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Hybrid systems using residual 
modeling for sea surface 
temperature forecasting
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The sea surface temperature (SST) is an environmental indicator closely related to climate, weather, 
and atmospheric events worldwide. Its forecasting is essential for supporting the decision of 
governments and environmental organizations. Literature has shown that single machine learning 
(ML) models are generally more accurate than traditional statistical models for SST time series 
modeling. However, the parameters tuning of these ML models is a challenging task, mainly when 
complex phenomena, such as SST forecasting, are addressed. Issues related to misspecification, 
overfitting, or underfitting of the ML models can lead to underperforming forecasts. This work 
proposes using hybrid systems (HS) that combine (ML) models using residual forecasting as an 
alternative to enhance the performance of SST forecasting. In this context, two types of combinations 
are evaluated using two ML models: support vector regression (SVR) and long short-term memory 
(LSTM). The experimental evaluation was performed on three datasets from different regions of 
the Atlantic Ocean using three well-known measures: mean square error (MSE), mean absolute 
percentage error (MAPE), and mean absolute error (MAE). The best HS based on SVR improved the 
MSE value for each analyzed series by 82.26% , 98.93% , and 65.03% compared to its respective single 
model. The HS employing the LSTM improved 92.15% , 98.69% , and 32.41% concerning the single 
LSTM model. Compared to literature approaches, at least one version of HS attained higher accuracy 
than statistical and ML models in all study cases. In particular, the nonlinear combination of the ML 
models obtained the best performance among the proposed HS versions.

Climate change is one of humanity’s most critical global challenges since it is harmful to all living beings on 
Earth. Therefore, it is a crucial subject for all countries, independent of geographical, social, or economic char-
acteristics. Global climate change directly affects the environment and has already had observable effects, such 
as glacier shrinkage, more intense heat waves, and sea-level rise. According to the Intergovernmental Panel on 
Climate Change, several regions will be affected in diverse manners over time, leading to significant societal and 
environmental systems changes. The Sea Surface Temperature (SST) is one of the most significant variables for 
monitoring the global climate system1. SST is related to ocean heat content, which directly affects global warm-
ing. The SST records are collected using satellites, which read these values mainly of moored and drifting buoys 
and can be considered the best-known ocean parameter on global scales2.

The variability of the SST is correlated with many natural phenomena1,3–6. For instance, the El Niño/Southern 
Oscillation and Indian Ocean Dipole relate to the warming or cooling of SST in predefined areas of the Pacific 
and Indian oceans, respectively1. Furthermore, the SST from the Atlantic ocean is connected with the quantity 
of rain and cloudiness in South America, droughts in Northeastern Brazil, and climate change on the Amazon 
vegetation4,7. In this way, SST forecasting can support the decision in many operational applications, such as 
rainfall monitoring, turtles tracking, tourism, fishing management, and coral bleaching evaluation8.

In the time series forecasting literature, statistical and machine learning (ML) models have been widely 
employed in various domains9–11. Among statistical models, linear methods, such as Autoregressive (AR), Mov-
ing Average (MA), and ARIMA models are the most popular due to their simplicity, adaptability, and the Box 
and Jenkins methodology12, which provides a well-established design process for time series modeling. The Box 
& Jenkins methodology used in the design of the linear models guarantees that the linear patterns are properly 
modeled. However, this class of models is not able to properly model temporal phenomena that present nonlinear 
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patterns. ML models have been highlighted due to their performance, flexibility, nonlinearity and because they 
are data-driven techniques, allowing temporal modeling without making any a priori assumption13. Among the 
ML models, multilayer perceptron neural networks (MLP), support vector regression (SVR), and long short-term 
memory (LSTM) are examples of techniques that have reached promising results11,14,15.

We can highlight the following works that used linear statistical models and nonlinear ML models for SST 
forecasting. Lins et al.3 employed an SVR to the daily forecast of one year ahead of two different locations of the 
tropical Atlantic ocean. Salles et al.4 applied the ARIMA model to analyze the temporal aggregation of seventeen 
datasets of SST located in the tropical Atlantic ocean. Tripathi et al.5 analyzed the MLP and linear regression 
techniques in the monthly forecasting of SST located in the Indian Ocean. Mahongo and Deo1 showed that the 
Nonlinear Autoregressive with Exogenous Input neural network reached an accurate performance in the SST 
forecast located in the African seashore of the Indian ocean. Garcia-Gorriz and Garcia-Sanchez6 employed a 
system based on MLP to the monthly forecasting of the SST in the western Mediterranean Sea.

One of the primary objectives in time series analysis and forecasting is to develop accurate systems. Among 
the approaches that use ML methods, hybrid systems that combine models from the error series modeling have 
reached promising results in many applications16–21. Residuals or error series are obtained from the difference 
between the time series and its forecasting. Such hybrid systems use the residuals modeling to correct biased 
forecasts that can occur due to the overfitting, underfitting, or misspecification of models22,23. Hybrid systems 
commonly design the time series as a combination of a linear statistical model with a nonlinear ML model or as 
the combination of ML models. The former aims to model the linear and nonlinear patterns of the time series 
separately16,17,20. The latter employs ML models for error series modeling intending to improve the accuracy of 
an initial nonlinear ML model19,22,23.

To the best of our knowledge, hybrid systems that perform the residuals modeling were not proposed or 
evaluated for SST time series forecasting. In SST forecasting, the works proposed in the literature commonly 
use a single method to model the time series under analysis24. These approaches employ mainly linear statistical 
models or nonlinear ML models for this task3–5,24–27. To fulfill this gap, we perform an empirical evaluation of 
hybrid systems that use error series modeling in the context of SST time series forecasting. This experimental 
analysis is of crucial importance because of the adoption of hybrid systems: (i) it generally leads to more accu-
rate results than single models in complex time series modeling16,17; (ii) it is an efficient way of dealing with the 
problem of model selection with little extra effort19; and (iii) it is an effective manner to correct biased and/or 
misspecified forecasters22,23. However, the best combination approach between the forecasters of time series 
and the residuals still is an open question19 and not yet investigated in the context of SST forecasting. This work 
evaluates the performance of hybrid systems combining ML models for SST time series forecasting unprec-
edentedly. In this sense, the objective of this paper is threefold: (a) evaluate whether the residual modeling is 
an advantageous approach to increasing ML models’ accuracy for SST time series; (b) evaluate two well-known 
forms of combination (linear and nonlinear) of the literature employing ML models; (c) analyze, for each SST 
series, which combination is most suitable.

The main contributions of this work can be summarized as:

•	 Proposal of a hybrid system methodology to improve the accuracy of ML models in the SST forecasting;
•	 The performance evaluation of two hybrid systems in the 1-day ahead forecasting SST using three well-

known measures: mean square error (MSE), mean absolute percentage error (MAPE) and mean absolute 
error (MAE);

•	 The development of two versions of each analyzed hybrid system using well-known ML models: SVR and 
LSTM;

•	 The hybrid systems employing the SVR achieved on average a percentage gain compared to its respective 
single model of 80.27%, 61.72%, and 60.21% for MSE, MAPE, and MAE, respectively;

•	 The hybrid systems using the LSTM attained an average percentage gain concerning its respective single 
model of 73.16%, 57.90%, and 56.98% for MSE, MAPE, and MAE, respectively;

•	 The results show that, in general, the developed hybrid systems overcame literature statistical and ML models 
in the SST forecasting context.

The remainder of the paper is organized as follows. “Related works” section shows the related works of hybrid 
systems that deal with residual series modeling. This section describes the evaluated hybrid systems in the SST 
forecasting: Perturbative approach (“The perturbative approach” section) and NoLiC (“The NoLiC method” sec-
tion). “PIRATA data set” section presents the data set extracted from the PIRATA project website. “Experimental 
protocol” section shows the experimental protocol used in this work. In “Simulations and experimental results” 
section, the results and discussions are presented. Finally, “Discussion” section shows the concluding remarks 
and suggestions for future works.

Related works
Combining models is one of the most common alternatives to enhance the accuracy of forecasting 
systems16,17,28–31. In the literature, there are two well-established approaches: ensembles32 and hybrid systems 
that perform residuals modeling16,17. Both theoretical and empirical results indicate that the latter approach is 
an interesting strategy to increase the robustness and accuracy of the forecasts16,17,28–31.

The general architecture of a hybrid system that performs the residuals modeling can be divided into three 
main steps: time series forecasting, error series forecasting, and the combination of the two first steps. Equa-
tion (1) shows a general view of this architecture, where the final output of the hybrid system ŷt is given by a 
function f(.) that combines the forecast of the time series P0 with the forecast of the residuals P1 to estimate yt . 
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P0 is the forecast of the time series given by the M0 model (Eq. 2), and P1 is the forecast of the residual series 
(et−1, . . . , et−n) given by the M1 model (Eq. 3). The residual series is calculated as the difference between the 
predicted and the actual values.

where

and

where m and n are the time lags used as input to the M0 and M1 models, respectively. The time lags can be 
defined using the auto-correlation function (ACF), partial auto-correlation function (PACF), or some searching 
algorithm31,33.

Based on the general architecture described by the f function in Eq. (1), two classes of hybrid systems have 
been studied for real-world time series modeling: a combination of linear statistical methods with nonlinear 
Machine Learning (ML) models and a combination of ML models. For simplicity, the first class is denominated as 
a hybrid system and the second as a combination of ML models. The hybrid system class is described in “Hybrid 
systems—combining linear and nonlinear models” section. Techniques that combine ML models are presented 
in “Combining nonlinear models” section. This section also describes two recent techniques: the perturbative 
approach22 and NoLiC23.

Hybrid systems—combining linear and nonlinear models.  Linear statistical models have been com-
bined with nonlinear ML models based on the assumption that real-world time series generally present linear 
and nonlinear patterns16,17. Thus, in this hybrid system class, statistical models are used as M0 , and ML models 
are employed as M1 intended to deal with linear and nonlinear patterns separately.

The f function that is responsible for combining P0 with P1 can be either linear or nonlinear16,19,23,34. The linear 
combination, which is more commonly used in the literature16,29,35, consists of a non-trainable rule, such as the 
sum. This combination has been successfully used in several applications, for instance: financial indexes29, wind 
speed35, groundwater level fluctuations36, the prevalence of schistosomiasis in humans37, particulate matter38, 
and water quality39.

Zhang16 showed the linear combination:

where P0 is the forecasting of a linear statistical model ( M0 ), P1 is the forecasting of an ML model ( M1 ) applied 
to the residual of the time series, and ŷt is the final prediction of the hybrid system performed by the linear 
combination. In his experiments, M0 was defined as an ARIMA and M1 as an MLP neural network.

Despite being widely used in the literature, the linear combination of the forecasts P0 and P1 can underesti-
mate, or degenerate the accuracy of the initial model ( M0 ), since there may be no additive relationship between 
linear and nonlinear forecasts17,40–42.

Based on this assumption, Khashei and Bijari17,41,42 proposed a nonlinear combination of the forecasts to 
overcome the limitations of the linear combination. In their hybrid systems17,41,42, the function f (Eq. 1) is defined 
as an ML that receives as input P0 , the residual ( (et−1, . . . , et−n) ), and the time series ( yt−1, . . . , yt−m ), as shown 
in Eq. (5). They employed an ARIMA model for time series modeling as P0 , and an MLP as P1.

   In general, the nonlinear combination of the forecasts P0 and P1 reaches better results than the linear 
approach17,41,43. However, there is no guarantee that the nonlinear combination is the most appropriate for 
modeling any temporal phenomena42. Therefore, the best combination function of the forecasts of the time series 
(linear component) and the residual series (nonlinear component) is unknown, being still a research challenge 
in the hybrid systems research field17,23,42.

Combining nonlinear models.  Nonlinear ML models have been combined based on the assumption that 
adopting only one single model can be inadequate to real-world time series forecasting. The underperforming 
of a single ML model can occur due to problems caused by overfitting, underfitting, or misspecification22,23,28.

In Ginzburg and Horn28, two MLPs are combined linearly following the same idea shown in Eq. (4). Thus, 
the time series forecast ( P0 ) is performed by the first MLP ( M0 ), and its residuals are modeled by the second 
MLP ( M1 ), generating the forecast of the residuals ( P1 ). In this sense, the M1 model is employed to uncover and 
model temporal correlations found in the residuals of M0 , thus correcting the original forecast ( P0 ). This premise 
is based on biological systems that commonly deal with complex tasks through subsystems28. Later stages of 
consecutive subsystems (networks) refine the response of earlier ones, improving the performance of the entire 
biological system28,44. This principle was also successfully employed in atmospheric pollution forecasting31,45.

The next two subsections show two recent approaches that combine nonlinear models: the perturbative 
approach22 and NoLiC23.

(1)ŷt = f (P0, P1),

(2)P0 = M0(yt−1, . . . , yt−m),

(3)P1 = M1(et−1, . . . , et−n),

(4)ŷt = P0 + P1,

(5)ŷt = f (P0, et−1, . . . , et−n, yt−1, . . . , yt−m).
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The perturbative approach.  The linear combination of ML models proposed in28 was generalized in22, which 
employed the perturbation theory concept that was previously applied in many areas, such as physics, chemistry, 
and mathematics46,47. The idea is to initiate the forecasting of a time series using a first estimation (forecast P0 ). 
Then, p new forecasts ( P1 + P2 + · · · + Pp ) are added to make a partial forecast ever closer to the real solution 
P. Mathematically,

where P is the desired solution (perfect forecasting), P0 is the series forecast, and the term of the major contri-
bution to P, and P1, P2, . . . ,Pp are the p higher-order terms (residual forecasts). Then, P1 is the forecast of the 
residuals of M0 , P2 is the forecast of the residuals of M0 + M1 , P3 is the forecast of the residuals of M0 + M1 +M2 , 
and Pp is the forecast of the residuals of M0 +M1 +M2 + · · · +Mp−1 . Theoretically, the corrections generated by 
the residual forecasts ( P1, P2, . . . ,Pp ) decrease since, at each perturbation i, the residual series Ei present values 
closer to zero. In practice, the contribution of the residual forecasts ( P1, P2, . . . ,Pp ) depends on the specification 
and training of the model Mi.

Algorithms 1 and 2 show the training and the testing phases of the perturbative approach22, respectively.

The training phase is divided into two general steps: training the time series forecasting model (lines 5–9) and 
training the correction models based on the residual series (lines 10–19). The algorithm’s input is the training set 
of the time series, and the outputs are p residuals (error series E) and p+ 1 trained models ( {M0,M1, . . . ,Mp} ). 
The training phase has two stop criteria: the maximum number of perturbations (pMax) or an increase in the 
error value in the validation set concerning antecedent perturbation (lines 14 to 15).

In line 4, the initial model ( M0 ) is trained using the training set Y, generating the time series forecast P0 in line 
5. P0 is the main contributor to the final solution P22. In line 8, the first error series ( E1 ) is generated. The error 
series consists of the difference between the actual series and the estimated values provided by the perturbative 
approach (P).

After, the perturbative terms are generated. Each Mi model is trained to forecast Ei (line 10), which is the 
difference between Y and P (line 14). At each iteration of the loop (lines 9–15), a new perturbative term is gener-
ated (lines 10–11) and added to the final solution (line 12). At the end of the training phase, P is the sum of the 
p+ 1 forecasts ( P0, P1, P2, . . . ,Pp ) of the p+ 1 models ( M0 +M1 +M2 · · · +Mp ). Lines 10 to 14 are executed 
until the stopping criterion is reached.

P = P0 + P1 + P2 + · · · + Pp,
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The testing phase (Algorithm 2) is divided into two steps: forecast of the time series (line 5) and forecast of 
the perturbative terms (lines 8–12). Lines 5 and 6 show the generating of P0 and its inclusion in the final output 
P of the perturbative approach. Lines 8 to 12 show the second part, where the perturbative terms are generated 
for the test point (observation of the test sample). So, each model ( M1 , M2, . . . ,Mp ) generate the forecasting of 
its respective error series ( E1, E2, . . . , Ep ). This loop is repeated (p) times, which is the number of perturbations 
defined in the training phase. After, each perturbative term is forecasted (line 9) and added to the solution P 
using a linear combination (line 10), generating the final forecasting.

The NoLiC method.  The NoLiC method23 employs an adaptive combination of ML models with other tech-
niques using the residual series. This combination method does not presuppose a linear combination as other 
works16,22,28. The idea is to find a combination function between P0 and P1 using an ML model that is flexible, 
capable of performing linear and nonlinear modeling.

The Nonlinear Combination (NoLiC) method is composed of three steps: forecast of the time series ( P0 ), 
forecast of the residuals ( P1 ), and the combination f(.) of P0 and P1 . Figure 1 shows the training and testing 
phases of the NoLiC method.

The training phase receives as input the training set and generates three trained models ( M0 , M1 , and M C ) 
as outputs. Similarly to other works16,28, the models M0 and M1 are employed to forecast the time series and the 

Single Model (M0)

E1 = Yt - P0

Yt

P0

P0

Error Model (M1)
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Figure 1.   NoLiC training and testing phases.
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residuals, respectively. The M1 model’s training is performed using the residuals of M0 ( E1 = Yt − P0 ), generating 
the forecast of the error series P1 . After, the combination model M C receives as inputs P0 and P1 and is trained 
with the objective to correct the output of M0 , generating a forecast (P) closer to the target (future value of Yt).

In the test phase, the M0 and M1 models receive the lag values of the time series ( Yq ) and the residuals ( Eq ), 
respectively. After, M0 and M1 models generate theirs respective forecasts P0 and P1 . Then, the trained ML model 
MC combines the forecasts of the series and residuals to produce the final forecast P.

Remarks.  The combination methods described in “The perturbative approach” and “The NoLiC method” 
sections have different characteristics. The perturbative method can extract information from more than one 
residual series. However, this method supposes that the models should be combined using a simple sum rule. In 
contrast, the NoLiC method supposes a nonlinear combination between the forecasts and the residuals.

The NoLiC method employs an ML model aiming to find a combination more suitable than a simple sum. 
However, there is no guarantee that the MC model leads to the best accuracy of the hybrid system. The optimum 
performance depends on adjusting the parameters and training of the MC model, which is a complex task since 
it is related to forecasts of M0 and M1 . Thus, investigating how to combine the forecasts of the time series and 
its error series is a crucial issue in the definition of the hybrid system since it is closely related to its accuracy.

PIRATA data set
The Pilot Research Moored Array in the Tropical Atlantic (PIRATA) was developed by a network of observato-
ries composed of many countries, such as Brazil, France, and the United States. This project has the objective to 
improve the knowledge about atmospheric variations in the tropical Atlantic Ocean48. The climatic variations 
in this area can influence the development of droughts, floods, severe storms, and even hurricanes, affecting 
millions of people in South America and Africa3 (Fig. 2).

The project PIRATA has buoys in the ocean, where meteorological variables are collected, such as shortwave 
radiation, relative humidity, air temperature, and ocean surface temperature. All data are gathered and transmit-
ted by satellite and are available on the project web page (https://​www.​pmel.​noaa.​gov/​gtmba/​pirata).

We aim to perform the forecast of the sea surface temperature of three regions3: 8◦ N 38◦ W (Fig. 3a), 10◦ S 
10

◦ W (Fig. 3b), and 4◦ N 23◦ W (Fig. 3c). These locations were selected because they have an appropriate amount 
of data for modeling with ML models. These data sets do not present interruptions and are located in different 
regions. The selected locations can be seen in Fig. 2, represented by red points. Table 1 shows the characteristics 
of each time series used in this work.

Experimental protocol
The experiments evaluate two machine learning models: support vector machines (SVR) and long short-term 
memory (LSTM). These models were chosen because they reached relevant results regarding accuracy for the 
SST forecasting task3,49,50. The SVR and LSTM models are employed as single models as well as in the combina-
tion approaches.

The SVR model was successfully employed in the SST forecasting3 and has highlighted results in several other 
forecasting applications51. SVR is an interesting choice because it employs a quadratic optimization procedure 
to solve a convex constrained problem, with a single solution52. Therefore, in contrast to methods such as neural 
networks where several local minima can be achieved, the uniqueness of the solution of SVR is obtained given 
a set of hyperparameters. To the kernel SVR, the Radial Basis Function (RBF) was selected because it is a well-
established kernel function in the time series forecasting area51. RBF kernel also was successfully employed in 
the SST forecasting3 and has been widely used in hybrid systems18–20,29,53. Besides, the RBF is considered the 
default SVR kernel in the Sklearn54 library, which is now the most popular package for creating SVR models in 
Python. The RBF’s popularity can be explained by its finite and localized responses across the entire range of 
the x-axis, so it does not need previous assumptions about the data and adds few parameters to the SVR model 
(Cost and Gamma)55.

Figure 2.   Buoys locations of the PIRATA project in the Atlantic Ocean. Font: https://​www.​pmel.​noaa.​gov/​tao/​
drupal/​disdel/.

https://www.pmel.noaa.gov/gtmba/pirata
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://www.pmel.noaa.gov/tao/drupal/disdel/
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LSTM was selected because it is one of the state-of-the-art ML models in time series forecasting. It has 
outperformed traditional neural networks in several applications56. Its ability to deal with short or long-term 
temporal dependencies can be promising in the SST time series modeling57.

For the combination approach, the same model (SVR or LSTM) are employed for all stages. For the pertur-
bative approach, the best number of perturbations (or corrections) was selected based on the MSE value in the 
validation set having a upper limit of four perturbations. For all models, a grid search approach was performed for 

(a) S1 - 8°N 38°W

(b) S2 - 10°S 10°W

(c) S3 - 4°N 23°W

Figure 3.   Sea surface temperature time series.
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selecting the best configuration based on the MSE value in the validation set. The data used in the experimental 
simulations were scaled into the interval [0.1, 0.9], similar to3.

Table 2 shows the set of parameters investigated for each model in the 1-day-ahead forecasting scenario. 
The number of input lags used in the grid search was selected based on PACF. For S1, the lags 1, 3, 4, 11, and 15 
presented significant linear correlations. For S2, PACF selected the lags 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24, 28, and 30, and for S3, the lags 1, 2, 3, 5, 17, and 18 presented relevant correlation.

Table 3 shows the values selected for single and combination approaches for 1 day ahead SST forecasting 
for each study case (S1, S2, and S3 series). It is important to highlight that all combination approaches use the 
same M0 , and the NoLiC method employs the same M0 and M1 of the perturbative approach. So, it is possible 
to compare the performance of the combination approaches directly. For all series, the perturbation approach 
employed three perturbations for the SVR model and two perturbations for the LSTM model.

The performance of the approaches are evaluated using three performance metrics applied to the context 
of sea surface temperature forecast3,4: mean square error (MSE), mean absolute percentage error (MAPE) and 
mean absolute error (MAE). Equations (6), (7) and (8) show the MSE, MAPE and MAE metrics, respectively.

where N represents the time series length, yt the true value at time t and ŷt is the forecast at time t. For all met-
rics, the lower the values, the better the results. A percentage gain/loss measure (Eq. 9) is used to compare the 
combination approaches with the single models.

where Metricsm and Metriccomb represent the MSE values reached by single models and combination approaches, 
respectively. In this way, the higher the PC, the better the performance of the combination approach in relation 
to the single model.

(6)MSE =
1

N

N
∑

t=1

(yt − ŷt)
2,

(7)MAPE =
100

N

N
∑

t=1

∣

∣

∣

∣

yt − ŷt

yt

∣

∣

∣

∣

,

(8)MAE =
1

N

N
∑

t=1

|yt − ŷt |,

(9)PC =
Metricsm −Metriccomb

Metricsm
× 100,

Table 1.   Properties of the SST time series used in this work.

Adopted acronym S1 S2 S3

Time series

Localization 8
◦ N 38◦ W 10

◦ S 10◦ W 4
◦ N 23◦ W

Time unit Daily Daily Daily

Start date Oct 08, 00 Sep 09, 99 May 10, 07

Start date (test set) Oct 01, 06 Sep 07, 10 Jun 30, 16

End date Oct 07, 07 Sep 08, 11 Jul 02, 17

Total size 2545 4376 3699

Training sample size 1815 3646 2969

Validation sample size 365 365 365

Testing sample size 365 365 365

Table 2.   Values of the parameters of the SVR and LSTM models.

Model Parameters Values

SVR

Gamma [0.001, 1]

Cost [0.1, 1, 100]

Tolerance [0.001, 0.01, 0.1]

Kernel Radial basis function3

LSTM
Units in hidden layer [2, 5, 10]

Algorithm Adam19,58
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The SVR and LSTM models were implemented in the Python programming language using the Sklearn54 and 
Keras59 libraries. The experimental simulations were performed in a computer with a single Intel Core i7-7500 
CPU and 20 GB RAM.

The experimental comparison was carried out among the single models, the hybrid approaches, and the 
following literature models: Exponential Smoothing (ETS)60, Convolution LSTM (ConvLSTM)11,50, and the 
Nonlinear Autoregressive Exogenous (NARX)1.

Exponential Smoothing (ETS) is a traditional statistical method employed in time series forecasting60,61. It 
is a versatile method due to its ability to model time series with/without trend and seasonality components. 
However, the ETS can reach a limited performance in forecasting time series that present nonlinear patterns62. 
The experiments with ETS were carried out using the Statsmodel library of Python63.

The Convolutional Long Short-Term Memory (ConvLSTM)11,50 is a Deep Learning technique able to model 
spatiotemporal correlations. The ConvLSTM models spatial and temporal patterns using convolution and LSTM 
layers. This technique attained higher accuracy than other ML models to SST time series forecasting tasks11,50. 
On the other hand, its training can be costly computationally due to the number of hyper-parameters that must 
be adjusted64. In this work, the employed ConvLSTM used the configuration suggested in the SST forecasting 
works11,50.

Nonlinear Autoregressive with Exogenous Input neural network (NARX) was proposed to model the nonlin-
ear and autoregressive behaviors65. NARX model was successfully used to predict SST anomalies in the western 
Indian Ocean region1. Despite being able to forecast seasonal anomaly trends, the NARX performance is highly 
sensitive to parameters specification1.

Simulations and experimental results
Table 4 shows the results regarding MSE, MAPE and MAE for the test set of the S1, S2, and S3 series, for 1-day 
ahead forecasting. In that table is possible to compare the performance of the hybrid systems with single and 
literature models.

For the S1 time series, all hybrid systems improved the accuracy of their respective single model, reaching 
better MSE, MAPE, and MAE values better than literature models. In particular, the NoLiC employing the 
LSTM model attained the best result in all considered metrics. Regarding MSE, the hybrid system versions 
obtained an error of one order of magnitude smaller than their respective single models, for instance, 3.97E−04 
for NoLiC+LSTM and 6.89E−04 for LSTM.

The S2 and S3 series follow the same behavior: all hybrid systems versions improved the performance of 
their respective single models for the evaluated metrics. For the S2 time series, the perturbation approach using 
the SVR model attained the best performance in terms of MSE, MAPE, and MAE. This hybrid system version, 
which employed three perturbations ( P0 + P1 + P2 + P3 ), improved the MSE value in two orders of magnitude 
regarding the single SVR.

Hybrid systems that use the LSTM model deserve special attention for the S3 time series. In this case, the 
NoLiC attained the best MSE value, while the perturbative approach ( P0 + P1 + P2 ) obtained the smallest MAPE 

Table 3.   Selected parameters for SVR and LSTM in the combination approaches using a grid search in the 
validation set for 1 day ahead SST forecasting.

Time series Model Parameters

Combination approaches

Perturbative22 NoLiC23

M0 M1 M2 M3 MC

S1

SVR

Gamma 1 1 0.001 1 1

Cost 1 0.1 1 1 100

Tolerance 0.001 0.001 0.01 0.001 0.01

Inputs 2 2 1 1 2

LSTM
Units in hidden layer 2 5 5 – 10

Inputs 1 2 2 – 2

S2

SVR

Gamma 0.001 1 1 0.001 1

Cost 100 1 0.1 100 1

Tolerance 0.001 0.01 0.01 0.001 0.001

Inputs 23 2 2 2 2

LSTM
Units in hidden layer 5 10 5 – 5

Inputs 5 2 2 – 2

S3

SVR

Gamma 1 0.001 1 1 1

Cost 1 100 1 100 100

Tolerance 0.001 0.01 0.01 0.01 0.01

Inputs 3 2 2 2 2

LSTM
Units in hidden layer 5 5 5 – 10

Inputs 5 2 2 – 2
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and MAE. Both hybrid system versions of single SVR and LSTM improved the MSE value in one order of magni-
tude. Among the single and literature models, the NARX1 achieved the best results for the evaluated times series.

Tables 5 and 6 show the percentage difference (Eq. 9) in terms of the MSE metric between the literature mod-
els and the perturbative and NoLiC approaches, respectively. The tables show that the hybrid systems improved 
the performance of both single models for the S1 series. The NoLiC using the LSTM model attained an improve-
ment greater than 65% for all evaluation metrics (Table 5). The versions of the hybrid systems attained a superior 
performance, at least 20% when compared with the literature. Figure 4a,b show the forecasts of the S1 series test 
set of the hybrid approaches using SVR and LSTM, respectively. It can be seen that both hybrid systems were 
able to improve the forecasting of the single models. Both hybrid approaches achieved forecasts closer to the 
real when compared with the initial model.

For S2, Table 5 shows that the perturbative approach reached an improvement higher than 30% in all compari-
sons. This approach with SVR obtained a percentage gain regarding SVR of 98.93%, 90.56%, and 91.09% for MSE, 
MAPE, and MAE, respectively. Table 6 shows the NoLiC using LSTM model attained a gain concerning to single 
LSTM of 98.42%, 88.40% and 88.87% for MSE, MAPE, and MAE, respectively. Figure 4c,d show the forecasts 
of the S2 series test set of the hybrid approaches using SVR and LSTM, respectively. Both figures show that the 
hybrid systems improved the forecast of the single models. In both comparisons, it is possible to verify that the 
forecast of the hybrid systems using SVR or LSTM is closer to the test set of S2 than the respective single model.

Tables 5 and 6 show that the percentage difference between hybrid systems with LSTM and single models is 
positive in all comparisons for the S3 data set. The NoLiC using SVR obtained the greatest improvement regard-
ing single SVR with 65.03%, 39.50%, and 37.68% for MSE, MAPE, and MAE, respectively. Figure 4e,f show 
the forecasts of the S2 series test set of the hybrid approaches using SVR and LSTM, respectively. The forecasts 
obtained by the perturbative and NoLiC approaches are closer to S3 series when compared with the single models. 
Supplementary Information presents additional analyzes.

Discussion.  To verify if there are (or not) significant statistical differences between the hybrid systems and 
literature approaches, we employed the Diebold–Mariano statistical test66. We use MSE since it is the target 
metric employed to guide the search of the parameters of the models. Table 7 shows that both versions of the 
perturbative approach attain MSE values statistically different from the single and literature models, i.e., the p 

Table 4.   Comparison in terms of MSE, MAPE, and MAE of the combination approaches with single statistical 
and Machine Learning models of the literature applied to the SST daily forecasting. For each data set, the best 
value of the metrics is highlighted in bold.

Dataset Approach Model MSE MAPE MAE

S1

Perturbative
SVR 6.89E−04 3.61 1.85E−02

LSTM 6.89E−04 3.61 1.85E−02

NoLiC
SVR 6.71E−04 3.60 1.84E−02

LSTM 3.97E−04 2.65 1.38E−02

Literature

ETS60 5.36E−03 12.30 5.85E−02

Single SVR3,19 3.78E−03 9.40 4.56E−02

Single LSTM19,58 5.06E−03 10.83 5.21E−02

ConvLSTM11,50 1.39E−03 5.53 2.72E−02

NARX1 8.77E−04 5.28 2.51E−02

S2

Perturbative
SVR 1.08E−04 1.97 7.82E−03

LSTM 1.08E−04 1.98 7.86E−03

NoLiC
SVR 1.01E−03 4.52 2.08E−02

LSTM 1.31E−04 2.19 8.82E−03

Literature

ETS60 3.87E−03 13.93 5.43E−02

Single SVR3,19 1.01E−02 20.83 8.78E−02

Single LSTM19,58 8.30E−03 18.86 7.93E−02

ConvLSTM11,50 8.59E−04 5.92 2.33E−02

NARX1 2.03E−04 3.04 1.16E−02

S3

Perturbative
SVR 9.38E−04 3.80 2.36E−02

LSTM 7.91E−04 3.41 2.11E−02

NoLiC
SVR 9.02E−04 3.75 2.34E−02

LSTM 7.74E−04 3.43 2.15E−02

Literature

ETS60 5.78E−03 9.00 5.56E−02

Single SVR3,19 2.58E−03 6.20 3.75E−02

Single LSTM19,58 1.15E−03 3.96 2.44E−02

ConvLSTM11,50 1.27E−03 4.30 2.60E−02

NARX1 9.18E−04 3.89 2.35E−02
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value is smaller than the significance level adopted (0.05) in all comparisons. The NoLiC employing LSTM also 
reached results statistically better than other models. Only the NoLiC version using SVR attained an MSE worse 
than NARX1 and ConvLSTM11,50 models.

Table 8 shows the execution time (in seconds) of the testing phase calculated over 30 executions. The evalu-
ated approaches presented an execution time smaller than 1 s in all data sets. It is important to highlight that the 
hybrid systems based on the LSTM model are more costly regarding computational effort than the ones based 
on SVR. For instance, the SVR’s perturbative approaches were less computationally costly than single LSTM for 
S1 and S2 series.

The complexity analysis of the hybrid system can be divided into p steps, each one corresponding to the train-
ing of a model ( M0,M1, . . . ,Mp ). The evaluated hybrid systems are trained sequentially, and their training time 
can be described as MT0 +MT1 + · · · +MTp , where MT is the training time of the model in a specific phase. 
In this way, the NoLiC approach is approximately three times more expensive than the single models, because 
the NoLiC uses three models ( M0,M1 , and MC ), and the perturbative approach is approximately p times more 
expensive than the single models because it uses M0,M1, . . . ,Mp models. This work applies two compositions of 
hybrid systems, using SVR or LSTM. The SVR training process has a complexity of O(lm)18,67, where l is the size 

Table 5.   Percentage difference between the perturbative approach and literature models for MSE, MAPE, and 
MAE.

Dataset Model

Pertubative approach

SVR LSTM

MSE MAPE MAE MSE MAPE MAE

S1

ETS60 87.14 70.63 68.27 87.14 70.63 68.27

Single SVR3,19 81.78 61.59 59.29 81.78 61.59 59.29

Single LSTM19,58 86.37 66.65 64.41 86.37 66.65 64.41

ConvLSTM11,50 50.25 34.73 31.85 50.25 34.73 31.85

NARX1 21.44 31.63 26.15 21.44 31.63 26.15

S2

ETS60 97.20 85.88 85.59 97.20 85.79 85.51

Single SVR3,19 98.93 90.56 91.09 98.92 90.50 91.05

Single LSTM19,58 98.70 89.57 90.13 98.69 89.51 90.08

ConvLSTM11,50 87.39 66.75 66.40 87.38 66.55 66.21

NARX1 46.76 35.27 32.71 46.71 34.88 32.34

S3

ETS60 83.76 57.73 57.62 86.31 62.14 61.98

Single SVR3,19 63.64 38.66 37.20 69.35 45.06 43.65

Single LSTM19,58 18.07 3.94 3.36 30.93 13.97 13.30

ConvLSTM11,50 25.90 11.48 9.25 37.54 20.72 18.57

NARX1 − 2.15 2.16 − 0.30 13.89 12.37 10.01

Table 6.   Percentage difference between the NoLic and literature models for MSE, MAPE, and MAE.

Dataset Model

NoLiC

SVR LSTM

MSE MAPE MAE MSE MAPE MAE

S1

ETS60 87.48 70.76 68.58 92.59 78.46 76.36

Single SVR3,19 82.26 61.75 59.69 89.51 71.83 69.67

Single LSTM19,58 86.73 66.79 64.75 92.15 75.54 73.48

ConvLSTM11,50 51.57 35.00 32.51 71.35 52.13 49.23

NARX1 23.51 31.91 26.87 54.75 49.86 44.98

S2

ETS60 73.98 67.52 61.60 96.62 84.29 83.74

Single SVR3,19 90.01 78.28 76.28 98.70 89.50 89.95

Single LSTM19,58 87.87 76.01 73.72 98.42 88.40 88.87

ConvLSTM11,50 − 17.24 23.53 10.49 84.76 63.02 62.09

NARX1 − 395.08 − 48.86 − 79.26 35.64 28.00 24.09

S3

ETS60 84.38 58.30 57.94 86.60 61.86 61.29

Single SVR3,19 65.03 39.50 37.68 70.00 44.66 42.64

Single LSTM19,58 21.20 5.25 4.10 32.41 13.34 11.74

ConvLSTM11,50 28.73 12.69 9.94 38.87 20.14 17.11

NARX1 1.75 3.50 0.47 15.73 11.73 8.39
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of the data set, and m represents the number of input features. The training process of the LSTM has a complexity 
of O(W), where W is the total number of parameters68.

Conclusion
The Sea Surface Temperature (SST) is an important environmental variable due to its strong relationship to 
climate, weather, and nature events, such as El Niño. So, the SST accurate forecast can support decisions in 
several science fields.

(a) Forecasts of the hybrid systems using SVR and the respective
single model for the S1 series.

(b) Forecasts of the hybrid systems using LSTM and the respective
single model for the S1 series.

(c) Forecasts of the hybrid systems using SVR and the respective
single model for the S2 series.

(d) Forecasts of the hybrid systems using LSTM and the respective
single model for the S2 series.

(e) Forecasts of the hybrid systems using SVR and the respective
single model for the S3 series.

(f) Forecasts of the hybrid systems using LSTM and the respective
single model for the S3 series.

Figure 4.   One day ahead forecasting for the SST time series on the test set with Perturbative approach, NoLiC 
and the respective single model.
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In this work, we evaluated two types of hybrid systems intending to improve the performance of single ML 
models in the task of SST forecast. The hybrid systems are evaluated in the 1-day-ahead forecasting scenario. 
The purpose was to correct biased and deteriorated forecasts of the ML models by modeling the error series. 
The Perturbative and NoLiC hybrid approaches employ linear and nonlinear combinations, respectively. For 
each approach, two versions were generated, one using SVR and another using LSTM as base models. All the 
models were evaluated in three data sets of different locations in the tropical Atlantic using traditional metrics 
(MSE, MAPE, and MAE) of the literature. Compared with the ML single models, the hybrid system approaches 
obtained a significant performance improvement (more than 20%).

Regarding the hybrid systems, it was possible to verify the influence of the combination function in their 
performance. The linear combination used by the Perturbative approach obtained the best performance in two 
out of three study cases regarding MSE. Although NoLiC employs a combination function more versatile than 
the simple sum, it could not overcome the linear combination in most cases. In particular, when the perturbative 

Table 7.   Results of the comparison of the hybrid systems using SVR and LSTM with single and literature 
models using Diebold–Mariano hypothesis test.

Dataset Model

Perturbative NoLiC

SVR LSTM SVR LSTM

S1

ETS60 + + + +

Single SVR + + + +

Single LSTM + + + +

NARX1 + + + +

ConvLSTM11,50 + + + +

S2

ETS60 + + + +

Single SVR + + + +

Single LSTM + + + +

NARX1 + + − +

ConvLSTM11,50 + + − +

S3

ETS60 + + + +

Single SVR + + + +

Single LSTM + + + +

NARX1 + + + +

ConvLSTM11,50 + + + +

Table 8.   Testing time in seconds of the single models and combination approaches for 1 day ahead 
forecasting. For each approach is presented the mean testing time and the respective standard deviation.

Datasets Model Approach

Execution time

Mean (Std)

S1

SVR

Single 0.014 (0.002)

P0 + P1 + P2 + P3 0.053 (0.005)

NoLiC 0.064 (0.120)

LSTM

Single 0.117 (0.037)

P0 + P1 + P2 0.371 (0.088)

NoLiC 0.261 (0.057)

S2

SVR

Single 0.011 (0.005)

P0 + P1 + P2 + P3 0.062 (0.011)

NoLiC 0.303 (0.027)

LSTM

Single 0.105 (0.009)

P0 + P1 + P2 0.371 (0.036)

NoLiC 0.271 (0.016)

S3

SVR

Single 0.020 (0.005)

P0 + P1 + P2 + P3 0.100 (0.012)

NoLiC 0.282 (0.024)

LSTM

Single 0.098 (0.025)

P0 + P1 + P2 0.421 (0.107)

NoLiC 0.338 (0.043)
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approach uses the LSTM as the base model, it reached the highest performance in three out of five cases. The 
LSTM’s best performance compared to the other ML models can be attributed to its ability to capture long-term 
temporal dependencies due to its recurrent abilities, such as memory cells1. In this way, the LSTM can consider 
previous training examples on its forecasting process, creating a better understanding of the past data and a 
more robust combination process.

It is crucial to remark that both single and hybrid models struggled to forecast extreme points. This issue is a 
challenging task in the time series literature12. Another is the absence of sufficient extreme cases in the training 
set, which can bias the training process towards more regular cases and the applied target metric (MSE). The 
hybrid system’s computational effort is the sum of the costs of modeling its counterparts and depends on each 
model’s parameters set. The computational cost can be minimized in the test phase, parallelizing the time series 
and residual forecasting.

For future works, we intend to improve the accuracy of the hybrid systems to better forecast extreme values 
by automatically searching for the most suitable combination function. Besides, different base models, such 
as convolutional neural networks, echo state networks, and decision trees for regression, can be investigated.
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