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ABSTRACT

Objective: Respiratory support status is critical in understanding patient status, but electronic health record

data are often scattered, incomplete, and contradictory. Further, there has been limited work on standardizing

representations for respiratory support. The objective of this work was to (1) propose a practical terminology

system for respiratory support methods; (2) develop (meta-)heuristics for constructing respiratory support epi-

sodes; and (3) evaluate the utility of respiratory support information for mortality prediction.

Materials and Methods: All analyses were performed using electronic health record data of COVID-19-tested, emer-

gency department-admit, adult patients at a large, Midwestern healthcare system between March 1, 2020 and April

1, 2021. Logistic regression and XGBoost models were trained with and without respiratory support information,

and performance metrics were compared. Importance of respiratory-support-based features was explored using ab-

solute coefficient values for logistic regression and SHapley Additive exPlanations values for the XGBoost model.

Results: The proposed terminology system for respiratory support methods is as follows: Low-Flow Oxygen

Therapy (LFOT), High-Flow Oxygen Therapy (HFOT), Non-Invasive Mechanical Ventilation (NIMV), Invasive

Mechanical Ventilation (IMV), and ExtraCorporeal Membrane Oxygenation (ECMO). The addition of respiratory

support information significantly improved mortality prediction (logistic regression area under receiver operat-

ing characteristic curve, median [IQR] from 0.855 [0.852—0.855] to 0.881 [0.876—0.884]; area under precision

recall curve from 0.262 [0.245—0.268] to 0.319 [0.313—0.325], both P<0.01). The proposed generalizable, inter-

pretable, and episodic representation had commensurate performance compared to alternate representations

despite loss of granularity. Respiratory support features were among the most important in both models.

Conclusion: Respiratory support information is critical in understanding patient status and can facilitate down-

stream analyses.
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INTRODUCTION

Managing respiratory status and providing appropriate respiratory

support to prevent or mitigate hypoxemia is a critical aspect of clini-

cal management, especially for patients suffering from respiratory

conditions such as coronavirus disease 2019 (COVID-19).1 Leverag-

ing respiratory support information not only provides a more com-

plete clinical picture, but it can also be used in downstream analyses

such as sub-phenotyping or predictive modeling as a source of fea-

tures or to identify endpoints.2,3 However, generating generalizable

conclusions from respiratory support information is difficult due to

the heterogeneity of respiratory support methods and settings, the

lack of standardized representations, and the poor quality of data re-

garding respiratory support.4

Standardization of patient data representation has accelerated

knowledge discovery, replication of results, and translation into

practice. While many parts of healthcare information have been

standardized—such as the International Classification of Diseases

(ICD) for diagnoses, LOINC for measurements and observations, or

the all-encompassing UMLS—much of the patient information in

EHR data, such as clinical cultures and respiratory support meth-

ods, remains unmapped.5,6 Standardization of respiratory support is

made challenging due to the inherent diversity of methods, especially

when considering methods designed for subpopulations, variations,

and modifiable settings. Worse yet, the lack of a widely adopted

standardization schema has resulted in the usage of highly heteroge-

neous terms in literature and practice, even for identical concepts—

for example, heated and humidified high-flow nasal cannula has

been described as high-flow nasal cannula, high humidity nasal can-

nula, high-flow nasal oxygen therapy, or referred to by brand names

such as AirvoTM or OptiflowTM.7–9 Prior efforts to standardize re-

spiratory support terms resulted in high granularity, which while

necessary for coverage, can be excessive for downstream tasks. For

example, the “Respiratory Therapy” concept in SNOMED-CT con-

tains 14 children, of which “Oxygen Therapy” itself contains 14

children.10 Thus, there is a need for a pragmatic and parsimonious

standardization of respiratory support terms.

Beyond the lack of standardization, extraction of respiratory

support status from electronic health records (EHRs) data is made

challenging due to scattered, incomplete, and often contradictory

documentation which necessitates the usage of auxiliary documenta-

tion and heuristics to determine respiratory support status.11–13

Prior heuristic development work, however, are dataset-specific and

focus on endotracheal intubation thus fail to address other strata of

respiratory support.11,12

Therefore, the objective of the study was to (1) propose a prelim-

inary, parsimonious, and pragmatic terminology system for respira-

tory support stratified by severity of hypoxemia; (2) develop (meta-

)heuristics for the construction of respiratory support episodes from

raw and heterogeneous EHR data; and (3) evaluate the terminology

system and heuristics by measuring its impact on 30-day mortality

prediction through the assessment of feature importance and feature

ablation studies.

MATERIALS AND METHODS

Study design, data sources, and population
All patients � 18 years of age admitted to all hospitals within a large

Midwestern healthcare system serving the metropolitan St. Louis,

mid-Missouri, and southern Illinois regions between March 1, 2020

and April 1, 2021 were eligible for inclusion. Patients were included

if they had a COVID-19 PCR or antigen test, positive or negative,

within 14 days prior to or 7 days after hospital admission. Patients

were excluded if they had a hospital length of stay (LOS) < 24 h to

allow for a sufficient observation window for the predictive model-

ing study. Patients without associated demographics, comorbidities,

or location data were excluded. Only patients with at least 5 heart

rate and 5 SpO2 measurements during the first 24 h of hospital ar-

rival were included. EHR data, including demographics, vital signs,

lab results, flowsheet entries, and so on, were extracted for all in-

cluded subjects. This project was approved with a waiver of in-

formed consent by the Washington University in St. Louis

Institutional Review Board.

Classification system of respiratory support methods
To facilitate generalizability and reproducibility of studies leverag-

ing respiratory support information, we propose the following ter-

minologies, in increasing severity: Low-Flow Oxygen Therapy

(LFOT), High-Flow Oxygen Therapy (HFOT), Non-Invasive Me-

chanical Ventilation (NIMV), Invasive Mechanical Ventilation

(IMV), and ExtraCorporeal Membrane Oxygenation (ECMO).11,14

Meta-heuristics for identification of respiratory support

episodes
The authors of MIMIC-III, in addition to the data, also published

code for data processing and analysis to expedite and encourage col-

laborative research.11 Among the SQL scripts in their GitHub repos-

itory is one for calculating mechanical ventilation duration.

Essentially, their logic was to chain together proximal pieces of doc-

umentation that are indicative of mechanical ventilation to form epi-

sodes with start and end times. Their heuristic has since been used

successfully by researchers using the MIMIC-III dataset.13 To gener-

alize the heuristic for other forms of respiratory support beyond me-

chanical ventilation, and for other datasets beyond MIMIC-III, we

developed a generalized version of the MIMIC-III heuristic—a

“meta-heuristic”—to guide the development of heuristics for the as-

sembly of respiratory support episodes as follows:

1. Define 2 parameters:

a. MIN_DURATION for the minimum episode duration

b. EXTENSION_TOLERANCE for the maximum allowable

time gap between documentation for the formation of epi-

sodes

2. Identify timestamped documentation that are indicative of the

presence of respiratory support

3. Link consecutive documentation occurring within EXTEN-

SION_TOLERANCE into episodes

4. Discard any episodes with duration less than or equal to

MIN_DURATION

Next, as we conceived of the respiratory support methods as be-

ing mutually exclusive, respiratory support episodes are “flattened”

into a single timeline such that at any given time, a patient is on ei-

ther no respiratory support or a single respiratory support method,

by giving higher severity methods priority. Finally, the respiratory

support trajectories are “repaired” such that gaps between episodes

with a duration less than EXTENSION_TOLERANCE are filled by

extending the preceding episode. Also, gaps at the beginning and

end of the patient stay (between encounter start time and first respi-

ratory support episode start time, and between last respiratory sup-
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port episode end time and encounter end time), if less than

MIN_DURATION, are filled by extending the first or last episode,

respectively.

Evaluation through in-hospital mortality prediction
A predictive modeling study was designed to evaluate the utility of

the respiratory support information extracted through our heuristics

on downstream analyses. The task was to predict in-hospital mortal-

ity within 30 days, at 24 h after hospital arrival for a COVID-19-

tested, adult cohort presenting to an emergency department (ED);

121 baseline features were generated from demographic, laboratory,

vital sign, and other clinical data extracted from the EHR. For most

numeric measurements, the median value during the observation

window was extracted, but for frequent measurements such as heart

rate, other distributional statistics (25th quantile, 75th quantile, and

interquartile range) were also extracted.

Ten additional, respiratory-support-derived features were gener-

ated using the proposed classification schema and heuristics which

included duration of respiratory support per type, and the last respi-

ratory support during the observation period. For comparison, we

identified a small set of measurements related to respiratory status:

fraction of inspired oxygen (FiO2) and oxygen flow rate. We also

extracted the EHR-native representation of respiratory support

called oxygen delivery method (O2 Del Method) which included

ETT, CPAP, T-Piece, and so on. Lastly, we also considered a set of

features based on the proposed classification, but using the raw

time-stamped data prior to assembly into episodes. The feature sets

including explicit respiratory support information—O2 Del Method,

Raw, and Proposed—all also include “Baseline” and “Related” fea-

tures (Online Supplemental Materials, eTable 1, eFigure 1).

The compared algorithms were logistic regression (LogReg) and

XGBoost (XGB). For LogReg, features were standardized and

mean-imputed whereas for XGB, features were left as is. Hyperpara-

meters such as regularization strength were optimized for log loss

using the baseline features through 1000-iteration, 4-fold cross-

validation (Online Supplemental Materials, eAppendix A). Once op-

timal hyperparameters were identified, five replicates of 2-fold

cross-validation was performed to generate a distribution of perfor-

mance metrics: area under receiver operating characteristic curve

(AUROC), area under precision recall curve (AUPRC), and negative

log loss.15 The distributions of performance metrics were compared

using the Wilcoxon signed-rank test (2-way, paired).16 Feature im-

portance was quantified using SHapley Additive exPlanations

(SHAP) values for the XGBoost model, and coefficient values for the

logistic regression model, both of which were aggregated over 100

bootstrap samples.17,18

Table 1. Respiratory support terminologies and heuristics

Term Institution-specific evidence

Low-Flow Oxygen Therapy (LFOT) Oxygen delivery method documentation: nasal cannula, non-rebreather mask, simple mask,

venturi mask, aerosol mask, face tent.

Oxygen flow rate � 15 L/min

High-Flow Oxygen Therapy (HFOT) Oxygen delivery method documentation: high-flow nasal cannula, high humidity nasal can-

nula, optiflow

Oxygen flow rate > 15 L/min

Non-Invasive Mechanical Ventilation (NIMV) Documentation of “NPPV Status” as “In Use” in the “Adult NPPV/NIV” flowsheet

Invasive Mechanical Ventilation (IMV) Documentation of “Vent Status” as “In Use” in the “Ventilator Documentation” flowsheet

ExtraCorporeal Membrane Oxygenation (ECMO) Documentation of “Pump Flow (L/min)” or “ECMO Pump Speed (RPM)” in the ECMO or

VAD flowsheets

Figure 1. Respiratory support trajectory example. This plot demonstrates the application of the respiratory support trajectory heuristics on a full, single patient en-

counter using data elements from Table 1, MIN_DURATION of 6 h, and EXTENSION_TOLERANCE of 24 h. The x-axis indicates time with each black tick indicating

24 h and red tick indicating 6 h. The top 5 subplots each pertain to a single respiratory support method where vertical lines indicate the times at which pieces of

documentation serving as evidence for respiratory support were documented. The individual sub-trajectories are all merged into a single timeline as shown in

the “flattened” subplot, after which it is repaired as according to the heuristic. The subplots below the “repaired” subplot provide context for the patient, showing

patient location and measurements pertaining respiratory status. Abbreviations: ECMO: extracorporeal membrane oxygenation; ED: emergency department;

HFOT: high-flow oxygen therapy; ICU: intensive care unit; IMV: invasive mechanical ventilation; LFOT: low-flow oxygen therapy; NIMV: non-invasive mechanical

ventilation.
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Figure 2. Respiratory support utilization aligned at arrival. All patients were aligned at ED arrival, and their usage of respiratory support was plotted for the first 4

weeks. The top subplot shows the total number of patients utilizing each respiratory support method, whereas the bottom subplot shows the proportion. As

expected, patients who have been in the hospital longer are more likely to be on higher levels of respiratory support. Abbreviations: ECMO: extracorporeal mem-

brane oxygenation; HFOT: high-flow oxygen therapy; IMV: invasive mechanical ventilation; LFOT: low-flow oxygen therapy; NIMV: non-invasive mechanical ven-

tilation.
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Statistical analysis
Variables were summarized using frequencies and proportions for

categorical data and medians and interquartile ranges or means and

standard deviations for continuous data. Statistical comparisons

were performed using the Chi-square and Mann-Whitney U tests

where appropriate unless specified otherwise. A P-value < 0.01 was

considered statistically significant. All resampling analyses, cross-

validation and bootstrap, were performed using a fixed seed. All

analysis and figure generation were performed with Python version

3.7.1 (Python Software Foundation, Beaverton, OR) using the fol-

lowing packages: scipy, numpy, pandas, matplotlib, sklearn,

xgboost, and shap.17,19–24

RESULTS

The severity-stratified respiratory support methods and the docu-

mentation serving as evidence for each method are listed in Table 1.

Examples of the full heuristic application process, along with docu-

mentation germane to respiratory status, can be found in Figure 1.

Figure 2 shows respiratory support utilization over time, with

patients temporally aligned at ED arrival.

Cohort characteristics and outcomes for the patient population

used in this study can be seen in Table 2. During the study period

there were 45 908 hospitalizations lasting at least 24 h available for

analysis. Of these, 1601 (3.5%) experienced in-hospital death

within 30 days. Non-survivors were older, more likely to be male,

more likely to be COVID-19 positive, and have a longer length of

stay (Table 2).

The optimized hyperparameters (Online Supplemental Materi-

als, eAppendix A) were used for generating distributions of perfor-

mance metrics through repeated cross-validation (Figure 3). For

both XGB and LogReg, the addition of “Related” features signifi-

cantly improved on “Baseline,” and the addition of “O2 Del Meth-

od,” “Raw,” or “Proposed” features improved on “Related” across

all 3 metrics: AUROC, AUPRC, and negative log loss (Figure 3, On-

line Supplemental Materials, eTable 2, eTable 3). However, “O2

Del Method,” “Raw,” and “Proposed” rarely differed significantly,

and when they did, the differences were very small as was the case

for LogReg AUROC between “O2 Del Method” and “Proposed”

(0.887 [0.884—0.890] and 0.887 [0.885—0.891], P<0.01, Online

Supplemental Materials, eTable 3).

Six of the top 20 most impactful features for the LogReg model

were respiratory-support-derived features, including last respiratory

support, IMV, and LFOT duration (Figure 4). For the XGB model,

respiratory-support-derived features ranked 10th (last respiratory

support, IMV) and 17th (LFOT duration) (Figure 5).

DISCUSSION

In this study, we (1) propose a preliminary, parsimonious, and prag-

matic terminology system for respiratory support methods; (2) de-

velop (meta-)heuristics for extraction of respiratory support

information from EHR data; and (3) investigate the utility of the re-

spiratory support information extracted through the proposed ter-

minology system and heuristics via a mortality prediction study in a

COVID-19-tested, ED-admit, adult cohort. The developed heuristic

Table 2. Cohort characteristics

Outcome ¼ in-hospital mortality within 30 days of index time

Variable Total Yes No Pa

(n¼ 45,908) (n¼ 1601, 3.5%) (n¼ 44,307, 96.5%)

Age (years), median (IQR) 64.0 (51.0–76.0) 73.0 (62.0–83.0) 64.0 (50.0–76.0) < 0.01*

Male, n (%) 22,638 (49.3%) 889 (55.5%) 21,749 (49.1%) < 0.01*

Race, n (%) < 0.01*

White 28,032 (61.1%) 933 (58.3%) 27,099 (61.2%) 0.021

Black 16,706 (36.4%) 576 (36.0%) 16,130 (36.4%) 0.747

Asian 340 (0.7%) 17 (1.1%) 323 (0.7%) 0.168

Other/unknown 830 (1.8%) 75 (4.7%) 755 (1.7%) < 0.01*

BMI, median (IQR) 27.5 (23.2–33.4) 27.1 (22.7–32.2) 27.5 (23.2–33.4) < 0.01*

COVID-19 positive, n (%) 8332 (18.1%) 502 (31.4%) 7830 (17.7%) < 0.01*

Respiratory support duration during

observation window (h), mean 6

SD

None 16.7 6 10.4 7.5 6 10.2 17.0 6 10.2 < 0.01*

LFOT 5.31 6 9.16 7.36 6 10.05 5.24 6 9.12 < 0.01*

HFOT 0.39 6 2.70 1.86 6 5.73 0.34 6 2.50 < 0.01*

NIMV 0.76 6 3.74 1.47 6 5.23 0.73 6 3.68 < 0.01*

IMV 0.85 6 4.21 5.79 6 9.73 0.67 6 3.75 < 0.01*

ICU transfer, n (%) 10,311 (22.5%) 1321 (82.5%) 8990 (20.3%) < 0.01*

Total LOS (h), median (IQR) 99.7 (59.0–172.7) 166.8 (83.4–313.6) 98.6 (58.2–170.1) < 0.01*

In-hospital mortality, n (%) 1682 (3.7%) 1601 (100.0%) 81 (0.2%) < 0.01*

Abbreviations: BMI: body mass index; COVID-19: Coronavirus disease 2019; ECMO: extracorporeal membrane oxygenation; HFOT: high-flow oxygen ther-

apy; ICU: intensive care unit; IMV: invasive mechanical ventilation; IQR: interquartile range; LFOT: low-flow oxygen therapy; LOS: length of stay; NIMV: non-

invasive mechanical ventilation; SD: standard deviation.
aComparison of variables between those with and without the primary outcome of 30-day in-hospital mortality was performed using Mann-Whitney U test for

continuous variables, and v2 for categorical variables. Statistical significance,

*P< 0.01, is indicated by.
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was successfully applied to EHR data to extract respiratory support

episodes, which were then used for in-hospital mortality prediction

as features, which were found to be among the most important fea-

tures for both LogReg and XGB models.

Compared to models using demographics and commonly docu-

mented lab results and vital signs, the addition of respiratory-support-

related information, FiO2 and O2 flow rate, significantly improved

prediction performance for both XGB and LogReg across all mea-

sured performance metrics. Moreover, the additional inclusion of ex-

plicit respiratory support information further improved performance

significantly, again for both model types and across all metrics.

Because there are no other dataset-agnostic, full-severity-span-

ning classification, and heuristic system for respiratory support in-

formation found in literature, we compared our proposed approach

against 2 other methods of explicit respiratory status representation:

“O2 Del Method” which used the EHR-native representation and

“Raw” which uses the data elements for the proposed approach but

prior to assembly into episodes (Online Supplemental Materials,

eTable 2, eFigure 1). The proposed representation had commensu-

rate performance to alternate representations of explicit respiratory

support information, despite loss of both conceptual and temporal

granularity resulting from the aggregation of heterogeneous time-

stamped raw data into the more human-understandable format of

encounter-spanning series of episodes (Figure 3).

The increase in model performance associated with the addition

of explicit respiratory support information in XGB was less than

that of LogReg. We hypothesize that more complex models are able

to infer respiratory support status or reconstitute information con-

tained in respiratory status based on other features.

For the models using features from the proposed approach, IMV

status and duration was an important predictor which is unsurpris-

ing—patients who are intubated are known to have higher rates of

in-hospital mortality.25 This result simply underscores the impor-

tance of leveraging respiratory support information, especially those

of high severity, for understanding patient status. However, even

features based on low-flow oxygen therapy status were among the

most important features for both the XGB and LogReg models, indi-

cating that lower severity respiratory support information is also

critical for developing a complete clinical picture of patients.

In this study, respiratory support information was used as fea-

tures for in-hospital mortality prediction. However, there are many

other potential uses of respiratory support information, such as end-

point identification, patient sub-phenotype discovery, patient trajec-

tory analytics, or characterization of patient cohorts.13,14,26

As documentation regarding respiratory support status varies

across time and across sites, identification of timestamped documen-

tation that serve as evidence for respiratory support cannot be gener-

alized and must be specified in each study by researchers with

Figure 3. In-hospital mortality prediction feature ablation performance comparison. Comparison of in-hospital mortality prediction performance for LogReg and

XGB models with varying sets of features from 5-repeat, 2-fold cross-validation. “Baseline” includes demographics, common lab results, and vital signs from the

EHR data. “Related” also includes O2 flow rate and fraction of inspired oxygen. In addition, “O2 Del Method” includes the EHR-native representation of respira-

tory support status, “Raw” includes data from the proposed approach prior to assembly into episodes, and “Proposed” includes features derived from respira-

tory support episodes based on the proposed approach. The center horizontal line represents median, box represents the interquartile range between 25th and

75th percentiles, and whiskers represent 2.5th and 97.5th percentiles. Abbreviations: AUPRC: area under precision recall curve; AUROC: area under receiver oper-

ating characteristic curve; LogReg: logistic regression; XGB: extreme gradient boosted trees model.
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appropriate knowledge of local practice patterns contained within

the dataset. Therefore, a (meta-)heuristic was developed which pro-

vides the structure for developing heuristics to establish episodes for

any respiratory support method.

As is typical of studies using EHR data, this study suffers from

missingness and inaccuracy of information. For example, we identi-

fied patients admitted through the ED with a recent positive

COVID-19 test who were transferred to and remained in the ICU

for several days, yet had no documentation of respiratory support

throughout their entire stay. While heuristics can work with scat-

tered, conflicting, and incomplete documentation, significant miss-

ingness will still result in unrealistic scenarios. There is trade-off in

setting the MIN_DURATION parameter—if it is too long then tem-

porary/interim respiratory supports will be underrepresented; con-

versely, if it is too short then the heuristic will allow for

unrealistically rapid oscillation among respiratory support methods.

Additionally, tracheostomy status was considered orthogonal to the

proposed system. NIMV is often used nightly for sleep apnea; thus,

researchers utilizing the heuristic must decide whether to ignore

those episodes based on their needs. Also, patients can be connected

to a device for respiratory support, but not be actively using them

(eg, delivering no or low-flow oxygen through a device capable of

delivering high-flow oxygen), thus researchers must decide which is

more important for their work: the occupation of the device or the

active use of the device. Respiratory support methods are ever-evolv-

ing—helmet NIV and high-flow nasal cannula, for instance, have

only recently been used for adult patients, meaning that these termi-

nology systems will also require regular revisiting and updating.27

CONCLUSION

To facilitate generalizable and reproducible research, a terminology

system was developed for standardized representation of respiratory

support methods. (Meta-)heuristics were also developed to enable

extraction of respiratory support episodes from EHR data, and

transformation into encounter-spanning set of respiratory support

trajectories. To demonstrate the utility of respiratory support infor-

mation extracted through proposed methods, feature ablation and

feature importance analyses were performed via an in-hospital mor-

tality prediction study for COVID-19-tested, ED-admit, adult

patients. The addition of features generated from the proposed ap-

proach significantly improved model performance. Further, those

features were found to be among the most important for models. Fi-

nally, the proposed approach, which generated more interpretable

and generalizable representations, despite the loss of conceptual and

temporal granularity, had commensurate performance to alternate

representations of explicit respiratory support information.

Figure 4. Logistic regression feature importance. The left subplot shows the top 20 most important features in the logistic regression model based on coefficient

values aggregated over 100 bootstrap samples, and the right subplot shows the absolute coefficient values. For each feature, the center vertical line represents

median, box represents the interquartile range between 25th and 75th percentiles, and whiskers represent 2.5th and 97.5th percentiles. Features based on respi-

ratory support information are colored/shaded in red. Abbreviations: FiO2: fraction of inspired oxygen; GCS: Glasgow Coma Scale; HFOT: high-flow oxygen ther-

apy; IMV: invasive mechanical ventilation; LFOT: low-flow oxygen therapy; MAP: mean arterial pressure; NIMV: non-invasive mechanical ventilation; PLT:

platelet count; RDW_CV: red blood cell distribution width coefficient of variation.
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