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The functional integrity of the inferior vestibular nerve (IVN) may be evaluated by

the cervical vestibular evoked myogenic potential (cVEMP) response, which requires

signal transmission via the nerve. As functional integrity of the IVN innervating

the posterior semicircular canal is required to produce the typical positioning

vertigo and nystagmus characterizing posterior canal benign paroxysmal positional

vertigo (PCBPPV), we hypothesized that normal cVEMPs would be found in most

PCBPPV patients. Twenty-four PCBPPV patients participated in a prospective cohort

study. All were treated by canal repositioning maneuver and had air-conduction

cVEMP and videonystagmography (VNG). Follow-up evaluations including history and

otoneurological bedside examination were carried out 1, 3, 6, and 12 months after

the initial treatment. At the last follow-up, the patients filled the Dizziness Handicap

Inventory (DHI) questionnaire. Normal cVEMPs were recorded in 19 (79%) and were

absent in 5 (21%) of the subjects. The average DHI in the patients with normal

cVEMP was 16.42 ± 17.99 vs. 0.4 ± 0.89 among those with pathological cVEMP (p

< 0.04, Mann–Whitney test). Thirteen (54%) patients experienced recurrent PCBPPV

(rPCBPPV). The average DHI score was significantly higher among patients having

recurrence (22.15 ± 18.61) when compared to those with complete cure (2.36 ±

5.98; p < 0.003, Mann–Whitney test). Ten (77%) of the subjects with rPCBPPV had

normal and 3 (23%) had pathological cVEMP as compared to 9 (82%) and 2 (18%)

subjects in the non-recurrent (nrPCBPPV) group (Fisher’s exact test—not significant).

cVEMP p13 and n23 wave latencies and amplitudes, inter-aural differences in p13-n23

peak-to-peak amplitudes, and response thresholds did not differ between the groups.

No differences were found between the rPCBBPV and nrPCBBPV groups in VNG

caloric lateralization and directional preponderance values. We have found that in most

cases, PCBPPV symptoms and signs are associated with normal cVEMP response

supporting the role of IVN functional integrity. The absent cVEMPs in the minority

of patients, although having similar clinical presentation, raise the possibility that the
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ipsilateral saccule is affected by the same pathology causing degeneration of the utricle

macula. Alternatively, lacking inhibitory stimuli from the involved ipsilateral utricle or partial

degeneration of the IVN and ganglion could explain the diminished cVEMP response.

Clinical Trial Registration: The study was registered in ClinicalTrials.gov Internet site

(study ID—NCT01004913; https://clinicaltrials.gov/ct2/show/NCT01004913?cond=

BPPV&cntry=IL&draw=2&rank=3).

Keywords: cervical evoked myogenic potentials, vestibular nerve, vertigo, benign paroxysmal positional, saccule

and utricle, semicircular canals, surveys and questionnaires, caloric tests

INTRODUCTION

Benign paroxysmal positional vertigo (BPPV) is the most
common peripheral cause of vertigo. Lifetime prevalence is
estimated to be 2.4% (1), and 20–25% of patients referred
to dizziness/vertigo centers are diagnosed as suffering from
BPPV (2, 3).

Current understanding of posterior semicircular canal benign
paroxysmal positional vertigo (PCBPPV) pathogenesis involves
the dislodgement of otoconial debris detached from the utricle
into the posterior semicircular canal (PSCC). The effect of the
gravitational forces on these debris leads to deflection of the
canal cupula, resulting in vestibular afferent firing transmitted
via the inferior vestibular nerve to the vestibular nuclei (4). The
dependence of PCBPPV symptoms and signs on the integrity
of PSCC innervation is demonstrated by its complete resolution
following singular neurectomy in reluctant cases (5).

The cervical vestibular evoked myogenic potentials (cVEMPs)
are short-latency electromyographic responses that can be
recorded from the ipsilateral sternocleidomastoid muscle
(SCM) during its contraction phase in response to air and
bone-conducted acoustic stimuli, skull tapping, and galvanic
stimulation (6). The cVEMP pathway is believed to originate
in the saccular macula and continues through the ipsilateral
inferior vestibular nerve and ganglion, vestibular nucleus,
ipsilateral vestibulospinal tracts, spinal motor nucleus, and
the sternocleidomastoid muscle. This sacculo-collic reflex is
characterized by biphasic waves with initial positivity (p13)
followed by a negative wave (n23) (6, 7). As the cVEMP response
of the sacculo-collic reflex depends on the spreading of neural
signals via the inferior vestibular nerve, it has been suggested
that cVEMPs would be preserved in patients having the clinical
presentation of PCBPPV (8).

The aim of the study was to examine cVEMP response
in patients suffering from PCBPPV. Our hypothesis was
that cVEMP would be recorded in most patients suffering
from PCBPPV.

PATIENTS AND METHODS

Sample and Design
Twenty-four consecutive patients suffering from PCBPPV (10
males, 14 females) aged 32–60 years (mean 51.8 ± 7.36

years; median 54.5 years) referred to a tertiary otoneurology
unit were recruited to a prospective cohort study. PCBPPV
was diagnosed by a Dix-Hallpike maneuver demonstrating
crescendo–decrescendo geotropic rotatory nystagmus with an
upbeating vertical component, which changed its direction
when the patient resumed sitting position. The upper age
limit of 60 years was elected in order to avoid potential
bias due to the known deterioration in cVEMP response in
older individuals (9). After signing an informed consent, the

patients had baseline evaluation that included detailed history
with emphasis on previous or existing ear disease, complete
otoneurological bedside examination including microscopic

otoscopy, eye-movement examination with and without Frenzel
glasses, post-head shaking test, head impulse test, supine roll test,
Dix-Hallpikemaneuver, enhanced Romberg test, tandemwalking
test, and Fukuda stepping test.

Following the diagnosis of PCBPPV, treatment was completed
by Epley’s canalith repositioning procedure (CRP) (10). After an
interval of 30min, a second Dix-Hallpike maneuver was carried
out and Epley’s CRP was repeated as required. All patients in
our cohort had negative findings on Dix-Hallpike maneuver
following a maximum of two Epley’s CRPs.

All participants had the following laboratory evaluation
the days following successful CRP: pure tone, speech and
impedance audiometry; videonystagmography (VNG)
including tests for oculomotor system integrity (saccadic,
gaze, optokinetic, and pursuit systems), tests for spontaneous,
positional, and positioning nystagmus (Dix-Hallpike maneuver),
and the alternate binaural bithermal caloric test (11); and
cVEMPs testing including p13-n23 wave recordings and
response threshold.

The study participants met the following inclusion criteria: (1)

age 18–60 years; (2) negative history for concurrent or previous

otological disease beside positional vertigo; (3) Dix-Hallpike
maneuver positive for the presence of unilateral PCBPPV;

(4) normal air-conduction pure tone, speech, and impedance

audiometry; and (5) normal VNG test battery findings or
compatible with peripheral vestibulopathy alone.

Follow-up evaluations including history and otoneurological

bedside examination were conducted 1, 3, 6, and 12 months after
the initial treatment. On the 12-months follow-up appointment,

the patients filled the Dizziness Handicap Inventory (DHI)
questionnaire (12).
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The study protocol and procedures were approved by the
committee for human experiments, Meir Medical Center, Kfar
Saba, Israel, and were registered in ClinicalTrials.gov Internet
site (study ID—NCT01004913; https://clinicaltrials.gov/ct2/
show/NCT01004913?cond=BPPV&cntry=IL&draw=2&rank=
3). All subjects gave written informed consent in accordance
with the Declaration of Helsinki.

Cervical Vestibular Evoked Myogenic
Potentials (cVEMP)
cVEMPs were performed bilaterally using the Navigator Pro
System (Bio-Logic Systems Corp., Mundelein, IL, USA). Muscle
activity was recorded in the supine position with the subject
lying using Ag/AgCl electrodes. The active electrode was attached
over the main bulk of the SCM muscle, approximately half
the distance between the mastoid tip and the sternal notch.
A reference electrode was placed over the upper sternum
and the ground electrode on the forehead. Tone-burst air
stimuli were presented to the ears through insert earphones at
4.3Hz with a central frequency of 500Hz. To achieve enough
contraction of the SCM, subjects were instructed to lift their
heads. Electromyographic activity was recorded simultaneously
from both sides to minimize possible effects due to asymmetric
muscle tone. The time window for recording was 53.3ms; the
electromyographic potential was amplified ×1,000 and filtered
to the 10–1,500-Hz frequency range. Each cVEMP response was
the average of the responses to 200 consequent stimuli. The
eligibility criterion was correlation above 0.75 for two successive

responses and p13-n23 peak-to-peak amplitude at least twice the
size of the pre-stimulation baseline recording (13). Initial stimuli
were provided at 90 dBHL decreasing in 5 dBHL steps. The
cVEMP threshold was determined at the lowest stimulus level,
still producing a response. Whenever a response could not be
elicited at 90 dBHL, stimulus increase up to a maximal level of
97 dBHL was allowed. When a response could not be obtained at
that level, the cVEMP was defined absent.

The following cVEMP parameters were measured: p13 and
n23 wave latencies and amplitudes; p13-n23 peak-to-peak
amplitude; inter-aural amplitude difference (IAD) defined as
the ratio between the right and left peak-to-peak amplitude
difference and the sum of both sides’ peak-to-peak amplitude;
and response threshold.

Statistical Analysis
cVEMP was defined as abnormal for IAD >35% or absent
response (14). Caloric test results showing unilateral weakness
>25% or directional preponderance >30% were considered
pathological (15).

The proportions of abnormal cVEMP and caloric test results
were compared between the patients who suffered PCBPPV
recurrences during the 12-months follow-up period (rPCBPPV)
and those having complete resolution (nrPCBBPV) employing
Fisher’s exact test.

cVEMP wave latencies, peak-to-peak amplitudes, IAD,
and thresholds were compared between the rPCBBPV and
nrPCBPPV groups by the Student unpaired two-tailed test or the

FIGURE 1 | Box plot of the Dizziness Handicap Inventory scores of patients with absent cVEMPs and those with normal responses. A-cVEMP, absent cVEMPs;

N-cVEMP, normal cVEMPs; DHI, Dizziness Handicap Inventory score. The boundary of the box closest to zero indicates the 25th percentile, the solid line within the

box marks the median, the dashed line marks the mean, and the boundary of the box farthest from zero indicates the 75th percentile. Whiskers above and below the

box indicate the 90th and 10th percentiles. Circles above and below the 90th and 10th percentiles mark outlying data points. Significantly lower scores were found for

the patients with missing cVEMPs (p < 0.04, Mann–Whitney test).
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non-parametric Mann–Whitney test according to the Shapiro–
Wilk normality test results.

DHI questionnaire results were compared using the Mann–
Whitney test.

P-values <0.05 were considered statistically significant.
Statistical analysis was performed using the GraphPad InStat
version 3.06 software (San Diego, CA, USA).

RESULTS

Normal cVEMPs were recorded in 19 (79%) and were absent
in 5 (21%) of the subjects. In all absent cVEMP cases, the
missing response was ipsilateral to the PCBBPV side. None of the
bilaterally elicited cVEMPs met the criteria of IAD >35%.

The mean DHI score at 12 months from diagnosis in patients
with normal cVEMP was 16.42 ± 17.99 vs. 0.4 ± 0.89 among
those with absent cVEMP (p < 0.04, Mann–Whitney test)
(Figure 1).

VNG was performed in 19 (79%) of the patients, and
pathological caloric test results were found in 6 (32%). Five
had significant caloric lateralization (>25%) and 1 increased
directional preponderance (>30%). Canal paresis was ipsilateral
to the PCBPPV side in all cases while the directional
preponderance of the caloric nystagmus slow phase velocity was
to the contralateral side.

During the 1-year follow-up 13 (54%) patients
experienced rPCBPPV.

Ten (77%) of the subjects with rPCBPPV had normal and 3
(23%) pathological cVEMPs as compared to 9 (82%) and 2 (18%)
subjects in the nrPCBPPV group. The proportions of absent
cVEMPs did not differ between the groups (Fisher’s exact test).

The variance in p13 and n23 wave latencies, p13-n23 peak-to-
peak amplitudes, IAD percentage, and cVEMP thresholds could
not predict PCBPPV recurrences (Table 1).

VNG was conducted in 8 of the patients with rPCBPPV.
Pathological caloric test was found in 3 (38%) of them as
compared to 3 of 11 patients (27%) of the nrPCBBPV group
(Fisher’s exact test—not significant). No significant differences
were found between the rPCBBPV and nrPCBBPV groups in
VNG caloric lateralization and directional preponderance values
(Table 2).

The average DHI in patients with pathological caloric tests
was 19.33 ± 17.46 vs. 11 ± 17.16 among the patients that
had normal results. This difference did not reach statistical
significance (Mann–Whitney test).

The average DHI score 12 months post-presentation was
significantly higher among patients having recurrences (22.15 ±
18.61) when compared to those with complete resolution (2.36±
5.98; p < 0.003, Mann–Whitney test) (Figure 2).

DISCUSSION

Although cVEMPs could be recorded in most PCBPPV
patients (79%), the elicited response was missing in 5 (21%)
despite the presence of characteristic clinical presentation.
Functioning neural pathways transmitting the provoked signal

TABLE 1 | cVEMP wave latencies and amplitudes, p13-n23 peak-to-peak

amplitudes, response thresholds, and inter-aural amplitude differences (IAD)

(mean ± standard deviation) compared between the patients with recurrent

posterior canal BPPV (rPCBPPV) and patients with no recurrences (nrPCBPPV).

rPCBBPV nrPCBPPV Statistical

significance

RIGHT EAR

p13 latency (ms) 15.01 + 1.72 14.76 + 1.01 NS (unpaired

t-test)

n23 latency (ms) 23.76 + 2.37 23.03 + 1.76 NS (unpaired

t-test)

p13-n23

peak-to-peak

amplitude (µV)

94.68 + 36.45 84.82 + 54.75 NS (unpaired

t-test)

Threshold (dBHL) 90.83 + 5.15 88.75 + 5.17 NS

(Mann–Whitney)

LEFT EAR

p13 latency (ms) 15.19 + 3.17 15.04 + 1.24 NS

(Mann–Whitney)

n23 latency (ms) 23.35 + 2.03 23.09 + 1.28 NS (unpaired

t-test)

p13-n23

Peak-to-peak

amplitude (µV)

89.49 + 35.07 74.46 + 33.96 NS (unpaired

t-test)

Threshold (dBHL) 90.45 + 5.22 89.37 + 4.95 NS

(Mann–Whitney)

IAD (%) 11.74 + 11.2 13.58 + 5.5 NS (unpaired

t-test)

TABLE 2 | Videonystagmography caloric tests results compared between the

patients with recurrent posterior canal BPPV (rPCBPPV) and patients with no

recurrences (nrPCBPPV).

rPCBBPV nrPCBPPV Statistical

significance

Lateralization (%) 4.25 + 35.1 13.7 + 25.27 NS

(Mann–Whitney)

Directional

preponderance (%)

11 + 17.47 2 + 17.52 NS (unpaired

t-test)

from the PSCC ampullary crest via the inferior vestibular
nerve to the medial vestibular nucleus is required for the
full clinical presentation of PCBPPV to evolve. The failed
cVEMP response might be explained by involvement of organs
that contribute to the sacculo-collic reflex arch but with no
effect on the PSCC-inferior vestibular nerve pathway. Similarly,
PSCC dysfunctions have been registered with rotation test and
video-head impulse testing in patients developing PCBPPV
despite reduced vestibulo-ocular reflex gain for the mild
and high-frequency domains, likely due to a transient canal
disorder (16–18).

One possible explanation is saccular dysfunction. The utricle
and saccule maculae have similar anatomic characteristics and
may be affected by the same pathological process. As functional
saccule is required for the cVEMP response, degeneration of this
end organ or its innervation would result in pathological cVEMP.
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FIGURE 2 | Box plot of the Dizziness Handicap Inventory scores for the patients with recurrent BPPV and non-recurrent BPPV. NR, non-recurrent group; R, recurrent

group; DHI, Dizziness Handicap Inventory score. Significantly lower scores were found for the non-recurrent group (p < 0.003, Mann–Whitney test).

Support for this reasoning is provided by the histopathological
observation of ganglion cell loss in the saccular nerves of
temporal bones from BPPV patients (19).

Another possibility is partial derangement of the inferior
vestibular nerve still transmitting the canal afferent signals
initiating the eye-movement and vertigo symptoms although
hampering cVEMP response. Previous BPPV-related anatomical
studies have reported 30–50% loss of inferior vestibular nerve
neurons and degenerative changes in the inferior vestibular
ganglion (19, 20). In this context, it is of interest that the
mean DHI score of the patients with no cVEMP response was
significantly lower than that of those with normal cVEMPs.
The reduction in PCBPPV symptoms, and accompanied
emotional and physical impact, which are evaluated by the
DHI questionnaire, might be explained by a decrease in the
transmission of the offending signals secondary to the anatomical
changes described.

A limitation of the study involves the conduction of
cVEMP by air conduction alone. Although the inclusion criteria
precluded conductive hearing loss, it is argued that cVEMPs can
be elicited by bone stimulation when air-conduction response
fails albeit normal air-conduction audiometry.

Further limitation is the relatively small size of our cohort
requiring a larger-scale study supporting our results.

Whereas cVEMPs test type-I vestibular hair cells located at the
peri-striolar region of the saccule, subjective visual vertical (SVV)
represents a test assessing regular afferents coming from more
peripheral saccular regions. Testing SVV might have disclosed
functional peripheral saccular regions in the face of missing
cVEMP response (21).

Animal studies showed that both saccule and utricle have
inhibitory projections to the ipsilateral SCM whereas the utricle
has an additional excitatory projection to the contralateral SCM
(22). It was estimated that the air-conducted cVEMP response
is composed of 74 and 26% saccular and utricular components,
respectively (23). Degeneration of the utricle macula, superior
vestibular nerve, and ganglion were repeatedly described in
PCBPPV (19, 20, 24, 25). Thus, reduced contribution of involved
ipsilateral utricle to the cVEMP response might explain its
observed absence among some PCBPPV patients.

Although the aim of our study was the examination of cVEMP
in PCBPPV patients, ocular VEMP responses (oVEMPs) could
have contributed to the delineation and extent of utricular
involvement in our patients (26–28).

It has also been suggested that the otolithic organs exert
inhibitory signals on the PSCC excitatory activity converging in
the medial vestibular nucleus (19, 29). Thus, otolith dysfunction
as reflected by pathological cVEMP might even contribute to the
clinical presentation of PCBPPV (30–32).

While a recent study did not find differences in any
of the cVEMP parameters between PCBPPV patients and
matching healthy controls (27), most previous publications have
reported rates of abnormal cVEMPS within the range of 23.5–
39% (4, 30, 33–40). The higher occurrence of pathological
cVEMP previously found might stem from the different criteria
employed. While in ours and other studies (26) the normalized
criterion of increased IAD and missing cVEMP responses were
the parameters taken into consideration, others used in addition
the less conservative criteria of prolonged wave latencies and
decreased amplitudes (30, 33–40). Also, two of the studies
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(33, 39) included lateral and anterior canal variants of BPPV
while the reported cVEMP results did not distinguish between
the groups. As p13-n23 wave latencies and amplitudes carry high
intersubject and intrasubject variability (30, 41), we preferred to
use the normalized parameter of IAD and qualitative approach
defining cVEMP response as either present or absent.

In contradiction to ours and others’ results demonstrating
pathological cVEMP findings among PCBPPV patients, two
previous studies with a limited number of patients found normal
p13-n23 potentials in all their subjects. Murofushi et al. (8)
reviewed cVEMP findings in 47 vestibular neuritis patients, 10 of
which developed PCBPPV. While cVEMP response was missing
in 16 (34%) of the patients implying inferior vestibular nerve
involvement, it was present in all their 10 patients suffering from
PCBPPV. Heide et al. (42) described three additional patients
with normal cVEMPs.

Accumulating data suggest that utricular dysfunction as
evaluated by oVEMPs is the main counterpart of PCBBPV while
cVEMP response is more often preserved (27, 28). This supports
the current understanding of PCBBPV pathogenesis involving
dislodgement of otoconial debris detached from the utricle into
the underlying PSCC.

The study patients were followed up for 12 months, which is
the time frame in which most BPPV recurrences are anticipated
(43). The rate of rPCBPPV in our cohort was 54%, higher than the
0–18% recurrence rates previously reported for the 1-year follow-
up (44, 45). Although our cohort included patients suffering from
isolated BPPV with no concomitant or previously diagnosed
inner ear disease (primary BPPV), the presence of subclinical
vestibulopathy is still a possibility. This might be reflected
by the pathological caloric test results in 32% of the patients
having VNG, indicating ipsilateral horizontal semicircular canal
dysfunction, and absent cVEMPs in 21% implying underlying
saccular or sacculo-collic pathway dysfunction. As otological
comorbidities carry a higher risk for the development and

recurrence of BPPV (46, 47), subclinical vestibulopathy might
explain the high recurrence rate among our patients. The DHI
scores of the rPCPPPV group at the end of the 12-months follow-
up were significantly higher in accordance with continuous
suffering due to the continuous positional vertigo.

Previous studies reported that abnormal or absent cVEMPs
among PCBPPV patients were related to higher incidence of
recurrence as well as to increased resistance to treatment and
larger number of canalith-repositioning maneuvers required
toward remission (30, 31, 39). We and others (26, 37) could
not support this last notion, as the rate of absent cVEMP,
wave latencies, p13-n23 amplitudes, IAD values, and response
thresholds were similar in the rPCBPPV and nrPCBPPV
groups and all patients in our cohort recovered following
1–2 CRPs.
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