
entropy

Article

Analysis and Comparison of Spatial–Temporal
Entropy Variability of Tehran City Microclimate
Based on Climate Change Scenarios

Abdolazim Ghanghermeh 1, Gholamreza Roshan 1, José A. Orosa 2,* and Ángel M. Costa 2

1 Department of Geography, Golestan University, ShahidBeheshti, 49138-15759 Gorgan, Iran;
a_ghangherme@yahoo.com (A.G.); ghr.roshan@gu.ac.ir (G.R.)

2 Department of Navigation Science and Marine Engineering, Energy and Propulsion Research Group,
University of A Coruña, Paseo de Ronda 51, 15011 A Coruña, Spain; angel.costa@udc.es

* Correspondence: jaorosa@udc.es

Received: 30 October 2018; Accepted: 20 December 2018; Published: 24 December 2018
����������
�������

Abstract: Urban microclimate patterns can play a great role for the allocation and management of
cooling and heating energy sources, urban design and architecture, and urban heat island control.
Therefore, the present study intends to investigate the variability of spatial and temporal entropy of
the Effective Temperature index (ET) for the two basic periods (1971–2010) and the future (2011–2050)
in Tehran to determine how the variability degree of the entropy values of the abovementioned
bioclimatic would be, based on global warming and future climate change. ArcGIS software and
geostatistical methods were used to show the Spatial and Temporal variations of the microclimate
pattern in Tehran. However, due to global warming the temperature difference between the different
areas of the study has declined, which is believed to reduce the abnormalities and more orderly
between the data spatially and over time. It is observed that the lowest values of the Shannon entropy
occurred in the last two decades, from 2030 to 2040, and the other in 2040–2050. Because, based on
global warming, dominant areas have increased temperature, and the difference in temperature is
reduced daily and the temperature difference between the zones of different areas is lower. The results
of this study show a decrease in the coefficient of the Shannon entropy of effective temperature for
future decades in Tehran. This can be due to the reduction of temperature differences between
different regions. However, based on the urban-climate perspective, there is no positive view of
this process. Because reducing the urban temperature difference means reducing the local pressure
difference as well as reducing local winds. This is a factor that can effective, though limited, in the
movement of stagnant urban air and reduction of thermal budget and thermal stress of the city.
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1. Introduction

In the last years, due to a growing population leading to rapid urban development, urban heating
has been observed [1–4]. High temperatures in urban environments can have an impact on health,
economics, recreation, and the quality of life as a whole. It can also make problems for vulnerable
people by increasing heat-stress in cities [5–9]. Fouillet (2006) [10] in France and Hajat (2007) [11] in the
United Kingdom proved the relationship between the increase in temperature and mortality [10,11].
Another unfavorable impact of city heating is the increase in energy consumption. Shen et al. (2013) [12]
indicate the need for energy consumption in the administrative units in the Hangzhou, China with
10.8 percent for every half-degree increase in temperature. In a similar study, Akbari et al. (2001) [13]
earned an increase in electric power consumption in Los Angeles, USA, by 2–4 percent per degree of
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summer temperature rise. Increasing energy consumption in order to cool the spaces, has other adverse
effects, such as increased carbon emissions and greenhouse gases [14], and air pollution [15,16].

Eventually, rising temperatures in cities are an important issue that affects all aspects of urban
life, and that the lack of attention to them will result in irreversible effects. Causes of temperature
rise can be observed in various branches. However, what is clear is that the impact of city expansion
has a direct impact on this process [17]. Meanwhile, the expansion of major cities in recent decades
has had a significant impact on climate change and the transformation of climate and micro-climatic
conditions [18]. Tehran, as one of the world’s largest metropolises, has progressed much faster than its
natural course, despite the rapid growth of its population, the area and size of the city has also been
experiencing rapid growth in recent decades [19,20].

This city is about 160 times greater than the rule of Shah Tahmasb in 1524–1576 with an area
of four square kilometers, compared to 1891 with 5.24 square kilometers, about 5.16 times, and five
times larger compared to 1998 with 130 square kilometers. The figures are indicative of the accelerated
physical growth of the city, even faster than its population growth. For instance, if the urban population
of Tehran was compared in 1996, it was estimated that the growth rate was only about 7.3 times, which
is very low relative to the physical growth of the city [21]. Therefore, this urban expansion has caused
changes and evolutions in some of the climatic factors in Tehran [22–26]. One of the methods for
studying the order and disorder in the occurrence of natural phenomena is the use of entropy. However,
entropy is a non-parametric approach and a robust measure of variability. Moreover, entropy does not
change drastically by small changes in [27].

In a bulk of studies, this indicator is used, and the applications of this indicator have also been
of interest to researchers in the field of climatic and meteorological studies [28–31]. Despite the use
of entropy method in international climate and meteorological studies [32–34], the capabilities and
potentials of this index have not been significantly investigated in the field of climatology in Iran.
Thus, the present study is one of the first researches in the country that seeks to fill the gap in this
research area.

Accordingly, the present study sought to investigate the variability of the temporal–spatial entropy
of the ET bioclimatic index for the two basic periods from 1971 to 2010 and from 2011 to 2050 in Tehran.
Therefore, this research seeks to answer the question if the effect of global warming can cause changes
in the Spatial and Temporal entropy of the ET bioclimatic index in Tehran city or not?

2. Materials and Method

In this study, the Effective Temperature Index (ET) was used to evaluate the monitoring and
advance of bioclimatic conditions in Tehran. Therefore, in order to calculate this index, two different
time series data have been used. In this study, the baseline data will include a timeline from 1971 to
2010 and another simulated data for the years 2011–2050. In Section 2.2, the general circulation model
of the atmosphere has been used and the modeling processes for simulating the climate data of the
study period from 2011 to 2050 were fully explained.

The climatic data used to model the bioclimatic conditions include dry-bulb temperature and
wet-bulb temperature. The data are available monthly for the base period. To diagnose these climatic
parameters for the future, the outcomes of the Amon_GISS-E2-H-cc large scale model prediction
outsourcing are to be deduced from bcsd data, the National Aeronautics and Space Administration
(NASA) of the United States, with a resolution of 2.5 × 2.5 degrees.

The climate modeling program at Goddard Institute for Space Studies (GISS) is primarily aimed at
the development of coupled atmosphere-ocean models for simulating Earth’s climate system. Primary
emphasis is placed on investigation of climate sensitivity—globally and regionally, including the
climate system’s response to diverse forces, such as solar variability, volcanoes, anthropogenic and
natural emissions of greenhouse gases and aerosols, paleo-climate changes, etc.
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A major focus of GISS GCM simulations is to study the human impact on the climate as well
as the effects of a changing climate on society and the environment. More details on the GISS GCM
model are available at this reference [35].

The international climate modeling community has adopted four RCPs through the IPCC [36–38].
The scenarios range from RCP 8.5, which corresponds to a “non-climate policy” scenario translating
into high severity climate change impacts, to RCP 2.6, which is a future requiring stringent climate
policy to limit greenhouse gas emissions translating into low severity impacts [38].

Two middle scenarios, RCPs 4.5 and 6.0 were selected by the IPCC to be evenly spaced between
RCPs 2.6 and 8.5. Together, these scenarios represent the range of radiative forces available in the
peer-reviewed literature at the time of their development in 2007 [36,39]. In present work, we used
RCPs 4.5 and 8.5.

Since the resolution of the GISS model is in large dimensions, using a multivariate regression
method, the outputs of the climate parameters are scaled for 87 stations in Tehran and its surrounding
areas using MATLAB software (MATLAB 7.5.0.342; R2007b). In this software, the Statistics Toolbox,
(multiple linear regression) was used for simulation.

In order to show the spatial distribution of the changes in the microclimatic model of Tehran for
two basic and future periods, using Arc GIS software and Kriging interpolation method, their maps
were produced and presented. Figure 1 shows the distribution of the stations used in the present study.
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2.1. Effective Temperature

ET is one of the oldest physiologic comfort indices identified to be applicable to Africa [40].
However, for many parts of the world, such as Nedel et al. (2015) [41], for Brazil, Robaa and Abdel
Wahab (2018) [42] for Palestine, Wu et al. (2018) [43] for China, this indicator is used, with the results
being approved. It is defined as the temperature at which saturated air would make a normal person to
wear ordinary indoor clothing. It was originally intended for indoor conditions in industry and mines
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and not for open air conditions but has later gained wider applications in comfort and climatologic
analyze [44]. An approximation of the ET is given in either of these forms [45]:

Teff = t − 0.4(t − 10)(1 − Hrh/100) (1)

Teff = 0.4(Tdry + Twet) + 4.8 (2)

where Teff: effective temperature; t: air temperature; Hrh: is relative humidity; Tdry and Twet: are dry
and wet bulb temperatures, respectively.

Uncomfortable situations due to cold stress occur at ET ≤ 18.9 ◦C, and that due to heat stress
at >25.6 ◦C [40]. Observations by Gregorczuk and Cena (1967) [44] suggested that ET over latitudes
10–30◦N was highest in the world in July and that the spatial distributions of ET values are similar to
that of the air temperature, sometimes modified by high relative humidity.

It is worth noting that the process of calculating the effective temperature index for two hours
3 and 15 GMT was done to compare the results in these two hours.

2.2. Introducing the Method of Projecting and Downscaling of Climate Variables

First, a temporal series of the data for dry and wet temperature in monthly-scale data for the years
1971 to 2010 was designed to simulate and exponential downscaling of these components for future
decades were provided. Then, from the NASA Meteorological Center (thredds-ncss-grid-CMIP5), the
data related to the diagnostic components of the general GISS model for the range of 30 to 40 degrees
north and 50 to 55 degrees east in the form of 18 knots 2.5 × 2.5 degrees was received. The predictive
components of the GISS model include 81 general atmospheric components (Table 1).

In order to diagnose and exponential downscale of wet and dry temperature data of the study
area, the best correlation between circulating components for the base period was used. The selected
period for this purpose was from 1971 to 2005, and then, for training and testing, the baseline period
was divided into two periods from 1971 to 2000 and 2001 to 2005. It needs to be explained that the
output of the general circulation model of the atmosphere is based on two scenarios RCP4.5 and
RCP8.5 from 2006 onwards. Thus, in a separate process, we also used actual data from stations for
2006 to 2014 to validate the outcomes of the two scenarios mentioned.

Finally, according to the parametric correlation method (Pearson), the extracted relations were
evaluated and then, based on the coefficients of determination and testing the residuals’ independence,
based on Durbin-Watson method and the other statistical methods shown in Table 2, the results of the
modeling were verified.

Table 1. 81 diagnostic components of the GISS general circulation model.

Number of Row Circulate Components Number of Row Circulate Components

1 zg = Geopotential Height 42
ra = Carbon Mass Flux into

Atmosphere due to Autotrophic
(Plant) Respiration on Land

2 wap = omega (=dp/dt) 43 psl = Sea Level Pressure
3 vo = Sea Water Y Velocity 44 ps = Surface Air Pressure

4 vas = Northward Near-Surface
Wind 45 prw = Water Vapor Path

5 va = Northward Wind 46 prveg = Precipitation onto Canopy
6 uo = Sea Water X Velocity 47 prsn = Snowfall Flux

7 uas = Eastward Near-Surface
Wind 48 prc = Convective Precipitation

8 ua = Eastward Wind 49 pr = Precipitation

9 tsl = Temperature of Soil 50
npp = Carbon Mass Flux out of

Atmosphere due to Net Primary
Production on Land

10 ts = Surface Temperature 51
nep = Net Carbon Mass Flux out

of Atmosphere due to Net
Ecosystem Productivity on Land.
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Table 1. Cont.

Number of Row Circulate Components Number of Row Circulate Components

11 transiy = Y-Component of Sea Ice
Mass Transport 52 mrsos = Moisture in Upper

Portion of Soil Column

12 transix = X-Component of Sea Ice
Mass Transport 53 mrso = Total Soil Moisture

Content
13 tran = Transpiration 54 mrros = Surface Runoff

14 tos = Sea Surface Temperature 55 mrso = Total Soil Moisture
Content

15 thetao = Sea Water Potential
Temperature 56 mrro = Total Runoff

16 tauv = Surface Downward
Northward Wind Stress 57 mrlsl = Water Content of Soil

Layer

17 tauu = Surface Downward
Eastward Wind Stress 58 mrfso = Soil Frozen Water Content

18 tasmin = Daily Minimum
Near-Surface Air Temperature 59 mc = Convective Mass Flux

19 tasmax = Daily Maximum
Near-Surface Air Temperature 60 huss = Near-Surface Specific

Humidity

20 tas = Near-Surface Air
Temperature 61 hus = Specific Humidity

21 ta = Air Temperature 62 hurs = Near-Surface Relative
Humidity

22 sos = Sea Surface Salinity 63 hur = Relative Humidity

23 so = Sea Water Salinity 64 hfss = Surface Upward Sensible
Heat Flux

24 snw = Surface Snow Amount 65 hfls = Surface Upward Latent
Heat Flux

25 snm = Surface Snow Melt 66
gpp = Carbon Mass Flux out of

Atmosphere due to Gross Primary
Production on Land

26 snd = Snow Depth 67 evspsblveg = Evaporation
from Canopy

27 snc = Snow Area Fraction 68 evspsblsoi = Water Evaporation
from Soil

28 sit = Sea Ice Thickness 69 evspsbl = Evaporation

29 sic = Sea Ice Area Fraction 70 evap = Water Evaporation Flux
from Sea Ice

30 sfcWind = Near-Surface
Wind Speed 71 clwvi = Condensed Water Path

31 sci = Fraction of Time Shallow
Convection Occurs 72 clw = Mass Fraction of Cloud

Liquid Water

32 sbl = Surface Snow and Ice
Sublimation Flux 73 clt = Total Cloud Fraction

33 rtmt = Net Downward Flux at Top
of Model 74 clivi = Ice Water Path

34 rsutcs = TOA Outgoing Clear-Sky
Shortwave Radiation 75 cli = Mass Fraction of Cloud Ice

35 rsut = TOA Outgoing
Shortwave Radiation 76 cl = Cloud Area Fraction

36 rsuscs = Surface Upwelling
Clear-Sky Shortwave Radiation 77 ci = Fraction of Time Convection

Occurs

37 rsus = Surface Upwelling
Shortwave Radiation 78 cct = Air Pressure at Convective

Cloud Top

38 rlus = Surface Upwelling
Longwave Radiation 79 ccb = Air Pressure at Convective

Cloud Base

39 rldscs = Surface Downwelling
Clear-Sky Longwave Radiation 80 cSoil = Carbon Mass in Soil Pool

40 rlds = Surface Downwelling
Longwave Radiation 81 baresoilFrac = Bare Soil Fraction

41
rh = Carbon Mass Flux into

Atmosphere due to Heterotrophic
Respiration on Land

- -
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Table 2. Testing the exponential downscaling of dry temperature model at 3:00 GMT.

Dry Temp at 3:00 GMT Verification Period Mean Max Min

RMSE

Training 1971–2000 2.049 2.899 1.680
Testing 2001–2010 2.026 2.597 1.557

Testing rcp4.5 2011–2014 2.067 2.689 1.646
Testing rcp8.5 2011–2014 2.094 2.982 1.787

R2

Training 1971–2000 0.941 0.963 0.872
Testing 2001–2010 0.943 0.958 0.914

Testing rcp4.5 2011–2014 0.948 0.962 0.917
Testing rcp8.5 2011–2014 0.941 0.949 0.905

BIAS

Training 1971–2000 0.454 7.896 −23.570
Testing 2001–2010 0.384 2.571 −12.103

Testing rcp4.5 2011–2014 0.560 4.003 −6.217
Testing rcp8.5 2011–2014 0.584 4.237 −4.572

NS

Training 1971–2000 0.941 0.963 0.872
Testing 2001–2010 0.939 0.957 0.908

Testing rcp4.5 2011–2014 0.938 0.959 0.886
Testing rcp8.5 2011–2014 0.937 0.948 0.895

Therefore, based on the least error in modeling, it was determined that the best relation for
diagnosing and exponential downscaling of climate variables of wet and dry temperatures were
obtained with three minimum and maximum of temperature and specific humidity components.
These variables in Table 1 include rows 18, 19, and 60, which are also highlighted in italic font. In order
to complete the above, it should be noted that each of the components in Table 1, were used in temporal
scales of current and future period (up to the 2050s) and based on two scenarios RCP4.5 and RCP8.5.

2.3. Introducing Statistical Methods to Calibrate and Validate the Climate Model

In the present study, in order to calibrate the results of projecting and downscaling of climate
variables, the Equation (3) was used. Since in all years the average annual standard deviations of all
variables are lower than the standard deviation of the observe period and itis expected that climatic
limit values increase in the future, in order to resolve this shortcoming using Equation (3) while
maintaining the means, standard deviation of these variables are increased in the basic period with the
ratio of the standard deviation of observed data to the simulated data by the model of the past period.

Ff ut =

(
Simi − Simave

STDsim
× STDobs

)
+ Obsavg (3)

In Equation (1), the Ffut component contains calibrated values, and Simi is introduced as the
simulated value of i-th and simave and STDsim are the mean and standard deviation of simulated values,
respectively. Moreover, STDobs and Obsave are the mean and standard deviations of observational
values, respectively.

After calibrating the simulated data, in order to evaluate their fit with real data, the Nash-Sutcliffe
test was used. The Nash–Sutcliffe Goodness of Fit statistics [46] is computed as follows:

NS = 1.0 −
ntot

∑
n=1

(OBSn − SIMn)
2/

ntot

∑
n=1

(OBSn − MN)2 (4)

where OBSn is observed climatic parameters (wet and dry temperatures), and SIMn is simulated
climatic parameters.

NS can range from −∞ to 1. An efficiency of 1 (NS = 1) corresponds to a perfect match of simulated
values to the observed data. An efficiency of 0 (NS = 0) demonstrates that the model predictions are
as accurate as the mean of the observed data. In essence, closer the efficiency of the model is to 1,
the more accurate is the model [47]. After calibrating the simulated climatic data with the stations real
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data, in the next step, using the statistical methods, Root Mean Square Error (RMSE), Bias Method
(MBE) and rate of R-Square, the validity of the simulated data calibrated with the stations real data was
evaluated and the results are presented in Tables 2–5. The least rate of RMSE is zero. The great deals
of MAE would be an indicator of the worst status of similar action, while the RMSE indicates how
much maximum and minimum the estimation is, compared to the observed data. In the best status of
the numeric rate, RMSE would be close to zero. MBE indicates how different the estimated and the
observed rates are. If the rate equals zero, it indicates the deals are good examples of simulation, but in
most cases the difference is in a way that the further it is from zero, the weaker simulation becomes.
R-Square is in fact the so-called determination index, which indicates the correlation ratio of the two
variables, and if multiplied by 100, it can show the impact ratio percent [48].

Table 3. Testing the exponential downscaling of dry temperature model at 15:00 GMT.

Dry Temp at 15:00 GMT Verification Period Mean Max Min

RMSE

Training 1971–2000 2.326 2.785 1.840
Testing 2001–2010 2.308 3.148 1.770

Testing rcp4.5 2011–2014 2.233 2.909 1.884
Testing rcp8.5 2011—2014 2.248 2.990 1.934

R2

Training 1971–2000 0.946 0.962 0.903
Testing 2001–2010 0.949 0.961 0.910

Testing rcp4.5 2011–2014 0.956 0.968 0.901
Testing rcp8.5 2011–2014 0.956 0.964 0.903

BIAS

Training 1971–2000 0.436 3.962 0.213
Testing 2001–2010 0.399 3.204 0.212

Testing rcp4.5 2011–2014 0.376 3.214 0.199
Testing rcp8.5 2011–2014 0.368 2.428 0.203

NS

Training 1971–2000 0.946 0.962 0.903
Testing 2001–2010 0.944 0.961 0.896

Testing rcp4.5 2011–2014 0.953 0.965 0.896
Testing rcp8.5 2011–2014 0.953 0.963 0.896

Table 4. Testing the exponential downscaling of wet temperature model at 3:00 GMT.

Wet Temp at 03:00 GMT Verification Period Mean Max Min

RMSE

Training 1971–2000 1.726 2.411 1.476
Testing 2001–2010 1.652 2.592 1.252

Testing rcp4.5 2011–2014 1.697 2.922 1.482
Testing rcp8.5 2011–2014 1.796 2.898 1.615

R2

Training 1971–2000 0.935 0.951 0.892
Testing 2001–2010 0.940 0.962 0.876

Testing rcp4.5 2011–2014 0.947 0.955 0.896
Testing rcp8.5 2011–2014 0.934 0.945 0.893

BIAS

Training 1971–2000 −0.690 12.134 −73.193
Testing 2001–2010 0.595 9.786 −4.044

Testing rcp4.5 2011–2014 0.558 6.502 −9.196
Testing rcp8.5 2011–2014 0.619 7.649 −10.444

NS

Training 1971–2000 0.935 0.951 0.892
Testing 2001–2010 0.933 0.959 0.842

Testing rcp4.5 2011–2014 0.933 0.952 0.762
Testing rcp8.5 2011–2014 0.926 0.943 0.766
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Table 5. Testing the exponential downscaling of wet temperature model at 15:00 GMT.

Wet Temp at 15:00 GMT Verification Period Mean Max Min

RMSE

Training 1971–2000 1.848 2.515 1.522
Testing 2001–2010 1.808 3.199 1.525

Testing rcp4.5 2011–2014 2.028 4.813 1.672
Testing rcp8.5 2011–2014 1.942 4.875 1.579

R2

Training 1971–2000 0.928 0.947 0.888
Testing 2001–2010 0.938 0.954 0.862

Testing rcp4.5 2011–2014 0.946 0.960 0.906
Testing rcp8.5 2011–2014 0.939 0.952 0.907

BIAS

Training 1971–2000 0.480 3.335 0.212
Testing 2001–2010 0.411 1.965 0.176

Testing rcp4.5 2011–2014 0.582 3.407 0.253
Testing rcp8.5 2011–2014 0.532 3.024 0.198

NS

Training 1971–2000 0.928 0.947 0.888
Testing 2001–2010 0.924 0.944 0.759

Testing rcp4.5 2011–2014 0.905 0.945 0.337
Testing rcp8.5 2011–2014 0.914 0.943 0.320

2.4. Shannon Entropy Indicator

One of the objectives of this paper is to investigate the irregularity or balance of ET values under
real conditions of observational data and comparison with simulated data of next decades for Tehran.
Therefore, one of the strategies for achieving this goal is to use the Shannon entropy method.

In information theory, Shannon’s entropy is regarded as a measure of variability or randomness
in the data, which is analogous to the lack of information about the system [49,50]. Shannon’s entropy
(H) of a random variable (such as time-series data) is calculated as [51]:

H = −
B

∑
i=1

Pilog2(Pi) (5)

where, B is the set of measurements and Pi denotes the probability of outcome as i varies from 1 to B.
Equation (5) suggests that the value of entropy varies according to the distribution of Pi’s associated
with the set B chosen to represent the random variable. This implies that by increasing the number
of constraints, or by specifying more information about the random variable, the range of entropy
decreases. Therefore, process components that add information to the system reduce Shannon’s
entropy and are able to explain the variability in the data series [25,52–54]. Finally, entropy maps were
produced based on the results of normalized entropy calculations. It is necessary to explain that Hn is
the normalized entropy because the relative frequency entropy was calculated Equation (6)

Hn =
−∑B

i=1 Pilog2(Pi)

log2(B)
(6)

The steps for this section were that after the exponential downscaling of the wet and dry
temperatures, the effective temperature was first calculated for two hours of 3:00 and 15:00. Then,
for the region of Tehran, the effective temperatures in a 50 × 50 matrix with a horizontal resolution of
1118 m and a vertical of 800, were simulated for all months from 1971 to 2050. Then, to calculate the
frequency of effective temperature, we set a temperature range of 2 degrees, so that for every decade,
the percentage of relative frequency was calculated for each pixel. Finally, due to the preparation
of relative frequency, the temporal entropy was obtained using Equation (6). Figure 2 show various
stages involved in research study.
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3. Research Findings

3.1. Validating Climate Modeling Results

In order to verify the exponential downscaling accuracy, the temperature data of the base period
was divided into three periods of time, in which the period 1971 to 2000 was selected as the training
model test period and periods 2001–2005 and 2006–2014 as the model test periods.

However, it should be noted that the last period is a test in two time scenarios since from the
beginning of this period, the output of scenarios RCP 4.5 and RCP8.5 at macro-level is provided for
future periods. In order to achieve this, in addition to determining the error rate (RMSE), deviation
from the fit line (BIAS) and coefficient of determination (R2), the Nash–Sutcliff criterion (NS) was used
to evaluate the accuracy of the model. This criterion ranges from negative infinite to one, and if it
reaches one, there will be a perfect fit between simulated and observational data. According to Table 2,
it is determined that according to the Nash–Sutcliff criterion, the model has a high efficiency for the
exponential downscaling for future periods. As can be seen, its average for dry temperatures at 3:00 for
the training period (2000–1791) is 0.941. The maximum value was 0.963 and the minimum was 0.872.
Additionally, the values for this test statistic for the experiment period (2001–2005) include an average
of 0.939, with a maximum of 0.957 and a minimum of 0.908. On the other hand, the Nash–Sutcliffe test
outputs for the RCP4.5 and RCP8.5 scenario data for the period from 2006 to 2014 indicate the high
output of this test, which confirmed the efficiency of climate modeling. The dry temperature test of
15:00 also indicates a high performance of the exponential downscaling model (Table 3).
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The wet temperature test for 3:00 and 15:00 GMT also shows that for the training period
(1971–2000), the average output of the Nash-Sutcliffe test was 0.935 and 0.928, respectively, with
a maximum of 0.951 and 0.947 for these two hours, respectively, and its minimum values are 0.892
and 0.888. However, for 3:00 and 15:00 GMT, the average Nash–Sutcliffe test for the trial period
(2001–2005), for 3:00, was 0.933, and for 15:00, was 0.924, with a maximum of 0.959 and 0.944 for
these two hours. On the other hand, the minimum test value for 3:00 is 0.842 and for 15:00 it is 0.759.
The comparison of the two scenarios 4.5 and 8.5 during the period 2006–2014 suggests that, although
in the 8.5 scenario, the performance of the model is weaker than 4.5, the criterion is to be precise in
terms of exponential downscaling and diagnosis. In Tables 4 and 5, the results of all tests for diagnostic
validation and the exponential downscaling of climate modeling for two climatic components of wet
and dry temperatures at 3:00 and 15:00 GMT have been provided. Outputs confirm the appropriate
validity of the proposed climate modeling in the present study. In order to summarize the results of
this section, they are presented as tables.

3.2. Zoning of Effective Temperature Index for Different Study Periods

In this part of the study, eight decades of study have been considered in order to study the effective
temperature changes in Tehran. The first period covers 1970 to 1980, and the last period includes
2040–2050. Thus, for both 3:00 and 15:00 GMT, and two RCP4.5 and RCP8.5 scenarios, temporal-spatial
variations of the effective temperature have been monitored and projected. It should be explained
that nine classes were considered for the effective temperature event. The first class has a temperature
range of 10 to 11 degrees Celsius, and the last class is from 18 to 19 degrees Celsius. Therefore, temporal
and spatial variations of different effective temperature classes for different periods are presented
as maps. In addition in Figure 3, the percentage of effective temperature area is given in different
classes. Initially, outputs are analyzed for both scenarios and at 3:00 GMT. As can be seen from Figure 3,
for the RCP4.5 scenario, the effective temperature values for classes greater than 15 ◦C and RCP8.5 for
temperature classes greater than 16 ◦C are not considered. However it is interesting to note that for
the first class, the temperature of 10 to 11 degrees Celsius, there will be no events for the next decade,
and no area in Tehran will experience this temperature threshold. This can mean higher temperature
thresholds than the lower temperatures for decades to come.
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Figure 3. Comparison of the effective temperature of different classes for different hours and scenarios
for the past to future decades.

On the other hand, outputs for this hour show that the maximum area of Tehran in different times
covers temperatures of 13 to 14 degrees Celsius, which is significant for both scenarios. However,
based on the RCP4.5 scenario, most of the zones that experience 14 to 15 degrees temperatures are in
the future decades, especially in 2030 decade. Thus, for this class in the first two decades, no event
experience is seen. However, for the RCP8.5 scenario, the situation is different. Because the occurrence
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of temperature classes of 15 ◦C to 16 ◦C is seen for the first time since the 2030s onward. The claim
is that the temperature threshold is 15 to 16 degrees Celsius, respectively, with an area of 0.25 and
6.79 percent for the two decades of 2030 and 2040. Note that, as can be seen in Figure 4, the maximum
values or greater values of the effective temperature are for the southern half of Tehran, and the
minimum are for the northern half. These conditions are for both present and future and both scenarios
as well.
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The findings for the 15:00 GMT show significant differences compared to the 03:00 GMT. For this
hour, in both scenarios, there is no experience for two primary classes, which include temperature
thresholds of 10 to 11 and 11 to 12 degrees Celsius. On the other hand, the results of Figure 4 show
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that the maximum effective temperature range based on different periods of study is related to the
temperature class of 16 to 17 degrees Celsius, which is true for both scenarios.

The temperature range from 17 to 18 degrees Celsius is the last temperature class in which the
zones of Tehran experience or will experience its temperature in different periods. While it is observed
that, based on global warming, the percentage of the area in Tehran experiencing this temperature
class will be larger in future decades than in the past decades. Additionally, in comparison of RCP4.5
with RCP8.5, more zones of Tehran based on the RCP8.5 scenario include this temperature class.
For example, for the 2020–2030 decade, the area of this category was 31.15% for the RCP4.5 scenario
and 48.56% for RCP8.5, which were 35.85 and 52.96 percent in the 2030-2040 for RCP4.5 and RCP8.5,
respectively. Finally, for the 2040–2050 decade, the area covered by RCP4.5 was 48.2% and the area
covered by RCP8.5, was 67.87%. However, in terms of spatial distribution and its changes in time, it is
also observed that the south of Tehran has the highest effective temperature values, which can be seen
in the same scenario for both current and future periods based on the two scenarios (Figure 5).
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3.3. Spatial–Temporal Analysis of Shannon’s Entropy Values from the Effective Temperature Index

As previously explained, the effective temperature index values for the two hours of 3:00 and
15:00 GMT and for the two basic and future periods are calculated and modeled. Then, on the basis
of spatial–temporal distribution, different values of the effective temperature occurrence at the study
area level, Shannon entropy values were calculated and its distribution map was generated. Therefore,
at this stage, the maps shown are merely zoning the Shannon entropy temperature. However, in order
to complete the above discussion, it is worth noting that in order to compare the Shannon entropy
variations of the effective temperature in the time frame, the maps of the study periods were produced
for an average of eight periods.

The first period consisted of the average 1971–1980 and the last period, which included the
average years from 2040 to 2050. In this study, for the purpose of proper comparison between
different maps, the smallest entropy incidence class was considered 0.9 and its maximum was 0.99.
Therefore, zones that tend to be high in entropy are accompanied by disorder, more climatic and
microclimatic disturbances, and the zones that exhibit minimal entropy are at least influenced by
climatic anthropogenic. The results of 3:00 GMT are presented below:

3.3.1. Shannon Entropy Effective Temperature Indicator for 3:00 GMT

For this hour, the results of the RCP4.5 are presented from the mean of the first decade to the last
decade as shown in Figure 6. Based on this Figure, it can be seen that the spatial–temporal distribution
of Shannon entropy of the effective temperature does not follow a particular pattern for this hour and
in different periods.

For example, in the first decade, its minimum value is related to a zone in the southwest of the
study area, while in the subsequent period, this region has the maximum amount of entropy index.
However, in the third decade or the same decade from 1991 to 2000, the minimum incident was
transferred to the northern bar. However, in 2001–2010, no track of the class 0.98 to 0.99 class are seen,
and the majority of the area is in the range of 0.90 to 0.95.

In addition, this entropy and the lack of a regular process in the dispersion of spatial variations of
Shannon Entropy for the upcoming periods are also seen. Because in the period of the zone where
the entropy has the maximum amount it has been miniaturized in the next period or for each period
the maximum and minimum area of the Shannon entropy zone is located in a different range that
cannot be dispersed. Therefore, no comprehensive result can be achieved from such entropies. At this
stage, the incremental and decreasing area of Shannon entropy was calculated for the next period
compared to the previous period and finally the average of these changes was calculated. Interestingly,
the overall average of the areas where the amount of Shannon entropy is incremental to them is 51.7%,
and this average is 63% for the overall reduction of the overall period.

Based on the scenario of RCP8.5, spatial–temporal variations of the Shannon entropy for effective
temperature index are more orderly than RCP4.5 results (Figure 6). Altogether, for the first observation
period, the maximum entropies were related to the northern zones, which during the second period of
observation, this maximum were transmitted to the southern regions of the area. From the decade
2000 to 2010, the minimum entropy values are again transferred to the northern regions, and from this
time until the end of the 1990s, the decreasing trend of entropy values for the study area is considered.

However, in the 2021–2030, the Shannon entropy values increased in comparison with the previous
periods, but again they showed a decreasing trend for the last two decades. In sum, it can be admitted
that the decreasing trend of Shannon entropy values for the effective temperature index at 3:00 has
been more than the increasing trend for the decades under study.

The outcomes of this section showed that the total mean of the Shannon entropy for the entire
study period is 36.51%, which is 63.49% for the reduction values. Therefore, it can be concluded
that the decreasing trend of Shannon entropy values of the effective global heating temperature is
decreasing for Tehran and the suburbs at this hour of the day.
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3.3.2. Shannon Entropy of Effective Temperature Indicator for 15:00 GMT

For 15:00 GMT, the results are more interesting than 3:00. So, for the RCP4.5 scenario, with a
general look, it can be seen that from the first decade to the last decade, the time variation of the
Shannon entropy incident is decreasing.

On the whole, based on Figure 7, for the northern observation period, the region exhibits the
greatest disturbances or the highest entropy values. However, the same is true for decades to come.
So that the northern parts and northern borders of the region continue to appear as the most entropic
spots in comparison to other areas. Estimates from the changes in the area of increase and decrease
of Shannon entropy for different periods showed that its average increment for the whole decade
of study was 39.56%. According to global warming, an average of 39.56% of the area of the study
area experienced an increasing increase in Shannon entropy over time. While 60.43% of the area of
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Tehran and the suburbs, the variability of Shannon entropy for them shows a decrease (Figure 7).
However the findings for RCP8.5 are similar to RCP4.5. Because at a glance, the temporal and spatial
variations of the Shannon entropy of the effective temperature at 15:00, from the first decade to the last
decade, are decreasing. Thus, on average, 40.74% of the Tehran area experienced increasing amounts of
Shannon entropy coefficient, and on the other hand, 59.25% of its area is considered decreasing values
(Figure 7). Although it is difficult to analyze which region has experienced the maximum entropies in
the whole study period, it can be argued that most northern band and parts of the west and the north
east have the smallest amount of Shannon entropy (Figure 7).
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4. Discussion

Tehran, in the south of the Alborz Mountains, today faces three types of climate-related hazards
from geography, the climate risk resulting from air sustainability and global warming climate risks.
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The massive concentration of population in this geographical area has increased the impact of these
hazards. The importance and necessity of this research has been that Tehran as a political center of
Iran with a population of tens of millions today has more than 200 days of atmospheric pollution
in combination with the occurrence and intensification of heat islands and increasing thermal stress.
Tehran’s encirclement in an arched space reduces the purification property of the western and southeast
winds, and therefore, in most cases, the air stays idle. As a result, this situation can have an impact on
the warming of the heat islands and thermal stresses, especially during the warm period of the year
and affect the health of the community. Therefore, in this research, the effect of global warming on the
changes in the bioclimatic component of ET was investigated for two current and future periods, based
on different scenarios. In the next step, the spatial–temporal variability of Shannon entropy in the
effective temperature of Tehran city was studied for different periods in order to determine the effect
of anthropogenic anomalies on the effective temperature index. The results of this study showed that
the effective temperature index has been rising on base of global warming for the upcoming decades.
These incremental values are visible for both RCP4.5 and RCP8.5 scenarios. It can be seen that the
magnitude for the RCP8.5 scenario is more than the other scenario. However, one of the main index for
calculating the bioclimatic condition is index of ET. Therefore, population growth and urban buildings,
increasing greenhouse gases, land use change, etc. have been the most important factors influencing
climate change and temperature rise in Tehran.

In many other studies of Iran, it is clear that with regard to global warming, the process of
temperature change is incremental; this is a credit to the findings of this study. One of these findings
was from a study by Roshan and Negahban (2015) [55] for the southwest of Iran. They simulated
temperature changes from 2020 to 2060 using the output of GCMs (HadCM3) based on LARS-WG
software. The results of the study indicated an increase in temperature from 0.32 ◦C to 0.51 ◦C
compared with temperatures in the 1988 to 2010 base period. Ghanghermeh et al. (2015) [56] divided
Iran into seven clusters according to the statistical period of 1948–2010. Their results showed that
there was an increasing trend in temperature for all clusters. The results of Tiseuil et al. (2012) [57] for
northwest regions of Iran showed that by 2100 the temperature will increase by 1.5 ◦C for these areas.
In many other studies in other parts of the world, the outputs of GCMs relate global warming with
temperature increase [58–62].

In this study, the temporal–spatial variability of Shannon entropy was evaluated for two hours of
the day, including 3:00 and 15:00 GMT. Overall, the findings showed that, for 3:00, spatial and temporal
variability during the study periods did not follow a systematic trend, which was more significant
for the RCP4.5 scenario. However, at 15:00, the process of variability is more regular. According to
the entropy findings, the increase of the zones whose entropy coefficients are less than the previous
periods is increased. This claim can be seen in the following outputs. In such a way that the amount
of increase and decremented amount of Shannon entropy for the next period was calculated, and
finally the average of these changes was calculated. Interestingly, the overall average of the areas
where Shannon entropy has been increasing for RCP4.5 at 3:00 is 51.7%, and this average for the
reduction of the overall period is 63%, but these incremental and decreasing changes for The RCP8.5
scenario includes 36.51% and 63.49%, respectively. However, at 15:00, these patterns are also observed.
According to the RCP4.5 scenario for this hour, the average total incremental variation of the entropy
coefficient was 39.56% and the decrease was 39.56% of the study area, and for the RCP8.5 scenario,
on average, 40.74% of the Tehran area increased the Shannon entropy coefficient and for 59.25% of its
area, there are decreasing values.

5. Conclusions

What does this Shannon entropy coefficient variation model mean in terms of effective
temperature from the point of view of urban climatology? However, as a new step in the research about
climate change in Tehran city due to global warming [22,23], the temperature difference between the
different areas of the study area has declined, which is believed to reduce the abnormalities and more
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orderly between the data spatially and over time. It is observed that the lowest values of the Shannon
entropy occurred in the last two decades, from 2030 to 2040, and the other 2040–2050. Because, based
on global warming, dominant areas have increased temperature, and the difference in temperature is
reduced daily and the temperature difference between the zones of different areas is less.

Therefore, this subject is considered order from the point of view of entropy, but the urban climate
perspective does not have a positive view of this process. However, the presence of temperature
differences can lead to a difference in local pressure and wind power production. Therefore, in the
urban area, the local wind flow can reduce the thermal stress to a certain extent and affect the flow
and displacement of stagnant layers of the air and also reduce the city’s thermal budget. While the
uniformity of temperature between different regions causes weakness in the production of local winds,
local wind currents cannot be effective as a mechanism for the displacement and air-tightness of the
air. Thus, in the future decades, more people are expected to endanger their health in terms of thermal
stress. Therefore, the management of the city of Tehran should act in such a way that land use does not
lead to the loss of agricultural land and its suburban lands. Considering the creation of urban green
spaces, green roofs, urban design, artificial lakes and artificial zones can also contribute somewhat to
excessive load of temperature and to reduce thermal stress.
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