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Abstract: Globally, diabetes mellitus is a leading cause of kidney disease, with a critical percent of
patients approaching end-stage kidney disease. In the current era, sodium-glucose co-transporter
2 inhibitors (SGLT2i) have emerged as phenomenal agents in halting the progression of kidney
disease. Positive effects of SGLT2i are centered on multiple mechanisms, including glycosuric
effects, tubule—glomerular feedback, antioxidant, anti-fibrotic, natriuretic, and reduction in cortical
hypoxia, alteration in energy metabolism. Concurrently, multiple kidney and cardiovascular outcome
studies have reported remarkable advantages of SGLT2i including mortality benefits. Additionally,
the superiority of combination therapies (SGLT2I along with metformin/DDP-4 Inhibitors) in
treatment-naïve diabetic patients is further looked into with potential signal towards glycemic
and blood pressure control. Reported promising results initiate a gateway for future research
targeting kidney outcomes with combination therapies as an initial approach. In the current paper,
we summarize leading cardiovascular and kidney outcome trials in patients with type 2 diabetes,
the role of SGLT2i in non-diabetic proteinuric kidney disease, and the potential mechanisms of
action of SGLT2i with special focus on combination therapy as an initial therapeutic approach in
treatment-naïve diabetic patients.

Keywords: Diabetes mellitus; SGLT2; SGLT2i; sodium glucose co-transporter 2 inhibitors; nephrology;
endocrinology; cardiology

1. Introduction

Diabetes mellitus and associated conditions including hypertension, obesity, and atherosclerosis
significantly contribute to progression of chronic kidney disease (CKD), cardiovascular health, and
overall mortality [1–8]. Diabetes is an evolving global pandemic with diabetic kidney disease
accounting for 44.5% of new end-stage kidney disease (ESKD) cases [1,2]. Two defined pathways
that have been proposed to describe the evolution of diabetic kidney disease are hemodynamic and
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non-hemodynamic [9]. Although not fully understood, the role of hyperglycemia in pathophysiology
of diabetic complications has been attributed to an increase in intra-glomerular pressure, elevation
of single nephron glomerular filtration rate (GFR), and podocyte damage further perpetuating renal
dysfunction [10]. Other contributory mechanisms include neurohumoral activation and cytokine
release, along with proinflammatory pathway activation, potentiating tubulointerstitial inflammation
and fibrosis [11,12].

Over the past 20 years, angiotensin receptor blockers (ACE) have been used in attenuating
neuro-humoral activation and reducing intra-glomerular hypertension. ACE inhibitors reduce doubling
of serum creatinine and progression to ESKD by about 20% [13,14]. Even though renin-angiotensin
aldosterone system (RAAS) blockade helps reduce glomerular hypertension, they were unsuccessful
in normalizing hyperfiltration, reduction of cardiovascular disease, and mortality [15]. With the
introduction of sodium-glucose co-transporter 2 inhibitors (SGLT2i) there has been a fundamental
change in treatment paradigm of patients with CKD secondary to diabetic nephropathy [16–20].

SGLT2i have been increasingly recognized for their remarkable renoprotective and cardioprotective
benefits [21–24]. Not surprisingly, because of their well-established benefits, SGLT2i has reshaped the
treatment algorithm of type 2 diabetes mellitus. After the initial discovery of phlorizin, a non-selective
SGLTi, multiple other formulations have since emerged [25,26]. Approximately 80–90% of filtered
glucose is actively reabsorbed via SGLT2, located at the S1 segment of the proximal tubule, at a
concentration of 1:1 with sodium. Additionally, SGLT1, located at S2/S3 segment of the proximal
tubule, utilizes more energy and helps to reabsorb 10–20% of glucose in association with two sodium
molecules [27,28]. Because of their glycosuric properties, SGLT2i contributes to weight loss of
approximately 2 to 3 kg [29,30]. Subsequently, 3 to 5 mmHg systolic and 1 to 2 mmHg diastolic blood
pressure lowering effects are being encountered [29–31]. The above-mentioned anti-hypertensive
benefits of SGLT2i are implicated across all ranges of estimated GFR (eGFR) even among patients
with stage 4 CKD [31]. Multiple randomized controlled studies have reported substantial benefits
of combination therapy with SGLT2i and metformin as initial approach in patients with type 2
diabetes [32–34]. With that being said, American Diabetes Association 2020 guidelines recommend
prescribing an SGLT2i following initial trial of lifestyle modifications and metformin in patients with
CKD, cardiovascular disease, and heart failure [35].

The seminal study by Milder et al. reviewed efficacy and safety of a combination approach of
SGLT2i and metformin in treatment-naïve type 2 diabetic patients [36]. Four randomized controlled
studies with a total of 3749 patients were included. The outcomes of the study were substantially
in favor of combination therapy, showing significant reduction in hemoglobin A1c compared with
monotherapy after 24–26 weeks of treatment. High dose SGLT2i/metformin combination therapy
dapagliflozin 10 mg or canagliflozin 300 mg, as compared to low dose combination therapy dapagliflozin
5 mg or canagliflozin 100 mg, appears to cause modest weight reduction without glycemic benefits.
Additionally, data revealed that combination therapy provided statistically significant reduction in
systolic and diastolic blood pressure as compared to metformin alone. However, no difference in blood
pressure was noted when combination therapy is compared to SGLT2i alone. Safety profile was in favor
of combination therapy, with a mildly increased risk of diarrhea with combination therapy. Although
this systematic review reported particular benefits of combination therapy as initial strategy, it did not
address the role of combination therapy in lowering proteinuria or effects on rise of serum creatinine.

Significant benefits of SGLT2i in type 2 diabetic patients outweigh minor side effect profile
mentioned in the literature. Furthermore, appropriate preventive steps can be undertaken to help
mitigate potential adverse effects. For example, SGLT2i has been associated with increased risk of
mycotic genital infections, necessitating frequent monitoring and good hygiene. It has been proposed
that prophylactic antifungals could be considered in patients with high risk of fungal infections.
Additionally, SGLT2i has demonstrated significant natriuretic effects, which necessitates holding the
doses in patients with nausea and vomiting or other conditions that would make them more prone
to dehydration. Avoiding SGLT2i with early signs of DKA is also recommended due to concerns
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of worsening acidosis. Careful consideration should be given to the risk of urinary tract infections
associated with SGLT2i. Lastly, patients with open foot wounds or skin ulcers should also be cautious
due to some existing reports of lower limb amputations linked to SGLT2i [37–40].

2. Clinical Trials

2.1. Major Cardiovascular Outcomes Trials

Based on recognized health benefits of SGLT2i, multicenter, randomized controlled studies were
conducted evaluating renal and cardiovascular outcomes. As a pioneer agent, empagliflozin was
compared to placebo in patients with type 2 diabetes mellitus at high risk of cardiovascular events [41].
Among 7020 diabetic patients included in the study, there were 1819 CKD patients with GFR >

30 mL/min [21]. Interestingly, a 14% reduction in risk of death, including from cardiovascular causes,
non-fatal myocardial infarctions (MI), and non-fatal stroke, was reported. Wanner et al. analyzed
long term renal outcomes from participants of EMPA REG OUTCOME study. The results of the study
showed a 39% relative risk reduction in progression of albuminuria, a 44% relative risk reduction in
serum creatinine doubling, and a 55% relative risk reduction in initiation of renal-replacement therapy
(RRT) [41]. Subsequently, CANVAS trial compared efficacy and safety of canagliflozin in patients
with type 2 diabetes compared to placebo [42]. This study included 10,000 participants reporting
cardiovascular outcomes. Around 2039 patients had kidney disease with a mean eGFR of 76.5 mL/min.
Similar results were encountered with around a 14% decrease in composite risk of death from non-fatal
MI, non-fatal stroke, and cardiovascular causes. While the primary goal of the trial was to evaluate
cardiovascular outcomes, significant renoprotective effect was also observed. Approximately a 40%
reduction in death from kidney causes, decline in GFR, and need for RRT were reported. Another
multicenter placebo-controlled trial, DECLARE—TIMI, compared dapagliflozin to placebo in patients
with type 2 diabetes evaluating the cardiovascular safety, confirmed sustained benefits of SGLT2i [22].
Moreover, this trial reported remarkable kidney-specific benefits with about 40% decrease in rate of
GFR decline, progression to ESKD and death from kidney causes.

2.2. Major Kidney-Specific Outcome Trials

Some of the renal specific outcomes were studied in multicentric, double-blind, randomized trial,
CREDENCE. This study looked at the effects of canagliflozin in patients with type 2 diabetes and
albuminuric CKD [43]. This has been one of the first studies which specifically included albuminuric
CKD patients. Included patients had GFR of 30–90 mL per minute per 1.73 m2 of body-surface area
and albuminuria of greater than 300 mg/g. Due to the apparent benefit of the drug observed in the
study, CREDENCE trial was stopped earlier. Around 34% relative risk reduction in doubling of serum
creatinine, progression to ESKD, and death from renal causes have been reported. Besides renal specific
advantage, cardiovascular benefits were also observed.

Recently, another multicentric, double-blind, randomized trial, DAPA-CKD, compared
dapagliflozin to placebo. This trial specifically included late-stage CKD patients with GFR above
25 and below 75 mL/min, albuminuric patients with urine albumin-to-creatinine ratio of equal or
above 200 and equal or below 5000 mg/g in patients with or without diabetes. Similar to CREDENCE,
this trial was also stopped early given demonstrated superior efficacy of dapagliflozin. Primary
endpoint was defined as a composite of an eGFR decline of at least 50%, onset of ESKD, and death
from cardiovascular or renal cause in patients with CKD regardless of presence of diabetes.

Lastly, there is currently an ongoing randomized double-blind placebo-controlled EMPA-KIDNEY
trial, which was designed to evaluate safety and efficacy of empagliflozin in 5000 CKD patients with
albuminuria of above 200 mg/g and eGFR 20–45 mL/min or 45–90 mL/min/1.73 m2 (Table 1).
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Table 1. Randomized placebo-controlled trials demonstrating the treatment outcomes of SGLT2 inhibitors vs. placebo in type 2 diabetes mellitus with CKD.

Clinical Trial Year Trial Registration Total Sample Size CKD Patients Kidney Function
Inclusion Criteria Follow-Up Reported Renal Outcomes

Canagliflozin
CANVAS and

CANVAS-R [44,45]
2017
2018

NCT01032629
NCT01989754 10142 2039 eGFR ≥ 30 188 wks ↓ sustained loss of kidney function, eGFR decline, albuminuria,

the need for RRT, and death from renal causes
DIA3004 [46] 2014 NCT01064414 269 269 eGFR ≥ 30 and < 50 52 wks ↓ eGFR decline and albuminuria

CREDENCE [43] 2019 NCT02065791 4401 2181 eGFR ≥ 30 2.6 yrs
↓ Renal composite outcomes (ESKD, doubling in SCr, renal or CV

death) in both primary and secondary prevention group
The trial stopped early due to overwhelming efficacy

Dapagliflozin

MB102029 [47] 2014 NCT00663260 252 252 eGFR ≥ 30 and < 60 104 wks ↓ eGFR decline, albuminuria, and hyperkalemia
Slight drop in eGFR during drug initiation

DERIVE [48] 2018 NCT02413398 321 321 eGFR ≥ 45 and < 60 24 wks ↓ Renal related adverse events
Slight drop in eGFR during drug initiation

DECLARE-TIMI 58 [22] 2018 NCT01730534 17160 1265 CrCl ≥ 60 mL/min 4.2 yrs ↓ Renal composite outcomes
↓ Acute kidney injury

DAPA-HF [49] 2020 NCT03036124 4724 N/A eGFR ≥ 30 3 yrs ↓ Doubling in SCr

DIAMOND [50] 2020 NCT03190694 53 33 eGFR ≥ 25 6 wks No effect on proteinuria reduction in CKD without diabetes
Reversible decline in eGFR noted

Empagliflozin
EMPA-REG

OUTCOME [21] 2015 NCT01131676 7020 1819 eGFR ≥ 30 3.1 yrs ↓ eGFR decline, and renal composite outcomes

EMPA-REG METSU [51] 2013 NCT01159600 666 58 eGFR ≥ 30 24 wks ↓ Renal composite outcomes
EMPA-REG RENAL [52] 2014 NCT01164501 738 448 eGFR ≥ 15 52 wks ↓ Renal composite outcomes

Halden, et al. [53] 2019 NCT03157414 44 44 (KTx) eGFR ≥ 30 24 wks ↓ eGFR within 8 weeks of treatment
No change in eGFR from 8-24 weeks

Bexagliflozin

Allegretti, et al. [54] 2019 NCT02836873 312 312 eGFR ≥ 30 and < 60 24 wks
↓ albuminuria

Study not designed to evaluate the impact on long-term kidney
disease

Abbreviations: SGLT2-sodium-glucose co-transporter 2; CKD—chronic kidney disease; CrCl—creatinine clearance; CV—cardiovascular; eGFR—estimated glomerular filtration rate;
ESKD—end-stage kidney disease; KTx—kidney transplant; RRT—renal replacement therapy; SCr—serum creatinine.
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2.3. Role of SGLT2 in Non-Diabetic CKD Patients

Several pre-clinical studies/animal models have been published evaluating the role of SGLT2i
in non-diabetic CKD. However, well-defined conclusion could not be established due to conflicting
results [55–57]. As far as clinical studies, at this point it is unclear if there is a sustained clinical benefit
in cardiovascular or renal outcomes in non-diabetic patients. A pilot study by Rajasekeran et al.,
which included ten patients with FSGS, evaluated the effects of 8 weeks of dapagliflozin on GFR and
proteinuria [58]. Dapagliflozin failed to demonstrate additional effects on body weight, proteinuria or
measured GFR. A Phase 2 randomized, double-blind study by Bays et al. enrolled 376 overweight and
obese non-diabetic patients to evaluate the effects of canagliflozin on body weight [59]. Even though
there was significant reduction in body weight, no effect on proteinuria was observed.

Dapagliflozin was studied in a randomized, double-blind, placebo-controlled study, DIAMOND,
which included proteinuric, non-diabetic CKD patients with eGFR of at least 25 mL/min/1.73 m2 [50].
A total of 53 patients included in the study had proteinuria ranging from 500 to 3500 mg per 24 h.
A reduction in body weight by 1.5 kilos was observed in dapagliflozin group compared to placebo
during a 6-week period, yet neither significant reduction in systolic or diastolic blood pressure nor
reduction in proteinuria were detected. In addition, an acute and reversible decline in measured GFR
was noted in dapagliflozin group. Long-term clinical studies in evaluating the potential benefit of
SGLT2i in non-diabetic CKD patients are required before reaching a meaningful conclusion (Table 2).
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Table 2. Trials demonstrating the treatment outcomes of SGLT2 inhibitor in non-diabetics with chronic kidney disease.

Clinical Trial Year Trial Type Total Sample Size Kidney Function Inclusion Criteria Follow-Up Reported Renal Outcomes

Dapagliflozin
Zhang et al. [55] 2016 Pre-clinical 53 Subtotal Nephrectomized rats. 12 weeks No improvement in proteinuria, tubulointerstitial fibrosis or eGFR.

Cassis et al. [56] 2018 Pre-clinical 37 Non-diabetic proteinuric mice,
unilateral nephrectomy. 23 days Decrease in podocyte damage, reduction in proteinuria

Jaikumkao et al. [60] 2018 Pre-clinical 24 Obese prediabetic rats 4 weeks Decrease in podocyte damage, reduction in proteinuria

Rajasekeran et al. [58] 2018 Clinical 10 Biopsy proven FSGS, eGFR >
45mL/min, proteinuria 30 mg-6 gr 5 weeks No effect on bodyweight, eGFR or proteinuria

DIAMOND [50] 2020 Clinical 53 eGFR ≥ 25 6 weeks No effect on proteinuria reduction in CKD without diabetes
Reversible decline in eGFR noted

Empagliflozin
Ma et al. [57] 2017 Pre-clinical 20 CKD mice 7–14 days No reno-protective benefit
Canagliflozin

Bays et al. [59] 2014 Clinical 376 Non-diabetic obese patients, BMI
30-50 12 weeks No renal benefit

Abbreviations: SGLT2-sodium-glucose co-transporter 2; CKD—chronic kidney disease; eGFR—estimated glomerular filtration rate; FSGS—focal segmental glomerulosclerosis; BMI—body
mass index.
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3. Proposed Renoprotective Mechanisms of SGLT2i

3.1. Tubulo-Glomerular Feedback Mechanism (TGF)

It has been well recognized that SGLT2i decrease serum glucose level by increasing urinary
glucose excretion [61–63]. Renoprotective benefits of SGLT2i, apart from glucose-lowering mechanisms,
are also well established. Tubulo-glomerular feedback is, thus far, the most well-explained mechanism.
Sodium hydrogen exchanger (NHE3) activity is downregulated in proximal tubule by SGLT2i, reducing
sodium reabsorption. This leads to a considerable amount of sodium being delivered to macula-densa,
causing afferent arteriolar vasoconstriction and further reducing renal blood flow [47,64]. SGLT2i in
synergy with ACE inhibitors contribute to afferent arteriole vasoconstriction and efferent vasodilatation,
reducing intra-glomerular pressure [65–68].

3.2. Non-TGF Mediated Mechanisms

SGLT2i potentiate natriuresis, reduce total body sodium content, and lower blood pressure
(EMPA REG Outcomes Trial) [21,69]. They further potentiate reduction of interstitial volume, improve
endothelial function and vascular tone [70–72]. SGLT2i also contributes to caloric loss with substantial
improvement in insulin resistance and hemoglobin A1C. This effect becomes evident within the first few
weeks of treatment initiation and is maintained long-term [73,74]. The role of SGLT2i on modulating
RAAS is controversial; studies by Yoshimoto et al. reported no significant RAAS activation [75].
Furthermore, SGLT2i also potentiates reduction in albuminuria in diabetic kidney disease by reducing
intra-glomerular pressure and podocyte stabilization [20,43,76,77].

3.3. Antioxidant Properties

SGLT2i exhibits antioxidant properties by reducing free radical generation. Phlorizin was initially
studied by Osorio et al. and was found to reduce oxidative stress in diabetic rats by its effect on catalase
and glutathione peroxidase and decrease in nitrogen-free radicles [78]. Tang et al. further reported
that dapagliflozin slowed the progression of diabetic nephropathy by decreasing the production of
free radical progenitors, including nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4,
and NOX 2 [79]. In studies of murine diabetic heart by Xue et al., empagliflozin reduced oxidative
stress through activating NRF2/ARE signaling pathway in type 2 diabetic models [80].

3.4. Anti-Inflammatory Properties

Various inflammatory cytokines are upregulated in hyperglycemic milieu [81,82]. Independent of
glucose lowering effects, SGLT2i via caspase-1 pathway inhibits secretion of IL-1beta by macrophages,
thereby reducing inflammation and fibrosis [83–85]. Empagliflozin studies by Panchapakesan et al. on
proximal tubular cells demonstrated decreased expression of Toll-like receptor 2 and 4, and NF-kB,
further reducing inflammation and subsequent fibrosis [86]. Recently, SGLT2i has demonstrated
reduction in interstitial fibrosis along with protection against ischemia-reperfusion injury by
upregulating vascular endothelial growth factor (VEGF)-A in a mice model [87].

3.5. Cortical Hypoxia Reduction

SGLT2i modulate alterations in oxygen consumption and, therefore, are able to reduce renal
cortical hypoxia. It has been noticed that decreased activity of Na-K-ATPase and reduced accumulation
of intracellular glucose and sodium contribute to decreased oxygen utility. Fibroblasts might recover
erythropoietin production as cortical hypoxia improves [76]. Recent studies have also reported
inhibition of HIF-1α expression and related target genes (VEGF, GLUT1, etc.) by SGLT2i along with
subsequent reduction in interstitial fibrosis in diabetic kidneys [88].
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4. Proposed Cardioprotective Mechanisms of SGLT2i

As discussed above, SGLT2i can cause natriuresis, and account for 7% of plasma volume reduction,
leading to a decrease in preload [89]. In a meta-analysis, which included 34 randomized controlled
studies, SGLT2i increased HDL cholesterol and reduced serum triglycerides [90]. SGLT2i reportedly
exhibit significant cardiac benefits similar to renoprotection by lowering body weight, optimizing lipid
panel and blood pressure control, improving endothelial function, and reducing arterial stiffness [19].
Apart from described hemodynamic effects, SGLT2i contributes to direct myocardial benefits by
promoting lipolysis and ketogenesis [91]. It has been hypothesized that myocardial ketone oxidation
could explain the cardioprotective effect of empagliflozin in diabetic patients [92,93]. The proposed
mechanism emphasizes utilization of ketone bodies as the preferred heart muscle fuel. Subsequently,
this leads to maintenance of mitochondrial integrity and decrease in generation of reactive oxygen
species. However, more in vivo studies are needed to determine the exact role of ketone oxidation on
cardioprotective effect of empagliflozin.

SGLT2i also inhibits NHE1 in the myocardium and lower intracellular sodium and calcium
content leading to reduced pro-oxidant and pro-thrombotic state as reported in empagliflozin
experimental models [94]. SGLT2i potentiate natriuresis in heart failure patients by inhibiting
NHE3 in proximal tubule [95]. In studies by Garvey et al., canagliflozin led to 25% reduction of serum
leptin levels, which manifest pro inflammatory properties and a 17% increase of serum adiponectin,
which demonstrates anti-inflammatory properties, as compared to glimepiride [96]. Epicardial fat plays
a crucial role in heart failure patients and, reportedly, was reduced by dapagliflozin in experimental
models in a study by Sato et al. [97]. Finally, the anti-fibrotic effects of SGLT2i manifest through inhibition
of myofibroblast differentiation and reduction in pro-inflammatory cytokines, thereby reducing left
ventricle mass and improving ejection fraction [98]. Renoprotective and cardioprotective mechanisms
of SGLT2i are illustrated in Figure 1.
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5. Conclusions

SGLT2i has revolutionized treatment approach in patients with type 2 diabetes mellitus.
Although primarily glucosuric agents, their renoprotective property appears to be independent
of its glucose-lowering effects. Even though multiple randomized controlled studies have illustrated
beneficial effects of SGLT2i regarding renal outcomes, a certain degree of hesitation still exists in
prescribing combination therapy with SGLT2i in insulin naive diabetic patients. Randomized controlled
studies to evaluate therapeutic benefits and renal outcomes of combination therapies as initial approach
in patients with type 2 diabetes might further guide the process of establishing more organized
treatment approach. Additionally, further controlled studies are required in evaluating the potential
role of SGLT2i in reducing proteinuria in non-diabetic CKD patients.
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