intellectual challenge. Thus, a crucial 
target for organic chemists is to find the appropriate reaction conditions, allowing functional group 
compatibility and providing high efficiency and atom economy. During the last years, gold-catalyzed 
cycloisomerization of alkynol-based systems has emerged as a useful tool in this area, allowing the 
synthesis of different structures such as furans, dihydrofurans, pyrans, furanones or ketals, among 
many other heterocyclic systems and naturally occurring structures [1-3]. 

This overview focuses on the most recent achievements in gold-catalyzed cycloisomerization 
reactions, for the synthesis of natural products and related compounds. In particular, carbon-carbon 
and carbon-heteroatom cyclization processes will be considered, paying special attention to reports 
from the last five years. 

2. Cycloisomerization Processes Involving Carbon-Carbon Bond Formation 

Gold-catalyzed cycloisomerization reactions involving C−C bond formation have recently emerged 
as an effective methodology to build hydrocarbon rings. Four, five and six membered cyclic structures, 
as well as medium sized rings are accessible in good yields and under interesting mild reaction 
conditions using gold salts and gold complexes. Fused bicyclic compounds can also be produced, 
leading therefore to an attractive series of natural occurring skeletons. 

Benzofurans represent a recurring motif among natural products. Particularly, 2-substituted and  
2,7-disubstituted benzofurans and their derivatives are known to show many different biological 
activities such as antineoplastic, antiviral, antioxidative or anti-inflammatory properties. Although 
many routes for the preparation of 2-substituted systems have been developed [4,5], 2,7-substituted 
benzofurans remain almost unexplored (Figure 1) [6-8]. 

Figure 1. 7-Aryl benzofuran structure core in different bioactive compounds. 
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Hashmi et al. have recently proposed an efficient route leading to 7-aryl benzo[b]furans 2 through a 
gold-catalyzed rearrangement of 3-silyloxy-1,5-enynes [9]. The considerable effort that went into this 
work, involving a first catalyst screening for substrate 1a and finding the optimal conditions for the 
dual catalyst system [IPrAuCl]/AgNTf2 is noteworthy. Thus, an easy methodology was performed, 
using mild conditions, open-air systems and remarkable short reaction times, providing an interesting 
family of different substituted 7-aryl benzofurans (Scheme 1). 

Scheme 1. Gold(I)-catalyzed rearrangement of 3-silyloxy-1,5-enynes. 
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Reactions conditions: (i) [IPrAuCl]/AgNTf2 (2 mol%), iPrOH (1.1 equiv.), DCM (15 mL/mmol), 
rt, in air, 1 h. 

Approximately a quarter of biologically active known compounds come from fungi, and among 
their wide range of properties, the antibiotic activity has attracted much interest [10,11]. 
Guanacastepene A (Figure 2) is extremely active against methicillin-resistant strains of Staphylococcus 
aureus and vancomicyn-resistant E. faecalis, two drug-resistant common pathogens which have 
generated major concern [12-14]. 
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Figure 2. Rings A, B and C in natural terpene guanacastepene A. 
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It has been stated an approach to ring A of guanacastepene, by an unusual gold(I)-catalyzed 
cycloisomerization of alkynol-based 1,5-enynes [15]. According to the proposed retrosynthesis, most 
of the functionalities present in the natural terpene would be early introduced, while the presence of the 
cyclopropyl fused ring could allow the further generation of ring B (Scheme 2). 

Scheme 2. Retrosynthesis of guanacastepene ring A. 
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Many 1,5-enynes were tested, and an unexpected pattern of reactivity depending on the substituents 
in substrates 4 was found. Thus, the desired bicyclo[3.1.0] system 3 was obtained only when the 
reaction was performed with the syn-enynes 4a and 4b, yielding 3a and 3b with good conversions and 
notable diastereoselectivity. Anti-isomers, or any stereochemical change on the starting 1,5-enynes, 
resulted in the opposite diastereoselectivity (systems 5), or a dramatic change on the course of the 
reaction, leading to alkylidene-cyclopentenes 6, cyclohexadienes 7, or α,β-unsaturated aldehydes 8 
(Scheme 3). 

Gold-catalyzed isomerization has been also employed in the search of an appropriate route to  
(−)-thujopsanone, a derivative of the natural terpene (−)-thujopsene, widely employed in cosmetics [16]. 
Although the first aim of the authors remained unachieved, and the obtained compound 9 did not 
exhibit the appreciated properties of the initial target [17], the chemistry developed merits further 
consideration (Scheme 4) [18]. Thus, it was observed that enynol 10 provided the unexpected ether 11 
in the presence of different gold catalysts, in amounts similar to those produced by some other metal 
salts such as copper or platinum complexes. Interestingly, when the corresponding acetate derivative 
12 reacted in the presence of AuCl3, a tandem cycloisomerization/[1,2]-acyl shift took place, leading to 
adduct 13, precursor of the previously mentioned adduct 9, and a close system to (−)-thujopsanone. 
Moreover, when the process was tested in the presence of (tBuXPhos)AuNTf2 as catalyst, an 
unprecedented rearrangement/cycloaddition leading to the tricyclic system 14 was reported (Scheme 5). 
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Scheme 3. Divergent reactivity for the gold-catalyzed reaction of 1,5-enynes. 
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Reaction conditions: (i) (PPh3)AuBF4 (2 mol%), DCM (0.1 M), −20 to −10 °C, 5–15 min. 
* Reported yield from a mixture 1:3.3 of the correspondig bicycles 5 and 7. 

Scheme 4. Projected synthetic route to terpene (−)-thujopsanone. 
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Scheme 5. Cycloisomerization of enynol 10 and [1,2]-acyl shift rearrangement of acetate 
12, respectively. 
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Reaction conditions: (i) cat. (1–5 mol%), DCM, rt, 5 to 120 min; (ii) cat. (1–5 mol%), DCM, rt,  
3–24 h; (iii) K2CO3 (1.5 equiv.), MeOH, rt, 20 min. 

Gold-catalyzed cycloisomerization methodology has also been applied to the construction of 
medium sized rings. Allocolchicinoids, presenting a seven membered ring, are structures related to  
(−)-colchicine, a natural product with important antimitotic activity (Figure 3). Many of these 
derivatives also show this kind of mitosis arrest, by inhibiting tubulin polymerization [19-21].  
N-acetylcolchinol 15, for instance, is described to bind to tubulin more strongly than colchicine itself. 
Thus, many reports have appeared describing the synthesis of these structures [22-28]. 

Figure 3. Colchicine and allocolchicinoids systems. 
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Hanna et al. reported the synthesis of derivative 17 [29]. In the proposed sequence, the seven 
membered ring is formed by a gold(I)-catalyzed 1,2-O-acyl shift, followed by a cyclopropanation step 
which leads to the fused three member ring (Scheme 6). Thus, gold-catalyzed cyclization of  
alkynol-based systems has also been stated in this work as a useful tool to create medium sized rings, 
through an easy methodology providing high yields under mild reaction conditions. 

Scheme 6. Synthesis of allocolchicinoid 17 and proposed mechanism for the  
gold-catalyzed cycloisomerization step. 
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Reaction conditions: (i) Cat. A (1 mol%), DCM, rt, 2 h; (ii) K2CO3, MeOH, 2.5 h, rt; (iii) THF,  
−78 °C; (iv) MgSO4, Toluene, 100 °C; (v) methyl β-nitroacrylate (5.2 equiv.), DCM, rt, 22 h;  
(vi) DBU (drops), THF, rt, 2 h; (vii) DDQ (1.5 equiv.), DCM, rt, 2 h. 
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Indole systems are ubiquitous in Nature, appearing in many different alkaloid families. Their wide 
range of biological activities, and their intriguing chemistry, makes these compounds a target of 
special interest, and a recurring topic in many studies [30-41]. For instance, the first enantioselective 
approach to (−)-mersicarpine, an alkaloid isolated from Kopsia plants and exhibiting an unusual 
tetracyclic structure has been reported. The proposed retrosynthetic analysis included the reaction of an 
alkynol-based intermediate in the presence of a gold salt, although only the alkyne functional group 
showed reactivity under these conditions, preserving the hydroxylic group for a further oxidation [42]. 

More interestingly, the reactivity of alkynol-based systems as formal organic synthons has been also 
explored in the indole chemistry. It has been established the synthesis of the non-natural skeleton  
2,3-indoline-fused cyclobutane through a cascade process, including both C−C and C−O bond 
formation catalyzed by the same gold salt [43]. 

On the other hand, Echavarren et al. described in an exhaustive report about inter- and 
intramolecular gold-catalyzed reaction of alkynes and indoles some examples starting from alkynols 
and alkynol-based systems. Carbazole-like systems and related structures were therefore achieved  
(Scheme 7) [44]. 

Scheme 7. Alkynol-based reactivity in indole chemistry. 
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Reaction conditions: (i) Cat. B or C (5 mol%), DCM, rt, 0.5–48 h; (ii) Cat. B (5 mol%), DCM, rt, 
0.2–16 h. iii) Cat. B (5 mol%), toluene, rt, 9–14 h. 
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Inspired by the results of the Echevarren group, Liu et al. described the synthesis of 
dihydrocyclohepta[b]indoles 26 from (Z)-enynols 27 and indole, through an interesting domino 
sequence including a first gold(0)-catalyzed Friedel-Craft reaction, followed by a hydroarylation  
step [45]. The resulting products are of considerable interest, as much as they form the key subunits of 
several alkaloids, like ambiguine, silicine, caulerpin or caulersin. The reported work includes the 
optimization of the process, by testing different gold salts and solvents, leading to high reaction 
conversions through mild conditions (Schemes 8 and 9). 

Scheme 8. Synthesis of dihydrocyclohepta[b]indoles, and related natural structures. 
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Reaction conditions: (i) (PPh3)AuCl/AgSbF6 (5 mol%), THF, rt, 4–13 h. 

3. Cycloisomerization Processes Involving Carbon-Heteroatom Bond Formation 

Heterocyclic natural occurring motifs such as furans, pyrans or spiroketals can be easily achieved 
through heterocyclization processes performed on alkynol-based systems. Gold promoted 
methodologies provide a convenient route to these structures, allowing mild reaction conditions and 
high yields. Total synthesis and the preparation of related derivatives have been recently described 
using both C−N and C−O bond formation. 

3.1. Cycloisomerization on Alkynol-Based Systems 

Chromones are natural heterocycles showing a wide range of biological properties. Thus, many 
strategies like iodocyclizations [46], metal-catalyzed cycloadditions [47], or O-arylation processes [48] 
have appeared for the synthesis of these oxacyclic systems. Gold catalyzed cycloisomerization of 
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alkynol based structures 28 have been also stated for the generation of chromones 29 [49]. 
Interestingly, reaction proceeded with a further migration of group R1, leading to highly functionalized 
skeletons. Unluckily, only moderate yields were achieved (Scheme 10), inasmuch as isomerization 
processes competed with the expected Au-based cycloisomerization. 

Scheme 9. Proposed reaction mechanism for the tandem gold catalyzed-Friedel-Crafts 
arylation/hydroarylation process. 
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Scheme 10. Synthesis of chromones by gold-catalyzed cycloisomerization. 
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Reaction conditions: (i) PPh3AuCl (10 mol%)/AgSbF6 (10 mol%), DCE, 50 °C, 0.5 h. 

A similar approach has been developed for the synthesis of aurone skeletons [50], natural 
flavonoids, by an easy three step sequence. Aurones exhibit several biological properties [51-55], 
and its importance had led to several groups to develop convenient synthetic routes [56-62]. 
Among them, gold-catalyzed oxycyclization provided the best results, as milder reaction 
conditions and excellent selectivities, avoiding the formation of flavones as byproducts, were 
achieved (Scheme 11) [63]. In this case, high yields and complete regioselectivity were obtained. 
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Scheme 11. Synthesis of aurone skeleton by gold-catalyzed cycloisomerization. 
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Moreover, the present methodology was used for the structural revision of two natural products, 
(Z)-4’-chloroaurone 30 [64], and (Z)-2’-hydroxyaurone 32 [65], proving that the assumed 
structures were not the correct ones. Thus, flavonoid systems 30 and 32 could be prepared by the 
above three step strategy which revealed that their spectral data did not match with the previously 
reported data of the natural isolated ones. Therefore, the isocumarin 31 and the flavone 33 were 
prepared and probed as the real structures for these natural products (Figure 4). 

Figure 4. New assignation of structures 31 and 33 by comparison with the prepared by the 
gold catalysis aurone systems 30 and 32. 
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Trost et al. recently completed the total synthesis of bryostatin 16 [66,67], a structurally 
complex macrolide which exhibits a wide range of biological activities [68-71]. Focusing on the 
proposed 26 step sequence (in the longest linear path, and 39 steps as the total), the gold-catalyzed 
6-endo-dig oxycyclization of alkynol 34 to generate the inner dihydropyran cycle D in macrocyclic 
precursor 35 in 65% yield deserves special attention (Scheme 12). 

Scheme 12. Gold-based synthesis of dihydropyran ring D in bryostatin total synthesis. 
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Reaction conditions: (i) Pd(OAc)2 (10 mol%), tris(2,6-dimethoxyphenyl)phosphine (10 mol%), 
benzene, rt; (ii) AuCl(PPh3) (10 mol%), AgSbF6 (10 mol%), DCM/MeCN (4:1), NaHCO3, 0 °C to rt. 

(+)-Cephalostatin 1 is another complex macrolide with interesting biological activity. It has been 
reported to be a promising anticancer agent for the p16 tumor suppressor gene, exhibiting high activity 
and high selectivity between cancer cells and normal cells [72,73]. Because of the small amounts of 
cephalostatin available from its natural marine sources, a synthetic approach has emerged as the sole 
viable tool to provide enough material for biological testing [74-78]. On the other hand, the structural 
complexity of cephalostatin makes this macrocycle an interesting target to develop new skills in 
organic synthesis. 
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Fortner et al. have recently described a total synthesis of cephalostatin, involving the construction 
of both its eastern and western fragments and their further coupling [79]. Along the high quality 
chemistry developed for this synthesis, we would like to focus on the dihydrofuran ring E construction 
on compound 36. Thus, gold-catalyzed cycloisomerization emerge again as a useful methodology to 
convert alkynol systems in oxacyclic skeletons, crucial and recurring motifs for total synthesis. 
Moreover, the efficiency of gold catalysis to promote a 5-endo-dig process with an 88% conversion, on 
what is a hindered internal alkyne 37, deserves special consideration (Scheme 13). 

Scheme 13. Synthesis of ring E on the eastern fragment of cephalostatin. 
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Reaction conditions: (i) Ph3PAuCl (10 mol%), AgBF4 (25 mol%), THF, 12 h. 

Other natural occurring motifs such as oxazoles and isoxazoles have also been assembled through 
gold-catalyzed cycloisomerization. Thus, it has been recently established a general method for the 
synthesis of highly functionalized isoxazoles from alkynyl oxime ethers [80], or an intermolecular 
alkyne oxidation leading to 2,5-disubstituted oxazoles [81]. Nevertheless, while gold-based  
alkyne-oxygen cycloisomerization has recently become a hot topic in organic synthesis, only a few 
examples for alkyne-nitrogen coupling have been described [82-90]. Regarding the synthesis of natural 
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products and derivatives, Chan et al. have recently described the synthesis of highly substituted indole 
skeletons [29], from readily available 2-tosylamino-phenylprop-1-yn-3-ols 38 [91]. The reported work 
shows a versatile approach to these natural occurring motifs, and develops a fascinating study 
concerning the chemical reactivity of these substrates under gold-catalyzed conditions. Thus, starting 
in every case from a 5-exo-dig cycloaddition which led to vinyl gold species 39, different reaction 
pathways were observed depending on the substituent group R1. It was stated that when R1 = aryl, 
reaction proceeded through a Friedel-Craft process, giving indenyl-fused indoles 40. On the other hand, 
changing to R1 = H, a protodeauration/1,3-allylic alcohol isomerization took place, leading to indoles 
41. The presence of a nucleophile in the reaction media gave place mainly to systems 42, and for  
R1 = CHR2R3, a more facile protodeauration and dehydratation step delivered systems 43 (Scheme 14). 

Scheme 14. Indole synthesis from gold-catalyzed cycloisomerization of 2-tosylamino-
phenylprop-1-yn-3-ols. 
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Reaction conditions: (i) AuCl (5 mol%), AgOTf (5 mol%), HMPA (20 mol%), CaSO4  
(175 mg/mmol 38), toluene, reflux, 2 h; (ii) AuCl (5 mol%), AgOTf (5 mol%), HMPA (20 mol%), 
CaSO4 (175 mg/mmol 38), NuH (8 equiv.), toluene, reflux, 2 h. 
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Another example of gold-based C−N cyclization on alkynol systems for the total synthesis of  
(+)-andrachcinidine (44) has been established [92]. This natural alkaloid receives its name from its 
natural source, the beetle Andrachne aspera, and it has been shown to be an interesting chemical 
defense agent [93]. The proposed reaction sequence started with commercial ketal 45, which yielded 
after six steps the nitrogen-containing alkynol 46. Gold-catalyzed cyclization of 46 provided the 
piperidine system 47 as a single diastereomer in 89% isolated yield. The reaction mechanism is 
proposed to follow a first gold-based alkyne hydration providing ketone 48. Methoxy group cleavage 
would then generate the corresponding α,β-unsaturated system, which could undergo nucleophile 
addition building the expected 6-membered heterocycle (Scheme 15). It is noteworthy that no 
competition between nitrogen and oxygen attack was found, which would led to the less favoured  
8-membered heterocycle. 

Scheme 15. Synthesis of (+)-andrachcinidine. 
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Reaction conditions: (i) Ph3PAuCl (5 mol%), AgSbF6 (10 mol%), toluene, H2O, 40 °C, 24 h. 

3.2. Cycloisomerization on Alkynediol-Based Systems 

Ketals are important key structures, and crucial targets in organic synthesis [94-98]. Fused, bicyclic 
and spiroketals are recurring motifs in natural compounds, and their preparation is a key step in many 
total syntheses. In particular, spiroketals represent a structural feature of many biomedically relevant 
natural and non-natural systems [99-102]. Several methods have been developed for the synthesis of 



Molecules 2011, 16              
 

 

7830

spiroketals, the most common being perhaps the cyclocondensation of ketone diols [103,104]. 
Nevertheless, gold catalyzed cycloisomerization on alkynediols has emerged as an efficient strategy to 
build complex ketal systems in just one step, offering specific advantages. For example, Au-catalyzed 
cycloisomerization of alkynediols are more exotermic, atom economical, and more compatible than 
ketones under a number of several reaction conditions. Thus, many groups have recently incorporated 
the present methodology for the synthesis of several natural compounds and derivatives [105-108]. 

Li et al. have described the preparation of the bisbenzannelated spiroketal core of rubromycins [109]. 
These natural occurring structures exhibit different biological activities, such as inhibition of DNA 
polymerase, inhibition of the reverse transcriptase of HIV I, or inhibition of DNA helicase [110-113]. 
Scheme 16 shows the basic structure motif shared by natural isolated compounds like γ-rubromycin, 
purpuromycin, or heliquinomycin. According to the described work, easily prepared alkynediols 49 
underwent cycloisomerization in the presence of gold catalysis to yield spiroketals 50 with moderate 
yields, but mainly together with notable amounts of the corresponding benzofuran 51. 

Scheme 16. Synthesis of spiroketal motif of rubromycins. 
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Reaction conditions: (i) Ph3PAuCl (10 mol%), AgOTf (10 mol%), DCM, rt, 4–7 h. 

A more effective spiroketalization process was found for the synthesis of cephalosporolides. 
Concretely, cephalosporolide H 52 is a natural spiroketal isolated from the culture broth of the marine 
fungus Penicillium sp. This compound presents anti-inflammatory properties by virtue of its inhibitory 
activity against 3α-hydroxysteroid dehydrogenase [114,115]. Dudley et al. developed a method for 
cephalosporolide total synthesis based on gold-catalyzed spiroketal generation [116,117]. Starting 
from pantolactone 53, alkynediol-based system 54 was obtained after a nine step sequence. Gold 
treatment of 54 yielded the desired structure 55, with an excellent 88% yield. The main inconvenient 
of the proposed strategy lied on the obtention of 55 as a 1:1 mixture of spiroketal epimers, although 
further treatment upon zinc chloride chelation provided the expected isomer in 20:1 dr (Scheme 17). 
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Scheme 17. Cephalosporolide H; structure and proposed synthesis. 
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Reaction conditions: (i) AuCl (40 mol%), MeOH, rt, 12 h; (ii) ZnCl2 (5 equiv.), MgO (25 equiv.), 
DCM, rt, 8 h; (iii) TEMPO (1 equiv), PhI(OAc)2 (4.5 equiv.), DCM, rt, 15 h. 

Azaspiracid 56 belongs to a family of marine toxins, responsible for human poisoning and diverse 
chronic effects on liver, pancreas and thymus [118,119]. Its complete structure has been widely  
studied [120], and several methods for its synthesis have been reported [121,122]. Forsyth et al. have 
reported the synthesis of the F−I azaspiracid fragment 57 [123]. In particular, we would like to focus 
on the construction of F and G rings by a one step gold-catalyzed spiroketalization. Alkynediol-based 
system 58 was obtained by coupling of subunits 59 and 60, prepared from simple precursors. Treatment 
of 58 with AuCl provided the desired structure 57 with a high 75% yield as a sole isomer. The reaction 
mechanism is proposed to follow an initial syn addition of the C6 hydroxy group and the π-activated 
gold-alkyne complex to build ring F. Protodeauration and protonation of the resultant enol ether at C11 
would promote the attack of methoxy oxygen to C10, generating therefore ring G (Scheme 18). 

Okadaic acid 61 is a complex natural structure isolated from marine sponges [124,125]. Its 
biological activities [126-128], together with its attractive chemical structure have attracted much 
interest among organic chemists. In particular, the presence of several spiroketal motifs in this 
structure makes it a real challenge from the retrosynthetical point of view. An efficient synthesis of 
the C15-C38 fragment has been reported, based on the high activity and selectivity of AuCl for the 
synthesis of spiroketals 62 and 63, starting from alkynediols 64 and 66 respectively [129] (Scheme 19). 

Bridged-bicyclic ketals have been also produced through gold-catalyzed cycloisomerization of 
alkynediols. Based on platensimycin structure, a natural inhibitor of microbial fatty acid  
biosynthesis [130-132], Corey et al. reported the total synthesis of the near-structural mimic 68 [133]. 
This new structure presents evidence in the literature suggesting excellent antimicrobial  
properties [134,135]. Thus, easily achieved alkynediol 69 reacted under gold(III) catalysis delivering 
ketone 70, which contains the tricyclic core of 68, with an excellent 85% yield and >98% ee  
(Scheme 20). The route to the desired target is completed in just nine steps, providing a facile and 
quick methodology to the mentioned bioactive structure. 
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Scheme 18. Synthesis of rings F and G in azaspiracid and reaction mechanism. 
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Reaction conditions: (i) CuI, Cs2CO3, DMF; (ii) AuCl (10 mol%), PPTS (10 mol%), MeOH, rt, 20 min. 
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Scheme 19. Synthesis of C15-C27 and C28-C38 fragments of okadaic acid. 
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Reaction conditions: (i) AuCl (19 mol%), rt, DCM, then TsOH·H2O, MeOH; (ii) AuCl (10 mol%), 
4 Å MS, THF, 0 °C. 
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Scheme 20. Synthesis of platensimycin-derived structure. 
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Reaction conditions: (i) AuCl3 (5 mol%), MeOH, rt, 1 h. 

4. Conclusions 

In this overview we have collected the most recent advances in gold-catalyzed 
cycloisomerization of alkynol and alkynediol-based systems for the preparation of natural products 
and derivatives. This type of process has become an established methodology for accessing a large 
number of both carbocyclic and heterocyclic structures, containing different sized skeletons. Three 
to seven-membered carbon rings, such as furan, pyrans, piperidines, and different ketal and 
spiroketal systems are therefore accessible through this strategy. The reactions discussed herein 
demonstrate the high synthetic potential of alkynol-based compounds undergoing gold catalyzed 
cyclization. On the other hand, the efficiency of gold salts and gold complexes have been also 
documented, allowing mild reaction conditions and great functional group compatibility, specially 
compared to related thermal or basic rearrangements. In addition, the extremely large number of 
natural bioactive compounds containing these type of structural motifs, readily available through 
gold-catalyzed conditions, will certainly provide a renewed and continuous topic of investigation 
in this field. 
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