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Abstract
Thalassemia (thal) is an autosomal recessive, hereditary, chronic hemolytic
anemia due to a partial or complete deficiency in the synthesis of α-globin
chains (α-thal) or β-globin chains (β-thal) that compose the major adult
hemoglobin (α β  It is caused by one or more mutations in the corresponding
genes. The unpaired globin chains are unstable; they precipitate intracellularly,
resulting in hemolysis, premature destruction of red blood cell [RBC] precursors
in the bone marrow, and a short life-span of mature RBCs in the circulation. The
state of anemia is treated by frequent RBC transfusions. This therapy results in
the accumulation of iron (iron overload), a condition that is exacerbated by the
breakdown products of hemoglobin (heme and iron) and the increased iron
uptake for the chronic accelerated, but ineffective, RBC production. Iron
catalyzes the generation of reactive oxygen species, which in excess are toxic,
causing damage to vital organs such as the heart and liver and the endocrine
system.
Herein, we review recent findings regarding the pathophysiology underlying the
major symptoms of β-thal and potential therapeutic modalities for the
amelioration of its complications, as well as new modalities that may provide a
cure for the disease.
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Introduction
Thalassemia (thal) is an autosomal recessive hereditary chronic 
hemolytic anemia due to a partial or complete deficiency in the 
synthesis of α-globin chains (α-thal) or β-globin chains (β-thal) 
which compose the major adult hemoglobin (HbA), a tetramer of 
α

2
β

2
. It is caused by one or more of several hundred mutations in 

the corresponding genes. The unpaired globin chains are unstable; 
they precipitate intracellularly, resulting in hemolysis, premature 
destruction (by apoptosis) of red blood cell (RBC) precursors in 
the bone marrow, and a short life-span of mature RBCs in the cir-
culation. The breakdown products of Hb, heme and iron, catalyze  
chemical reactions that generate free radicals, including reactive 
oxygen species (ROS), which in excess are toxic, causing damage  
to vital organs such as the heart and liver and the endocrine  
system1.

Thalassemia is the most common monogenic inherited disease 
worldwide. Historically, it originated and spread around the Medi-
terranean, the Middle East, and Southeast Asia, coincidental with 
the occurrence of malaria (carriers of the thal genes are consid-
ered to be resistant to the malaria parasite)2. Today, because of 
vast migration, thal patients are present around the globe3 and their 
incidence increases steadily.

Beta-thal is classified into three main subgroups based on their 
clinical expression: major, intermedia, and minor. β-thal major 
presents itself within the first 2 years of life with severe anemia, 
poor growth, and skeletal abnormalities and requires regular,  
lifelong blood transfusions. β-thal intermedia requires only periodic 
blood transfusions, while β-thal minor does not require a specific 
treatment. Alpha-thal presents with moderate anemia when there is 
a significant lack of synthesis of α-globin chains (HbH disease).

There are several combinations of β-thal with other diseases  
associated with abnormal β-globin, such as HbE and HbS (sickle 
cell disease) that can be expressed clinically with severe anemia. 
A combination of β-thal with α-thal results in a milder disease,  
most likely owing to the less severe α:β imbalance4.

Thanks to the significant improvement in therapy, patients with 
β-thal may reach an advanced age. This is associated with clinical 
symptoms that are the consequence of the disease itself and the 
treatment modalities.

Herein, we review recent findings regarding the pathophysiology 
underlying the major symptoms of β-thal and potential therapeutic 
modalities for the amelioration of its complications, as well as new 
modalities that may provide a cure for the disease.

Chronic anemia – RBC transfusions
The basic clinical symptom of β-thal is chronic anemia—reduced 
number of RBCs and their Hb content, resulting from deficiency in 
Hb production and hemolysis. Chronic anemia is treated by RBC 
transfusion—in severe cases, every 2 weeks—which affects the 
patient’s quality of life, may cause recurrent infections and immune 
reactions, and—above all—iron overload (IO). Iron deposition in 
vital organs, through the generation of ROS, is a major cause of 
morbidity and mortality, especially among elderly patients5.

Potential developments in the field of transfusion (beyond the 
scope of this review) include, among others, conditions of storage6, 
ex vivo production of stem cell-derived RBCs7, and transfusion of 
cell-free Hb8.

Iron overload
The iron status reflects the balance among dietary iron uptake, 
its storage and mobilization, and its utilization. Iron overload is a  
common and serious problem in thal9, as well as in other hereditary 
and acquired hemolytic anemias10. The main causes of IO in thal 
are Hb instability, RBC transfusions, and increased iron absorption 
from the gastrointestinal tract.

Normally, 1–2 mg of iron is absorbed from the diet per day, with 
an equivalent amount lost by the turnover of gastrointestinal  
tract epithelial cells. The body has no mechanism for disposing  
of excess iron11; therefore, in thal and other transfusion- 
dependent anemias, IO may accumulate in a relatively short time  
(transfusional IO). An RBC transfusion requirement of two 
units (200–250 mg of iron per unit) per month will result in over  
20 g of excess body iron in 4 years12.

Most of the iron in the body is bound to other molecules. In the 
plasma, it is bound to transferrin13. When the transferrin iron-
binding capacity is saturated (>80%), non-transferrin-bound iron 
(NTBI) forms appear14. Most of the iron gets into cells through their 
surface transferrin receptor (TfR1)15, but a small fraction is taken 
up by non-transferrin pathways16. In erythroid cells, the incoming 
iron is mainly incorporated into heme to form the Hb molecule or 
is stored in ferritin17. A small fraction remains free or loosely bound 
to other compounds as the labile iron pool (LIP)18. The LIP has 
been suggested as a low-molecular-weight intermediate or transi-
tory pool between extracellular iron and intracellular firmly bound 
iron19. The intracellular LIP is redox active, catalyzing the Fenton 
and Haber-Weiss reactions that generate ROS20. Excess ROS are 
cytotoxic through their interaction with cellular components, such 
as DNA, proteins, and lipids, causing damage to vital organs21.

Removal of excess iron
Repeated bleeding (phlebotomy) is used to remove excess iron in 
patients with normal Hb levels, such as in patients with heredi-
tary hemochromatosis, where IO is caused by mutations in the 
iron homeostasis system22. Patients after hematopoietic stem cell 
(HSC) transplantation (HSCT) who had IO prior to transplantation  
due to multiple transfusions may also benefit from this treatment23.

Most other IO patients are anemic (Hb <10 g/dL) and, therefore, 
particularly those who are transfusion dependent, will require iron 
chelation therapy in order to normalize their iron level (a trans-
ferrin saturation of <50% and serum ferritin <500 ng/mL). Iron 
chelators remove excess iron from the plasma and the cells by  
binding the labile, chelatable iron, thus facilitating its excretion 
through the urine and feces.

Three iron chelators are currently in clinical use. Deferoxam-
ine, the first to be used clinically, is given by a slow, continuous,  
subcutaneous, overnight infusion through a portable pump. While 
its side effects are minimal, its mode of administration results in 
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low compliance24. Deferasirox, the first effective oral chelator, 
is given at 20–30 mg/kg once/day. Adverse effects (occurring in 
approximately 10% of patients) include nausea, abdominal pain, 
diarrhea, and rash as well as liver and kidney dysfunction. A new 
formulation of film-coated tablets provides better patient compli-
ance, since it can be swallowed with a light meal without the need 
to disperse the tablet into a suspension prior to consumption25. 
Deferiprone is an oral iron chelator effective in removing excess 
iron from the organs and mainly from the heart. The main potential 
complication is neutropenia that may rarely be followed by agranulo-
cytosis. A liquid formulation has been recently introduced26.

The efficacy of chelation may be improved by the use of a combi-
nation of chelators. Thus, deferiprone may mobilize iron from tis-
sues into the circulation, where deferoxamine binds and facilitates 
its excretion in the urine (the “shuttle mechanism”)27.

An additional potential approach to reduce iron load, especially 
NTBI, is the administration of exogenous iron-free (apo)transferrin 
through the down regulation of TfR128.

In addition to free iron, some iron-containing compounds that are 
elevated in the plasma of thal patients due to hemolysis, such as 
free hemin and Hb, are of considerable toxicity. These compounds 
are neutralized by their scavengers, hemopexin and haptoglobin, 
respectively. In thal, these proteins are reduced, leaving free, 
un-neutralized hemin and Hb. The administration of hemopexin/
haptoglobin may be suggested to reduce iron toxicity29.

Modulation of iron absorption
Iron homeostasis is tightly regulated, mainly by hepcidin, a  
25-amino-acid peptide which inhibits iron absorption and distri-
bution. It binds to ferroportin, a surface iron exporter on absorp-
tive enterocytes, macrophages, hepatocytes, and placenta cells. 
This binding induces ferroportin to be internalized and degraded, 
decreasing, consequently, the export of iron from these cells30.

The level of hepcidin depends mainly on its rate of produc-
tion in the liver, which is modulated mainly by the iron status  
and requirement. Iron loading increases hepcidin production,  
resulting in reduced intestinal iron absorption while iron deficiency 
has an opposite effect30.

In β-thal, in spite of IO, hepcidin production is generally low, and 
consequently iron absorption is high31. The reason for this anomaly 
is the inhibition of hepcidin gene expression caused by two fac-
tors. (A) High iron demand by the chronic stress erythropoiesis 
(see below)32. Soluble factors such as the growth differentia-
tion factor (GDF)-1533, twisted gastrulation protein homolog 134, 
soluble transferrin receptor35, and erythroferrone36, which are 
overproduced by the proliferating erythroid precursors, inhibit 
hepcidin expression. (B) Oxidative stress (see below) due to 
the inactivation of transcription factors, including CCAAT/ 
enhancer-binding protein a (C/EBPa) and signal transducer 
and activator of transcription 3 (STAT3)37, histone deacetylase  
activation38, and hypoxia-inducible factors39. The decrease in 

hepcidin production is, however, balanced by other conditions 
prevalent in β-thal,  including blood transfusions and inflam-
mation that increase hepcidin production. In the latter case,  
pro-inflammatory cytokines, such as interleukins 6 and 1, turn on 
the hepcidin gene promoter by activating the STAT3 pathway40.

Administration of hepcidin or stimulating its expression could 
improve IO by decreasing iron absorption. This was demon-
strated in murine models of β-thal intermedia by (A) minihep-
cidins, small peptides that mimic hepcidin activity and act as 
agonists41, (B) inhibition of negative regulators of matriptase-2  
(TMPRSS6), a key regulator of hepcidin production, with  
silencing RNAs or antisense oligonucleotides42, (C) exogenous 
transferrin through  downregulation of TfR128, and (D) inhibition 
of erythroferrone43.

Dyserythropoiesis
The chronic anemia and its associated hypoxia in thal stimulate 
increased production of RBCs (chronic stress erythropoiesis). 
This is mediated by overproduction of erythropoietin (EPO), 
the main erythropoietic stimulating hormone, and other factors, 
such as members of the transforming growth factor (TGF)-β and 
activin receptor-II (ActR-II) trap ligands44. Binding of EPO to its 
surface receptor on erythroid precursors activates transduction  
pathways, including Jak2/Stat5, which inhibit apoptosis and induce 
proliferation and differentiation of the developing cells. However, 
this attempt is futile (“ineffective erythropoiesis”) due to oxidative 
stress-increased apoptosis and abortive differentiation.

Several therapeutic modalities aimed at reducing the dysery- 
thropoiesis in thal are currently under study and described below.

Activin receptor-II trap ligands
Luspatercept and Sotatercept, compounds that bind to trap lig-
ands and GDF-11, developed in animal models, are currently in 
clinical trials44. They prevent activins binding to ActR-II and the 
activation of the Smad 4-dependent signaling pathway, improving 
erythroid maturation and RBC production. A phase 3, multicenter, 
multinational study with luspatercept is ongoing in β-thal and  
HbE/β-thal subjects, with encouraging preliminary results45.

JAK2 inhibitors
The EPO signaling of erythropoiesis involves Jak2 phosphoryla-
tion. Beta-thal mice have elevated EPO levels associated with 
increased Jak2 phosphorylation, resulting in ineffective eryth-
ropoiesis and extramedullary hematopoiesis46. Jak2 inhibitors 
effectively reduce splenomegaly in such mice. Several Jak2 inhibi-
tors have been developed with beneficial results in patients with 
myelofibrosis and Jak2-related polycythemia vera47. Jak2 inhibi-
tors could be also beneficial for non-transfusion-dependent thal 
patients with splenomegaly48.

Induction of the Hsp70 chaperone machinery
The heat shock protein 70 (Hsp70) is a molecular chaperone 
needed for normal termination of erythropoiesis49. It is predominant 
in the late erythroid precursors when it is translocated to the nucleus 
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and protects the globin transcription factor-1 (GATA-1), the 
principal transcriptional factor for erythropoiesis, from caspase-3 
cleavage50. In β-thal major, HSP70 is sequestrated in the cytoplasm, 
leaving GATA-1 unprotected from cleavage, resulting in end-stage 
maturation arrest and apoptosis51. Exportins, such as XPO1, are 
factors that control the nucleocytoplasmic trafficking of proteins 
and RNAs. The XPO1 inhibitors leptomycin B and KPT 251, 
recently tested in erythroid progenitors from β-thal major patients, 
demonstrated induction of HSP70 nuclear localization, GATA-1 
expression, and improved terminal erythroid differentiation52.

Reducing α-globin synthesis
The key pathophysiological mechanism leading to the ineffec-
tive erythropoiesis in β-thal is the continuous production and 
accumulation of free excess α-globin in the erythroid precursors. 
Indeed, reduction in α-globin chain output through co-inheritance  
of α-thal ameliorates the disease phenotype in patients with  
β-thal53. The challenge here is selective silencing of the α-globin  
expression to an appropriate degree to be useful for patients with 
β-thal54. Plausible approaches include post-transcriptional silenc-
ing through RNA interference (RNAi) using small interfering 
RNAs, short hairpin RNA, epigenetic drug targeting to alter the  
chromatin environment of the α-globin genes, and genome  
editing to disrupt the expression of the α-globin genes55.

Oxidative stress
Although oxidative stress is not the primary etiology of thal, it plays 
a major role in its pathophysiology. The oxidative status of cells is 
regulated by the equilibrium between oxidants, such as the reac-
tive oxygen species (ROS) that are produced mainly as byproducts 
of cellular respiration, and anti-oxidants, such as reduced glutath-
ione. A balanced oxidative state is crucial for normal physiology. 
ROS serve as regulators in many processes, including proliferation 
and differentiation of the erythroid precursors. When this balance 
fails, such as in many pathological processes, oxidative stress 
ensues. The excess ROS bind to cell components such as the DNA, 
proteins, and membrane lipids, leading to cytotoxicity21. In β-thal, 
oxidative stress is mainly the consequence of the unstable Hbs 
(hemichromes) and IO and it mediates many of its symptoms due 
to oxidative damage to RBCs (anemia), platelets, (hypercoagula-
ble state) and leukocytes (recurrent infections) as well as cells in  
various vital organs (heart and liver) and the endocrine glands21.

Oxidative stress may be ameliorated by endogenous and exogenous 
antioxidants. Their effects include scavenging and inactivating 
ROS and correcting their damage to cellular components. Many 
antioxidants are supplied by nutrition. A “Mediterranean diet” and 
moderate wine consumption are thought to have a protective effect 
(“the French Paradox”) due to their high content of antioxidants56,57.  
Antioxidants can also be taken as food additives, either as pure 
compounds, such as vitamins C and E and Q10, or as crude 
extracts, such as the fermented papaya preparation and curcumin9. 
Using such additives succeeded in ameliorating various parameters  
of oxidative stress in thal, but a clear clinical benefit, such as 

reducing transfusion dependence, was less successful. Effective  
outcome may require a combination of drugs, especially those 
affecting both the oxidative stress and the IO.

A newly discovered therapeutic target is the interaction between 
the oxidative state and the processes of erythroid cell proliferation 
and differentiation, which, as mentioned above, is defective (dys-
erythropoiesis) in β-thal. Several agents have been tested recently, 
especially in murine models of β-thal intermedia (β-thal mice). 
Although promising, the findings of these studies need careful 
interpretation, given the difference in globin gene composition and 
erythroid differentiation between human and mouse58.

The transcription factor forkhead box O3 (Foxo3) is a key player 
in the development of erythroid precursors. At early stages, it is 
phosphorylated by proteins of the EPOR-PI3K/AKT/mTOR path-
way, translocated out of the nucleus, and remains inactivated. At 
late stages, it is relocated into the nucleus, gets activated, and 
induces the production of antioxidants that neutralize ROS to  
allow efficient erythropoiesis59,60.

In β-thal mice, Foxo3 is downregulated in late erythroid precur-
sors owing to hyper-activation of the EPOR-PI3K/AKT/mTOR 
pathway, which leads to oxidative damage and ineffective 
erythropoiesis61.

Rapamycin, an mTOR inhibitor, has been shown in β-thal mice to 
improve erythroid cell maturation, β-globin production, and anemia 
through Foxo3 activation61. In another study, rapamycin increased 
γ-globin expression and HbF production in cultured erythroid pre-
cursors from β-thal intermedia patients62. Another Foxo3-activating  
agent is resveratrol (3,5,4’-trihydroxy-trans-stilbene), a non- 
flavonoid polyphenol that upregulates antioxidants. The use of  
resveratrol in β-thal mice has been shown to increase RBC  
survival and Hb levels and reduce reticulocyte count63. In contrast, 
a study in double mutant Foxo3–/–/Th3/1 mice showed that a loss  
of Foxo3 leads to improved early erythropoiesis64.

Consequently, further laboratory and clinical investigations are 
required in this field.

The eukaryotic initiation factor 2 (eIF2) is a factor required for 
the initiation of translation through the binding of tRNA to the 
ribosomes. In the erythroid precursors, its activity is regulated by 
a mechanism involving phosphorylation at its α-subunit by heme-
regulated eIF2a kinase (HRI). Stress (such as heme deficiency 
and oxidative stress)65 during the late stage of erythroid differen-
tiation activates HRI that coordinates the syntheses of heme and 
globin. Furthermore, the phosphorylated α-subunit of eIF2 has 
been demonstrated to turn on the activating transcription factor 4 
(ATF4) to diminish oxidative stress in erythroid precursors66,67.

This kinase has been found to be decreased in β-thal mice,  
leading to embryonic lethality68. Salubrinal, a selective inhibitor 
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of eIF2aP dephosphorylation, has been found to augment the HRI 
signaling pathway and to reduce the production of hemichromes in 
β-thal erythroid precursors67. It has also been shown to increase 
HbF production with a concomitant decrease of HbA in differen-
tiating human CD34 cells by a post-transcriptional mechanism69. 
These findings provide the basis for manipulating the HRI-eIF2aP 
signaling pathway for the treatment of β-thal.

Peroxiredoxin-2 (Prx2) is an essential antioxidant protein that 
scavenges and inactivates ROS throughout erythropoiesis. It has 
been found to be upregulated during both murine and human 
β-thal70. Knockout of Prx2 in β-thal mice worsened their phe-
notype, while administration of fused recombinant PEP1Prx2 
ameliorated their symptoms, with activation of the Erk signaling 
pathway towards Tfr2 and the Sma and Mad (SMAD) system71.

Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the deg-
radation of heme in response to stress, such as oxidative stress or 
hypoxia, both of which occur in β-thal72. Its expression has been 
found to be augmented in EPO-dependent fetal liver erythropoi-
etic cells from β-thal mice. Administration of tin protoporphyrin 
IX, an HO-1 inhibitor, improved ineffective erythropoiesis and 
Hb levels, and decreased spleen size and liver iron73.

Stimulation of HbF production
During prenatal life in humans, the major Hb is fetal Hb (HbF), a 
tetramer of α- and γ-globin (α

2
γ

2
) which is replaced during the first 

year of life by HbA (α
2
β

2
) (Hb switching). Thus, the clinical fea-

tures of β-hemoglobinopathies, including β-thal, are not apparent 
at birth; only as HbF levels wane are the symptoms manifested74. 
Patients with β-thal produce high but variable levels of HbF com-
pared to normal individuals. High levels of HbF ameliorate the 
severity of the disease, mainly by reducing the surplus of α-globin 
chains.

These findings have motivated the research of the mechanisms of 
Hb switching as well as for pharmacological and gene modification 
modalities to reactivate the expression of the γ-globin genes and 
production of HbF75.

Pharmacological approach
Various compounds have been tested in vitro and in animal models  
for their capacity to reactivate the γ-globin genes76. Currently, the 
only compound in clinical use is hydroxyurea, an S-phase cell 
cycle inhibitor. However, its mechanism of action on HbF remains 
elusive, a subset of patients are resistant, its effect in β-thal is 
inferior compared to that of sickle cell disease, and being 
myelosuppressive necessitates careful monitoring of patients77.

New agents include those that affect chromatin regulators (such  
as decitabine on DNA methylation and histone deacetylase  
inhibitors) and others that affect DNA-binding transcription  
factors.

Gene modification approach
The patient’s HSCs are subjected to gene editing ex vivo and then 
returned to the patient for reconstitution78,79.

Increased production of γ-globin has been accomplished using 
lentiviral vectors that express a zinc finger protein which interacts 
with the promoter of the γ-globin gene80 or by carrying microRNAs  
that silence its repressors81,82.

Two potent transcriptional repressors of γ-globin, BCL11A and 
ZBTB7A, have been identified. They act with additional trans- 
acting epigenetic repressive complexes, lineage-defining factors, 
and developmental programs to silence the γ-globin genes by  
working on cis-acting sequences at the globin gene loci. Inhibition 
of these repressors could reactivate γ-globin production in adult 
patients.

Most of the studies targeted BCL11A. Its inhibiting antisense 
oligonucleotides were administered in an erythroleukemia series 
expressing BCL11A and Krüppel-like factor 1 (KLF1)83,84. KLF1 
activates the expression of the β-globin gene and it plays a role in 
the transcriptional silencing of the γ-globin gene, possibly through 
BCL11A85,86.

Genome editing of the promoter of BCL11A can be accomplished  
by several nucleases, such as engineered zinc finger nucleases  
(ZFNs), transcription activator-like effector nucleases (TALENs),  
and clustered regularly interspaced short palindromic repeats 
linked to Cas9 nucleases (CRISPR-Cas9)87. It has been 
shown recently that ZFN-driven BCL11A enhancer ablation  
leads to increased production of HbF in erythroid precursors 
derived from β-thal HSCs, which could be used for autolo-
gous transplantation88. A similar effect has been achieved with  
CRISPR-Cas9-mediated BCL11A enhancer inactivation in a human 
adult-stage erythroid cell line89.

BCL11A has important roles in physiology; therefore, reducing  
its expression in vivo requires novel vectors that can restrict its 
effect to the erythroid lineage82. Dissection of the erythroid-specific  
enhancer down to a small region in the gene offers such  
possibility90. The same applies to other factors, like KLF1 and 
MYB, which are involved in HbF production.

One could also consider de-repressing γ-globin expression by  
forcing interaction of the β-locus control region with the γ-gene 
using a synthetic DNA-binding protein91,92.

Gene therapy
Gene therapy involves in vivo genetic manipulation of the 
autologous HSCs, which are then transplanted to the patient for 
reconstitution78,79. This approach has focused on two areas. (A) 
Increasing the production of γ-globin by the addition of its gene, 
overexpression of its endogenous activating transcription factors, 
and silencing of its repressors, as discussed above. (B) Increasing the  
production of β-globin by the addition of a normal gene or correction 
of the mutated gene. Studies of gene therapy have utilized mainly 
lentivirus vectors in experimental systems, including cultured  
CD34 HSCs from β-thal patients and β-thal mouse models. Yet the 
safety profile of such technologies is still uncertain.

From the current gene-modifying approaches, only β-globin 
addition has been tried in β-thal patients. Transfusion-dependent 
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βE/β0 patients have been transplanted with autologous CD34 pro-
genitor cells transduced ex vivo with lentiviral β-globin vectors. 
To date, there are a total of seven patients who have been treated 
with encouraging results in terms of engraftment and transfusion  
independence; long-term follow up will clarify the possible  
insertional mutagenesis issues93,94.

Phase 1 clinical trials have been initiated in order to assess these 
issues. Early phase, open label clinical trials of LentiGlobin BB305 
will assess its efficacy and safety in patients with β-thal major or 
sickle cell disease. Safety and tolerability of autologous CD34 
HSCs transduced with TNS9.3.55 or GLOBE lentiviral vectors are 
also being assessed in ongoing trials. Preliminary data from the  
latter trial have been recently presented regarding three patients 
with β-thal major. All patients showed a satisfactory engraftment, 
with mild and reversible adverse events95.

Genomic editing has been demonstrated to modify the β-globin 
gene. Thus, TALEN-mediated gene correction has been used in 
induced HSCs from β-thal patients96.

Allogeneic hematopoietic stem cell transplantation
Allogeneic HSCT (allo-HSCT) is currently the only definitive cure 
for transfusion-dependent young patients before the development 
of IO-related tissue damage97. β-thal major patients with good 
risk features have a >90% chance of a successful outcome98,99, but 
allo-HSCT in high-risk patients is challenging because of graft 
rejection and transplant-related mortality14. Novel modified or 
reduced-intensity conditioning regimens are being evaluated in an 
attempt to improve the outcome in such patients with favorable 
results100–102.

Traditionally, fully matched human leukocyte antigen (HLA)-
identical siblings have been used as donors, but matched unrelated 
donors have also been tried in low-risk patients. Bone marrow is the 
preferable source of HSCs, but HSCs from the peripheral blood and 
cord blood are also being tried in low-risk cases.

Prevention
In spite of the advent of therapeutic modalities that alleviate the 
symptoms and may even cure the disease, the incidence of affected 
newborns is expected to increase. Most of the new cases are in 
underdeveloped countries where the standard of medical care is 
low and in communities where consanguinity is high. Therefore, 
the prevention of the homozygous state presents an important 
endeavor. Comprehensively preventive programs involve carrier 
detections, molecular diagnostics, genetic counseling, and prenatal 
diagnosis. Currently, prenatal diagnosis is performed, for couples 
at risk, by obtaining fetal material by chorionic villus sampling 

in the first trimester and by amniocentesis or cordocentesis in the 
second trimester. An additional procedure for obtaining fetal 
material is aspiration of celomic fluid (celocentesis) followed by 
selection of embryo-fetal erythroid precursors by an anti-CD71 
MicroBeads method or by direct micromanipulator pickup of the 
cells selected on the basis of their morphology103. Molecular analy-
sis, aimed at the detection of mutations in the globin genes, is then 
performed104.

Recently, the possibility of safer and cheaper prenatal diagnosis 
procedures emerged. Fetal-derived genetic material (cells or cell-
free DNA) is obtained from the maternal blood and tested. These 
non-invasive procedures that present no risk to the fetus and reduce 
cost (no special procedures and staff are required for sampling) may 
allow future screening for thal as well as other genetic diseases105.

Indeed, non-invasive prenatal testing using maternal plasma cell-
free DNA has already been applied for screening for common chro-
mosomal aneuploidies. Progress has also been made in screening  
for monogenic diseases, using thal as a model disease. One approach 
focuses on the detection or exclusion of paternally inherited fetal 
mutations that are absent from the mother’s genome. Testing mater-
nally inherited mutations requires highly sensitive DNA quantifica-
tion. The relative mutation/haplotype dosage approach might detect 
fetal mutations even when the parents share the same mutation.

Another approach is pre-implantation genetic diagnosis of cells 
(usually single cells) that had been biopsied from oocytes/zygotes 
or embryos generated by in vitro fertilization. With respect to 
thal, this technique aims at giving birth to an unaffected newborn, 
and, when relevant, for cord blood cells compatible with an exist-
ing affected sibling to support HSCT. Pre-implantation diagnosis 
precludes the need for abortion106.

Conclusion
Beta-thalassemia is caused by mutations in the β-globin gene, 
resulting in partial or complete deficiency of its product. This defi-
ciency and the accompanying excess of the unmatched α-globin 
chains result in oxidative stress, dyserythropoiesis, and chronic 
anemia. The main therapeutic modality is blood transfusion that 
improves the anemia but exacerbates IO. To date, the only cura-
tive measure is allo-HSCT. New modalities, aimed at various  
targets, are being developed. These include the means to stimulate 
the synthesis of γ-globin and reduce the synthesis of α-globin, as 
well as the iron excess, oxidative stress, and dyserythropoiesis. 
Attempts to increase β-globin synthesis focus on gene manipulation.  
However, the most likely approach to reduce the patients’ load 
is efficient prevention: carrier detection, prenatal diagnosis, and 
genetic counseling (Figure 1).
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