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Machine learning‑based prediction 
of survival prognosis in esophageal 
squamous cell carcinoma
Kaijiong Zhang 1,4, Bo Ye 1,4, Lichun Wu 1, Sujiao Ni 1, Yang Li 3, Qifeng Wang 2*, 
Peng Zhang 3* & Dongsheng Wang 1*

The current prognostic tools for esophageal squamous cell carcinoma (ESCC) lack the necessary 
accuracy to facilitate individualized patient management strategies. To address this issue, this study 
was conducted to develop a machine learning (ML) prediction model for ESCC patients’ survival 
management. Six ML approaches, including Rpart, Elastic Net, GBM, Random Forest, GLMboost, and 
the machine learning-extended CoxPH method, were employed to develop risk prediction models. 
The model was trained on a dataset of 1954 ESCC patients with 27 clinical features and validated on 
a dataset of 487 ESCC patients. The discriminative performance of the models was assessed using the 
concordance index (C-index). The best performing model was used for risk stratification and clinical 
evaluation. The study found that N stage, T stage, surgical margin, tumor grade, tumor length, sex, 
MPV, AST, FIB, and Mg are the important feature for ESCC patients’ survival. The machine learning-
extended CoxPH model, Elastic Net, and Random Forest had similar performance in predicting the 
mortality risk of ESCC patients, and outperformed GBM, GLMboost, and Rpart. The risk scores derived 
from the CoxPH model effectively stratified ESCC patients into low-, intermediate-, and high-risk 
groups with distinctly different 3-year overall survival (OS) probabilities of 80.8%, 58.2%, and 29.5%, 
respectively. This risk stratification was also observed in the validation cohort. Furthermore, the risk 
model demonstrated greater discriminative ability and net benefit than the AJCC8th stage, suggesting 
its potential as a prognostic tool for predicting survival events and guiding clinical decision-making. 
The classical algorithm of the CoxPH method was also found to be sufficiently good for interpretive 
studies.

Esophageal cancer (EC) is one of the most lethal malignancies worldwide with an extremely aggressive nature and 
low survival rate. According to global cancer statistics, there were an estimated 572,000 new cases and 509,000 
deaths in 20181. In China, esophageal squamous cell carcinoma (ESCC) is the predominant histological type, 
accounting for approximately 90% of cases. ESCC is characterized by rapid progression and poor prognosis2,3, 
with a 5-year survival rate of only 15.3% in advanced stages4. Despite advances in surgical techniques and the 
incorporation of multimodal therapies in recent years, the prognosis of ESCC remains unsatisfactory5. Certain 
biomarkers for the prediction of ESCC prognosis could play a fundamental role in the clinical management of 
each patient and have important implications regarding the choice of optimal medical therapy for secondary 
prevention6–9. However, effective tools for clinical daily work are currently lacking. Therefore, there is an urgent 
need to identify novel prognostic biomarkers or develop an integrated prediction model for clinical prediction.

Clinical prediction models that integrate clinicopathological parameters, laboratory indexes, and survival 
outcomes using big data from large cohorts of patients have the potential to guide clinical decision-making 
and therapeutic prognoses10–12. Despite significant efforts to explore the prognosis of ESCC, current prognostic 
models remain imperfect13–16. Previous studies have mainly focused on the prognostic evaluation of a small 
number of clinical indicators using univariate and multivariate analysis14–17. Furthermore, most ESCC predic-
tion models have been developed using traditional statistical approaches such as CoxPH regression or logistic 
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regression, without proper evaluation mechanisms to determine the best performing model prior to model 
building13–17. Additionally, the sample sizes and assessed predictors in these studies are often limited, leading to 
poor reproducibility of model performance and insufficient evidence for clinical applications14–17. Therefore, there 
is a need to develop more comprehensive and reproducible prediction models for ESCC that can be effectively 
used in clinical practice.

The emergence of machine learning has presented a potential solution to the issue of poor reproducibility in 
the development of clinical prediction models based on complex clinical information18. Machine learning is an 
interdisciplinary field that combines computer science and computational statistics to improve the efficiency of 
disease prognosis and therapeutic decision-making. Machine learning approaches can overcome some of the 
limitations of current analytical methods by utilizing computer algorithms to handle multi-dimensional vari-
ables, identify non-linear relationships between clinicopathological features and outcomes, and develop accurate 
prediction models more efficiently11,19. Machine learning-based algorithms have been widely applied in medical 
science, particularly in predicting cancer diagnosis and prognosis18. For example, Abuhelwa et al.10 developed 
a machine learning model for survival prediction in urothelial cancer (UC) patients treated with atezolizumab, 
which found that the GBM model outperformed other models such as CoxBoost, random forest, and GLM in 
predicting patients’ survival. D’Ascenzo et al.11 also developed a PRAISE score based on four machine learning 
models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding.

Developing an accurate prediction model is crucial for guiding clinical decision-making, and the key to 
achieving this is to identify the best-performing algorithm. To date, no studies have employed machine learn-
ing algorithms with laboratory indicators to predict prognosis in ESCC patients. Therefore, this study aims to 
develop a prognostic model using six different machine learning approaches, which could potentially be used 
to facilitate individualized patient management strategies.

Methods
Study cohort.  The objective of this study was to investigate consecutive cases of newly diagnosed ESCC 
patients who underwent esophagus surgery at Sichuan Cancer Hospital between January 2009 and December 
2017. The inclusion criteria were as follows: (1) post-histologically confirmed ESCC without distant metastasis, 
(2) non-cervical esophageal cancer, (3) without previous anticancer therapy, and (4) complete clinical, blood 
parameters, and follow-up data. The exclusion criteria were as follows: (1) with a history of other malignancies 
or perioperative mortality, (2) the neck was invaded with cancer, (3) follow-up information was incomplete, and 
(4) follow-up shorter than 6 months.

A total of 2441 ESCC patients were enrolled in the study and randomly divided into two datasets. The train-
ing cohort (80%) was utilized for model development and parameter tuning, while the testing cohort (20%) was 
employed for model validation. All patients included in the study were staged according to the American Joint 
Committee on Cancer (AJCC) 8th edition TNM classification system.

Predictors and outcomes.  Among eligible cases, 27 predictors included patient clinicopathological char-
acteristics, laboratory indicators, and survival outcomes that were prospectively collected from medical records. 
(1) clinicopathological characteristics: age, sex, Karnofsky performance scale (KPS) score, tumor length, tumor 
grade, tumor location, vascular invasion, surgical margin, dissected lymph nodes (LN) number, nerve invasion, 
T stage, N stage, AJCC8th stage, treatment. The primary treatment options include surgical intervention alone, 
followed by adjuvant chemotherapy (CT), radiotherapy (RT), and concurrent chemoradiotherapy (CCRT) 
after surgery. The surgical methods for esophageal cancer include endoscope (thoracoscopy or laparoscopy) 
surgery, and thoracotomy surgery. The synchronous chemotherapy regimens for esophageal cancer typically 
include monotherapy with platinum-based agents, monotherapy with fluorouracil, combination of paclitaxel 
with platinum agents, combination of cisplatin with fluorouracil or capecitabine, combination of paclitaxel with 
fluorouracil or capecitabine, and combination of oxaliplatin with fluorouracil or capecitabine. (2) laboratory 
indicators: hematocrit (HCT), mean platelet volume (MPV), neutrophil-to-lymphocyte ratio (NLR), monocytes 
(MONO), eosinophils (EO), direct bilirubin (DBIL), albumin (ALB), aspartate aminotransferase (AST), alkaline 
phosphatase (ALP), sodium (Na), magnesium (Mg), fibrinogen (FIB), lymphocyte -to- monocytes ratio (LMR). 
The predicted outcome was overall survival (OS), which was defined as the time from the date of surgery to 
death or the last follow-up. The model’s predictive ability was assessed in 1, 3, and 5- years.

Feature selection and importance.  The LASSO regularization and univariable Cox regression analysis 
was used to perform variable filtering. The LASSO regularization could penalize the absolute values of some 
coefficients toward zero, so it will remove the less important features from the model. This method has proven 
to be useful for feature selection in problems with a large number of covariates. Variables with p-values less than 
0.05 in univariable Cox analyses were used for subsequent model development. The ranked importance of each 
feature was calculated by using permutation importance, and the optimal features were extracted after tuning the 
model parameters with 10-fold cross-validation resampling using the sequential backward search method from 
the final model. If permuting the values of a feature reduces the discriminative power of the model, it is consid-
ered important because the model relies heavily on that feature to make predictions. The high-ranked features 
will be considered more relevant and the ones with low rank could be excluded.

Model development and validation.  Six machine learning algorithms including Recursive Partition-
ing and Regression Trees (Rpart), Elastic Net Regularized Generalized Linear Models (Elastic Net), Gradient 
boosted machine (GBM), random survival forest (randomForestSRC), Gradient Boosting with Component wise 
Linear Models (GLMboost), and machine learning techniques extended Cox proportional hazards (CoxPH) 
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were utilized to fit models that predicted survival outcomes. Rpart is a classification, regression and survival 
trees algorithm based on recursive partition, which it generates a tree structure by recursive binary partition of 
the data set, and each leaf node represents a category or a numerical value. In the process of constructing the 
decision tree, Rpart considers several partition variables and points, as well as pruning, so that the generated 
model has better generalization ability and prediction ability20. Elastic-net regularization is a flexible solution 
between Ridge and Lasso, as it combines both L1 and L2 penalties under a parameter called alpha. This method 
provides the strength of both types of regularization, since the lasso optimizes feature selection and interpret-
ability while Ridge allows grouping effect21. GBM is a decision tree based ensemble learning algorithm, which 
improves the prediction ability of the model by iteratively training a series of decision trees. GBM performs well 
on many machines learning tasks, including classification, regression, and survival22. Random Survival Forests is 
a machine learning algorithm used for survival analysis. It is an extension of the Random Forest algorithm and is 
used to predict the survival time of an individual based on a set of predictor variables. It has several advantages 
over other survival analysis methods. They are able to handle high-dimensional data and can capture complex 
non-linear relationships between the predictor variables and the survival outcome. They are also able to handle 
missing data and censoring, which is common in survival analysis23. GLMBoost is a gradient boosting tree 
based regression and classification algorithm that uses the generalized linear model (GLM) as the base model. 
GLMBoost uses a gradient boosting algorithm to progressively improve the predictive power of the underlying 
model while controlling the model complexity through regularization. One advantage of GLMBoost is that it 
can handle a wide range of data types, including categorical and continuous variables. It also has the ability to 
handle missing data, which is a common problem in real-world datasets24. Cox proportional hazards regression 
(CoxPH) is a method used in survival analysis to estimate the effect of a factor on survival time. The CoxPH 
model assumes that the proportional hazard is constant, i.e. the effect of a factor is constant over the entire 
observation period. CoxPH model can be used to analyze the incidence of illness, death, unemployment and 
other events.

Hyperparameter tuning for each model was conducted by using grid search with 5-fold cross-validation in 
the mlr3tuning package. The search space of hyperparameter was created by the paradox package. Each hyper-
parameter range was established and exhaustively adjusted to enhance the predictive performance of the models 
and ensure that they fit the data well. The specific hyperparameters for each model is shown Table S1. For the 
specific meaning of each parameter, please refer to the rpart, gbm, glmnet, randomForestSRC and glmboost pack-
ages. The model performance was evaluated by the learning metrics of the average concordance index(C-index) 
on the training set using grid search with 5-fold cross-validation repeated 20 times, and the best-performing 
model was selected for further study. The mlr325 package was employed for model development and model 
implementation of machine learning.

The risk score of the final model was calculated to stratify patients into three risk groups (low, intermediate, 
and high) with thresholds reflecting clinically meaningful gradients in risks. Survival probabilities were assessed 
by using Kaplan-Meier curves with the R “survminer” package in different patient groups. The time receiver 
operating characteristic (ROC) curve, area under ROC curves (AUC) value, calibration curve, and decision 
curve analyses (DCA) were employed to access clinical use.

Statistical analysis.  The patient’s characteristics were described as number (%) for categorical variables 
and median (interquartile range [IQR]) or mean ± standard deviation (SD) for continuous variables, respec-
tively. Categorical variables were compared using the Chi-square test or Fisher’s exact test when appropriate. The 
t-test was performed between parametric continuous variables, while the Mann-Whitney test or Kruskal-Wallis 
test was performed for non-parametric variables. All statistical analyses were performed using R software 4.1.3 
(https://​www.r-​proje​ct.​org/), and a two-sided p-value <0.05 was considered to indicate statistical significance.

Ethical approval and consent to participate.  This study was approved by the ethics committee of 
Sichuan Cancer Hospital (Grant No. SCCHEC-02-2020-015) and was conducted in accordance with the Guide-
lines for Good Clinical Practice and the Declaration of Helsinki. The informed consent requirement was waived 
by the ethics committee of Sichuan Cancer Hospital due to the retrospective design of the study.

Results
Clinicopathological characteristics.  2441 ESCC patients were enrolled according to inclusion and 
exclusion criteria. 1954 patients were assigned to the training cohort and 487 patients were assigned to the vali-
dation cohort (Table 1). The median age of included patients was 62.0 years old (range, 34–90 years), and most 
patients were males (81.6%). The median follow-up time of OS was 28.23 months (range,6.10–115.3 months).

Model development of machine learning.  To prevent overfitting or uncertainty in the model, we first 
examined the correlation between continuous variables by spearman method before developing the model. We 
observed a slight collinearity problem between variables, as shown in Figure S1. We then utilized LASSO regres-
sion to penalize and select the optimal features, removing less important features from the model and reducing 
the correlation between variables. Ultimately, 22 variables were selected for model building with an optimal 
lambda.min of 0.00805, as shown in Fig. 1. Subsequent univariate COX regression analysis identified 14 signifi-
cant factors for predicting patients’ overall survival, including sex, KPS score, tumor length, tumor grade, surgi-
cal margin, vascular invasion, nerve invasion, T stage, N stage, MPV, AST, Na, Mg, and FIB (Table S2). Therefore, 
these 14 variables were selected for subsequent model development.

Six different survival analysis algorithms were utilized to model development in the training set. The hyper-
parametric search space and tuning results were given in Table S1. The discriminative performance of the 
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Characteristics

All Training cohort Validation cohort

N = 2441 N = 1954 N = 487

Age 62.0 [57.0;67.0] 62.0 [57.0;67.0] 62.0 [57.0;67.0]

Treatment

 Surgery 1281 (52.5%) 1015 (51.9%) 266 (54.6%)

 Surgery + RT 49 (2.01%) 45 (2.30%) 4 (0.82%)

 Surgery + CT 834 (34.2%) 673 (34.4%) 161 (33.1%)

 Surgery + CCRT​ 277 (11.3%) 221 (11.3%) 56 (11.5%)

Sex

 Male 1991 (81.6%) 1597 (81.7%) 394 (80.9%)

 Female 450 (18.4%) 357 (18.3%) 93 (19.1%)

KPS score

 90–100 1393 (57.1%) 1110 (56.8%) 283 (58.1%)

 70–80 1048 (42.9%) 844 (43.2%) 204 (41.9%)

Tumor length 4.00 [2.70;5.00] 4.00 [2.80;5.00] 4.00 [2.55;5.00]

Tumor grade

 Well differentiated 522 (21.4%) 404 (20.7%) 118 (24.2%)

 Moderate differentiation 964 (39.5%) 782 (40.0%) 182 (37.4%)

 Poorly differentiated 955 (39.1%) 768 (39.3%) 187 (38.4%)

Tumor location

 Lower chest 528 (21.6%) 426 (21.8%) 102 (20.9%)

 Middle chest 1325 (54.3%) 1052 (53.8%) 273 (56.1%)

 Upper chest 588 (24.1%) 476 (24.4%) 112 (23.0%)

Surgical margin

 R0 2330 (95.5%) 1860 (95.2%) 470 (96.5%)

 R1 74 (3.03%) 61 (3.12%) 13 (2.67%)

 R2 37 (1.52%) 33 (1.69%) 4 (0.82%)

Varscular invasion

 No 2020 (82.8%) 1616 (82.7%) 404 (83.0%)

 Yes 421 (17.2%) 338 (17.3%) 83 (17.0%)

Nerve invasion

 No 1982 (81.2%) 1581 (80.9%) 401 (82.3%)

 Yes 459 (18.8%) 373 (19.1%) 86 (17.7%)

 Dissected LN number 20.0 [14.0;28.0] 20.0 [14.0;28.0] 19.0 [14.0;27.0]

T stage

 T1 307 (12.6%) 234 (12.0%) 73 (15.0%)

 T2 483 (19.8%) 391 (20.0%) 92 (18.9%)

 T3 1441 (59.0%) 1154 (59.1%) 287 (58.9%)

 T4 210 (8.60%) 175 (8.96%) 35 (7.19%)

N stage

 N0 1115 (45.7%) 883 (45.2%) 232 (47.6%)

 N1 716 (29.3%) 593 (30.3%) 123 (25.3%)

 N2 407 (16.7%) 318 (16.3%) 89 (18.3%)

 N3 203 (8.32%) 160 (8.19%) 43 (8.83%)

AJCC8th stage

 0-I 298 (12.2%) 227 (11.6%) 71 (14.6%)

 II 803 (32.9%) 640 (32.8%) 163 (33.5%)

 III 1063 (43.5%) 863 (44.2%) 200 (41.1%)

 IV 277 (11.3%) 224 (11.5%) 53 (10.9%)

 HCT 41.8 [38.9;44.6] 41.8 [39.0;44.6] 41.9 [38.9;44.5]

 MPV 11.5 [10.3;12.7] 11.5 [10.3;12.7] 11.5 [10.3;12.6]

 MONO 0.38 [0.29;0.48] 0.38 [0.29;0.48] 0.36 [0.30;0.46]

 EO 0.13 [0.08;0.22] 0.13 [0.08;0.22] 0.13 [0.08;0.22]

 DBIL 4.84 [3.61;6.39] 4.80 [3.64;6.30] 4.90 [3.60;6.50]

 ALB 43.0 [40.4;45.2] 42.9 [40.4;45.2] 43.1 [40.7;45.2]

 AST 23.0 [19.0;28.4] 23.0 [19.1;28.2] 22.9 [19.0;29.3]

 ALP 88.3 [74.2;105] 88.0 [74.2;105] 89.7 [74.2;108]

Continued
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developed models was evaluated by the average C-index using grid search with fivefold cross-validation repeated 
20 times. The results were presented in Fig. 2 and Table 2, which demonstrate that the machine learning-extended 
CoxPH model, Elastic Net, and Random Forest exhibit similar performance in model cross-validation, with a 
C-index of 0.731. Furthermore, their prediction performance is superior to that of GBM, GLMboost, and Rpart. 
Considering the importance of model interpretability, we ultimately selected the classical algorithm of CoxPH 
regression as our final method for further study.

Next, we utilized permutation importance method to calculate the ranked importance of 14 variables that 
were selected from the univariate Cox regression analysis, and the results are presented in Fig. 3. N stage, T stage, 
surgical margin, MPV, and AST were identified as the top 5 important predictors for predicting survival events. 
The optimal model features were extracted after tuning the model parameters with tenfold cross-validation resa-
mpling using the sequential backward search method. The final 10 features selected for CoxPH model building 
were N stage, T stage, surgical margin, MPV, AST, tumor grade, sex, FIB, tumor length, and Mg.

To estimate the impact of each predictor on mortality risk in the CoxPH model, we display the marginal 
effects of each factor in Figure S2. Our results demonstrate that T stages and N stages are significant risk factors 

Characteristics

All Training cohort Validation cohort

N = 2441 N = 1954 N = 487

 Na 141 [140;142] 141 [139;142] 141 [140;142]

 Mg 0.95 [0.88;1.01] 0.95 [0.88;1.01] 0.95 [0.88;1.01]

 FIB 3.20 [2.67;3.81] 3.19 [2.67;3.81] 3.23 [2.67;3.82]

 NLR 2.52 [1.85;3.48] 2.52 [1.86;3.48] 2.55 [1.81;3.50]

 LMR 3.99 [2.99;5.27] 3.98 [3.00;5.27] 4.00 [2.97;5.24]

Table 1.   Baseline features of included cohorts in different data sets.

Figure 1.   Feature selection of the patient’s indicators by the LASSO regularization: (A) The relationship 
between LASSO penalty and regression coefficient change; (B) Cross-validation plot of partial-likelihood 
deviance curve with Log(λ) value in feature selection; (C) The coefficients of feature parameter estimation in the 
LASSO regularization; (D) Variable correlation plot of clinical features in the LASSO regression algorithm.
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Figure 2.   Prediction performance for the six-survival analyzing algorithm. (A) The c-index value was 
computed for each method using nested 5 × 20 cross-validations. (B) The confidence interval of the c-index 
value for each method using nested 5 × 20 cross-validations.

Table 2.   Prediction performance of the machine learning methods.

Learners C-index SD CV

CoxPH 0.731 0.021 0.028

Elastic Net 0.731 0.021 0.029

GBM 0.728 0.022 0.030

GLMboost 0.719 0.022 0.030

Random forest 0.731 0.021 0.029

Rpart 0.692 0.021 0.030

Figure 3.   The ranked importance of the candidate variables.
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in the CoxPH model, with the risk of mortality increasing with higher T and N stages. Females exhibit a lower 
risk of mortality than males. Positive surgical margins and poorly tumor grade increase the risk of mortality. 
Additionally, lower levels of MPV and Mg and higher levels of tumor length, AST, and FIB are associated with 
a greater risk of mortality in the model.

Machine learning model performance.  With 10 prognostic features, patients were stratified into esti-
mated risk deciles. We observed similar survival distributions for three risk scores and stratified the deciles 
of event probability into low, intermediate, and high-risk groups based on the related risks. The first to fourth 
deciles were classified as low-risk subgroups, with the percentage of observed death being significantly less than 
25%. The eighth to tenth deciles were classified as high-risk subgroups, with the percentage of observed death 
exceeding 50%. The remaining groups were stratified into intermediate-risk groups (fifth to seventh deciles) 
(Fig. 4A,B).

Kaplan–Meier curve plots of survival probabilities revealed significant differences in survival rates among 
the high-, intermediate-, and low-risk subgroups in both the training and validation cohorts (Fig. 4C,D, all 
p < 0.0001). The risk stratification predicted 3-year overall survival probabilities of 80.8%, 58.2%, and 29.5% for 
low-, intermediate-, and high-risk subgroups, respectively, in the training cohort, and 75.4%, 48.8%, and 26.9% 
in the validation cohort. In addition, the risk stratification predicted 5-year overall survival probabilities of 
70.6%, 45.6%, and 18.7% for low-, intermediate-, and high-risk subgroups, respectively, in the training cohort, 
and 65.3%, 27.9%, and 11.0% in the validation cohort (Table 3). The AUC values for 1-, 3-, and 5-year overall 
survival were 0.760, 0.735, and 0.746 in the training cohort, respectively, and a similar discriminative perfor-
mance was observed in the validation cohort with AUC values of 0.725, 0.720, and 0.752 for 1-, 3-, and 5-year 
overall survival, respectively (Fig. 4E,F).

We further evaluated the performance of the risk model by selecting the top 5 most important features (N 
stage, T stage, surgical margin, MPV, AST) from the permutation importance results for model development. 
Our findings demonstrate that the CoxPH risk model exhibits a significant advantage over the combination of 
these top 5 features, as well as individual features such as N stage (0.681), T stage (0.642), surgical margin (0.535), 
MPV (0.576), and AST (0.519) (Fig. 5).

Machine learning model evaluation.  The machine learning-extended CoxPH risk model exhibits excel-
lent predictive performance for survival events. However, it remains unclear whether the model can be utilized 
in clinical practice. Therefore, we compared the c-index values between the risk model and the AJCC8th stage 
using fivefold cross-validation with 200 repeats. Additionally, we employed calibration plots and DCA curves to 
evaluate the clinical utility of the model. Our results demonstrate that the risk model exhibits superior discrimi-
native ability and net benefit over the AJCC8th stage for all patients in both the training and validation cohorts 
(Fig. 6). The calibration curve revealed a good agreement between predictions and actual observations for the 
probability of 1-, 3-, and 5-year survival (Fig. 7).

The influence of treatment option on the model.  In general, treatment options can impact the over-
all survival rate of patients. To clarify the impact of different treatment modalities on the overall survival of 
patients with ESCC, we evaluated the overall survival outcomes of different treatment subgroups among surgical 
intervention alone, CT, RT and CCRT treatment patients. However, we found no significant differences in the 
overall survival rates among the different treatment subgroups (Figure S3). In addition, we further evaluated the 
survival outcomes of ESCC patients who received surgical intervention alone, and found that the overall survival 
rate of ESCC patients who underwent endoscopic treatment was higher than those who underwent thoracotomy 
surgical resection (Figure S4). Furthermore, we also investigated the impact of chemotherapy on the overall 
survival of ESCC patients who underwent surgery, and found no significant differences in the overall survival 
rates among the different chemotherapy subgroups (Figure S5). These results suggest that ESCC patients who 
underwent endoscopic treatment may be in earlier stages of the tumor or have milder symptoms, while those 
requiring thoracotomy patients may be in advanced stages of the tumor. The patients who received thoracotomy 
may benefit from adjuvant radiotherapy or chemotherapy to improve their overall survival outcomes, achieving 
similar results as surgical intervention alone.

Discussion
Machine learning approaches offer a technological innovation for personalized risk assessment11. In this study, 
we utilized high-quality clinical and laboratory data from a cohort of 2441 ESCC patients to develop and evaluate 
prediction models for ESCC patients’ survival. Our findings indicate that the machine learning-extended CoxPH 
model demonstrated the best performance for predicting overall survival in ESCC patients. The risk scores 
derived from the CoxPH model effectively stratified ESCC patients into three prognostic risk groups with distinct 
survival events. These clinically meaningful risk scores exhibited excellent discriminative abilities, outperform-
ing TNM AJCC8th stage in predicting patients’ mortality risks. Accurately predicting mortality risks in ESCC 
patients remains an unmet need, and to our knowledge, this is the first study to compare the performance of 
different machine learning algorithms for developing and validating survival-prediction models in ESCC patients.

The use of machine learning to analyze big data offers significant advantages for assimilating and evaluat-
ing complex healthcare data12, and accurately forecasting cancer patients’ survival is crucial for therapeutic 
decision-making and management10,26,27. While most machine learning-based models have been applied for 
cancer diagnosis and risk assessment, their application in survival prediction has been limited28. Furthermore, 
most machine learning-based survival analyses have been based on gene expression data from databases such 
as The Cancer Genome Atlas (TCGA)18,29 or multi-omics data30, with few studies utilizing high-dimensional 
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Figure 4.   The survival prediction performance of machine learning-extended CoxPH model. (A) The percent 
of observed death according to deciles of event probability. (B) Three risk groups were stratified by similar 
patterns of survival distribution. Kaplan–Meier curves estimated the survival probabilities in the training (C) 
and validation (D) cohorts. Time ROC curves compared the performance of the risk mode at 1,3 and 5-year 
follow-up time in the training (E) and validation(F) cohorts.

Table 3.   3,5-year OS survival probability of CoxPH model-based risk stratification in training and validation 
cohorts.

Risk groups

Training cohort Validation cohort

3-year survival 5-year survival 3-year survival 5-year survival

Low risk 80.8% (77.9–84.0) 70.6% (66.5–74.9) 75.4% (70.3–80.9) 65.3% (59.0–72.2)

Intermediate risk 58.2% (53.9–62.7) 45.6% (40.8– 51.0) 48.8% (39.6–60.1) 29.7% (20.3–40.6)

High risk 29.5% (25.8–33.7) 18.7%(15.1–23.0) 26.9%(18.1–40.1) 11.0% (5.1–23.6)
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real-world survival data31,32, thus limiting their applicability to the current practice. Recent research by Abuhelwa 
et al.10 demonstrated the feasibility and effectiveness of machine learning-based approaches for survival predic-
tion in urothelial cancer patients treated with atezolizumab. In this study, we employed six machine learning 
algorithms to develop a prognosis model for 27 clinical variables in ESCC patients and found that the machine 
learning-extended CoxPH model, Elastic Net, and Random Forest have similar and excellent performance in 
predicting ESCC patients’ survival and outperformed GBM, GLMboost, and Rpart models. Therefore, machine 

Figure 5.   ROC curves to evaluate the capability of risk models and other indicators for ESCC patients’ survival 
prediction.

Figure 6.   The C-index and decision curve analyses were performed to compare the performance between the 
risk score and the AJCC8th stage. The c-index values of the risk score and AJCC8th stage in training (A) and 
validation (B) cohorts by using fivefold cross-validation with 200 repeats; The net benefit of the risk model and 
AJCC8th stage in training (C) and validation (D) cohorts by using decision curve analyses.
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learning-based approaches for ESCC patients’ survival prediction are feasible and effective, and the classical 
algorithms of the CoxPH method remain sufficiently good for interpretive studies.

Several indicators or scores have been developed to estimate the risk and management of ESCC patients 
based on research efforts investigating predictors of survival13,15,16,33. Previous studies have identified various 
factors associated with poor overall survival, including higher NLR and C-reactive protein-to-albumin ratio 
(CAR), perineural invasion, pathological stage, incomplete resection, neoadjuvant therapy33,34. We also con-
firmed that low preoperative serum sodium15 and low MPV35 were important risk factors for overall survival 
in ESCC patients, and the coagulation index which established PLT, MPV, and FIB could stratify patients into 
three risk groups with the 3-year OS rates for the low-, middle- and high-risk groups were 63.5%, 55.5%, and 
43.1%, respectively13. In this study, we identified N stage, T stage, surgical margin, MPV, AST, tumor grade, sex, 
FIB, tumor length, and Mg as the most important features for predicting survival events. Higher T and N stages, 
positive surgical margins, poorly tumor grade were associated with increased mortality risk, while females have 
lower risk of mortality than males. Additionally, lower levels of MPV, Mg, and higher levels of tumor length, AST, 
FIB were also associated with a greater risk of mortality. Monitoring these clinical routine indicators can help 
predict prognostic risk and assist in clinical management strategies for ESCC patients. However, some previous 
findings may be biased due to small sample sizes or different methodologies36. Nevertheless, CoxPH risk scores 
derived from machine learning processes and large contemporary patient cohorts have the potential to overcome 
the shortcomings of existing predictors.

This study has several limitations that should be acknowledged. Firstly, it is an observational retrospective 
study, and the population included in the study is primarily concentrated in the Asian population, which could 
potentially introduce selection bias in model building. Additionally, the endpoint of our study was overall sur-
vival, and the prediction value for progression-free survival or disease-free survival remains unknown. Therefore, 
the efficiency of this model requires further systematic validation on larger cohorts by multicenter studies. In 
conclusion, we have developed and validated a machine learning risk model that can serve as a prognosis tool 
for predicting the survival of ESCC patients. Furthermore, the classical algorithms of CoxPH method remain 
sufficiently good for interpretive studies, and machine learning-based approaches are feasible for enhancing the 
optimization of disease prognosis and clinical decision-making.

Data availability
The authors declare that all data generated or analyzed for this study are available within the paper and its supple-
mentary information. Additional raw data are available from the corresponding author upon reasonable request.
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