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Abstract

Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA,

MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad

spectrum of neurological disorders. The variants were evaluated for association with pheno-

types similar to those observed in the orthologous gene knockouts in mice. Heterozygous

rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were

found to be significantly associated with pain sensitivity (especially migraine), sleep and

memory disorders—alone or in combination with anxiety—compared to a set of controls

without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which

encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures

and neurodevelopmental disorders, including autism and abnormalities of brain morphol-

ogy, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated

with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthe-

sizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phe-

notypes associated with rare CNR1 variants are reminiscent of those implicated in the

theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated

with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endo-

cannabinoid system in regulating neurological function and development. Mapping of the

variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacyl-

glycerol lipase alpha, reveals clustering of variants in certain structural regions and is con-

sistent with impacts to function.

Introduction

The endocannabinoid system (ECS) plays an important role in the regulation of neurological

activity throughout the central and peripheral nervous system [1–3], as well as in the regula-

tion of cell division, metabolic, and immune processes in a variety of other tissues [4–6]. The
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type 1 cannabinoid receptor (CB1), encoded by the CNR1 gene, is a key component of the

ECS. CB1 is the most abundant G-protein coupled receptor in the brain, and is present at high

levels in the neocortex, hippocampus and cerebellum [7]. CB1 is activated by the natural endo-

cannabinoid agonists N-arachidonoylethanolamine (AEA), 2-arachidonoyl glycerol (2-AG)

and a variety of related compounds [8]. It also binds the phytocannabinoid Δ9-tetrahydrocan-

nabinol (THC), and a wide variety of synthetic agonists and antagonists [9]. At the cellular

level, CB1 is located primarily on presynaptic termini of GABAergic and glutamatergic neu-

rons in the brain [10, 11], where it binds 2-AG released by postsynaptic termini to down-regu-

late neurotransmitter release [12].

The type II cannabinoid receptor (CB2), encoded by the CNR2 gene, is expressed in cells of

the immune system (recently reviewed by Turcotte et al [13]) and is strongly induced in acti-

vated microglia in the brain [14]. CB2 is activated by the endocannabinoids AEA and 2-AG,

and by the phytocannabinoids THC and β–caryophyllene [13, 15].

2-AG is the most abundant endocannabinoid in the brain, and is generated through the

action of diacylglycerol lipase α (encoded by the DAGLA gene) by hydrolysis of diacylglycerol

[16]. 2-AG is a mediator of retrograde signaling to presynaptic CB1 receptors to regulate neu-

rotransmitter release [12]. 2-AG acts over longer distances during early development due to

low monoacylglycerol lipase levels to regulate neuronal development at axonal growth cones

[17, 18]. 2-AG is degraded by the action of monoacylglycerol lipase (encoded by the MGLL
gene). AEA is generated mainly through the activity of N-acyl phosphatidylethanolamine

phospholipase D, encoded by the NAPEPLD gene, and is degraded mainly by fatty acid amide

hydrolase, encoded by the FAAH gene [19, 20].

Common single nucleotide polymorphisms in or near CNR1, CNR2, FAAH and MGLL
have been reported to be associated with a variety of clinical phenotypes in candidate gene

association studies (substance abuse disorders, cardiovascular disease risk factors, irritable

bowel syndrome, migraine, chronic pain and mood disorders) [21–30]. The effect sizes are

generally small, however, and replication studies in larger independent cohorts have been met

with mixed results [31–35]. In contrast, the impact of rare genetic variation in genes associated

with the endocannabinoid system has not been studied systematically. There are several

reports of pathogenic deletions and duplications involving the ECS genes CNR1, CNR2,

DAGLA, MGLL and FAAH with associated developmental phenotypes in the Decipher [36]

and Clinvar [37] databases. There is also a reported association of DAGLA duplications with

spinocerebellar ataxia-20 in OMIM [38] (entry 608687). However, the size of those structural

variants is generally large (24 Mb on average) and they all impact multiple genes.

In this study, we investigate the phenotypic impact of rare missense variants in the core

ECS genes: CNR1, CNR2, DAGLA, MGLL and FAAH, which encode CB1, the type 2 cannabi-

noid receptor (CB2), diacylglycerol lipase alpha, monoglyceride lipase, and fatty acid amide

hydrolase, respectively. Phenotypes for were selected for evaluation based on their presence in

mouse knockout strains for each gene.

Methods

Two diagnostic gene panels were used in this study (S1 Table). These panels were designed to

identify chromosomal alterations associated mitochondrial disorders (NucSEEK Comprehen-

sive– 1207 genes including CNR1, MGLL and FAAH) and epilepsy (EpiSEEK Comprehensive–

471 genes including CNR1, CNR2, DAGLA, MGLL and FAAH). Genetic sequencing data was

generated from over 6,000 individuals using one or both of those gene panels in our CLIA/

CAP certified laboratory, and clinical diagnostic reports were created, as follows.
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DNA was extracted from saliva or blood samples using Genfind v2 (Beckman Coulter).

Sequence-ready libraries were prepared using HaloPlex1 target capture kits (Agilent Technol-

ogies) in conjunction with DREAM PCR amplification [39, 40] to avoid sample contamina-

tion. Sequencing was performed on the Illumina MiSeq platform to generate paired 250 base

reads at average coverage levels of 465 for NucSEEK and 565 for EpiSEEK. Sequence reads

were trimmed to remove adapters and low quality bases using Cutadapt and FastQC before

alignment to the hg19 (GRCh37) reference sequence using BWA-MEM [41]. Qualimap [42]

and Picard were used to generate alignment QC metrics such as insert size distribution, mis-

match rates, and GC bias. Variant calls were generated by an ensemble [43] approach using

FreeBayes, Platypus [44] and the GATK [45] UnifiedGenotyper [46]. For annotation and clini-

cal review, a custom platform integrating data from multiple tools and databases was used

(Ensembl variant effect predictor [47], SnpEff [48], Human Phenotype Ontology (HPO) [49],

OMIM [38], ClinVar [50], 1000 genomes [51], ExAc [52], and dbNSFP [53]). SmartPCA [54]

was used to stratify patients into subgroups based on analysis of the variants with respect to

1000 Genomes data. These data were stored in a database and reviewed in the context of clini-

cal phenotype data provided by the patient’s physician by Variant Scientists, Genetic Counsel-

ors, and Laboratory Directors. A comprehensive, user-friendly report was then generated for

the patient’s physician including pathogenicity scores generated according to ACMG guide-

lines [55].

Retrospective, aggregate analysis of variants in the core ECS genes for this study utilized

only the pre-existing clinical information provided at the time of testing. Individuals were

excluded if they did not sign a consent form for research use of their clinical testing data, or if

the available clinical information was absent or inadequate. Adequate clinical information

included an informative clinical summary, a comprehensive evaluation, or a completed check-

list of standardized terms by a treating physician. Clinical summaries were translated to HPO

terms by genetic counselors using the PhenoTips [56] software tool. A limited data set, con-

taining only the above-described information and no personal identifiers, was used for the

present study. Families were not contacted in regards to the current study. Thus, per the Office

of Human Research Protection of the U.S. National Institutes of Health, this study does not

qualify as human subjects research, and informed consent is unnecessary. However, the study

was approved by the Courtagen Life Sciences ethics committee.

Rare variants in CNR1, CNR2, DAGLA, MGLL and FAAH having an allele frequency of

approximately 0.003 or less in the ExAC database were identified. A Pubmed search of the lit-

erature relating to mouse knockouts of each of the five genes was carried out, and a list of the

phenotypes described in those studies was compiled (S2 Table). The mouse phenotypes were

translated into general terms that could be related to human phenotypes in our test database

(S2 Table). Comprehensive lists of HPO terms were generated from a query of all scored tests

in our database in which the five ECS genes were present (S3 and S4 Tables). The terms were

evaluated to generate subsets of HPO and text terms corresponding to each general phenotype

for use as database queries (S3 and S4 Tables). Counts of subjects with individual or multiple

neurological phenotypes were generated through text-based queries of summary clinical phe-

notype data associated with de-identified reports and stored in a database. The phenotypes

were scored positive if any of the included terms matched one or more of the clinical terms

provided by the patient’s physician. Non-neurological phenotypes were not evaluated because

they were poorly represented in the clinical database, as almost all of the patients were being

tested for neurological disorders.

A set of non-carrier controls were selected for each gene. The total number of non-carriers

was 3,777 for DAGLA and CNR2, and 5,979 for CNR1, FAAH and MGLL. To simplify the

analysis, 950 controls were selected at random for CNR1 and DAGLA, and ~500 controls were
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selected at random for CNR2, FAAH and MGLL. If the rare variant data for a particular gene

was derived from two gene panels (this was the case for CNR1, FAAH, and MGLL), a propor-

tional number of controls were selected from subjects sequenced using each of those panels.

Counts of subjects with individual or multiple phenotypes were generated through text-based

queries of summary clinical phenotype data as described above. Two-tailed Fisher exact tests

were performed to evaluate the possible association of phenotypes present in carriers with rare

variants, compared to controls, using a tool available at vassarstats.net (clinical research calcu-

lator number 3). The resulting P-values were Bonferroni corrected by multiplying by the num-

ber of general phenotypes tested (corrected P-values >1 were scored as 1). No correction was

made for the number of genes tested, since they are all from a single pathway.

Results

The numbers of subjects harboring rare variants were 22 for CNR1, 11 for CNR2, 35 for

DAGLA, 34 for MGLL and 53 for FAAH. Data on the rare variants detected, including genomic

location, coding consequences, allele frequencies in the ExAC, GnomAD and CLS databases,

Polyphen2 and SIFT scores, PhyloP conservation and ExAC gene constraint values are sum-

marized in S5 Table. The human clinical phenotypes and HPO terms associated with each of

the mouse knockout phenotypic categories detected are also presented in S5 Table.

The results of Fisher exact tests for phenotypes putatively associated rare variants in the

genes CNR2, MGLL and FAAH did not reveal any significant association between rare variants

and any phenotype or combination tested (S6 Table). The results for CNR1 and DAGLA, how-

ever, revealed several significant associations between the presence of heterozygous rare cod-

ing variants and neurological phenotypes as indicated in Table 1.

Table 1. Association of mouse knockout phenotypes with rare variants in CNR1 and DAGLA.

Gene* Phenotype Cases Controls OR P-value

CNR1 Pain sensitivity 9/22 156/950 3.5 0.036

CNR1 Anxiety 7/22 122/950 3.2 0.131

CNR1 Memory disorder 3/22 1/950 150 0.0003

CNR1 Sleep disorder 6/22 33/950 10.4 0.001

CNR1 Urinary frequency 2/22 19/950 4.9 0.301

CNR1 Seizures 11/22 402/950 1.4 1.000

CNR1 Hearing loss 1/22 31/950 1.4 1.000

CNR1 Pain sensitivity and anxiety 5/22 47/950 5.7 0.030

CNR1 Sleep disorder and anxiety 4/22 8/950 26.2 0.001

CNR1 Pain sensitivity and memory disorder 3/22 1/950 150 0.000

CNR1 Pain sensitivity, memory and sleep disorder 3/22 1/950 150 0.000

CNR1 Pain sensitivity, anxiety and memory disorder 2/22 0/950 N/A 0.003

CNR1 Pain sensitivity, anxiety, memory and sleep disorder 2/22 0/950 N/A 0.003

CNR1 Pain sensitivity and sleep disorder 3/22 7/950 21.3 0.005

DAGLA Anxiety 2/35 177/950 0.26 0.211

DAGLA Neurodevelopmental disorder 27/35 448/950 3.78 0.001

DAGLA Anxiety and neurodevelopmental disorder 2/35 98/950 0.53 1.000

DAGLA Seizures 30/35 595/950 3.84 0.032

DAGLA Seizures and neurodevelopmental disorder 22/35 332/950 3.15 0.003

*For each gene, the phenotypes that were evaluated are listed along with the number of cases or controls in which that phenotype was present out of the

total number. Also listed are the odds ratio (OR), and P-values corrected for multiple testing. Confidence intervals for the odds ratios are provided in an

extended version of the table in the supporting information (S7 Table).

https://doi.org/10.1371/journal.pone.0187926.t001
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The allele frequencies of the ECS gene variants in our database of genetic testing results

(CLS database) were compared with those in the public reference databases ExAC and gno-

mAD [57]. Across all five genes, the rare variants had an average allele frequency of 0.0004 in

ExAC and gnomAD. The rare variants were enriched in the CLS database compared to gno-

mAD by 4.5-fold for CNR1 and 6.7-fold for DAGLA (not including variants with zero fre-

quency gnomAD). Eight of the 24 CNR1 variants, and three of the 36 DAGLA variants had

zero frequency in gnomAD. The fraction of variants with zero frequency in gnomAD for the

other genes was 1/10 for CNR2, 8/53 for FAAH and 3/40 for MGLL.

We looked for shared phenotypes amongst subjects carrying the same rare variant. Two of

the CNR1 variants were observed in multiple samples (p.Glu93Lys in 2 samples, and p.Ala419-

Glu in 5 samples)—S5 Table. All subjects with p.Glu93Lys had seizures and developmental

delay. Two of the subjects with p.Ala419Glu had the shared phenotypes: anxiety, sleep disorder,

abnormality of the autonomic nervous system and a third had a sleep disorder combined with

seizures. Those phenotypes were absent in the other subjects with p.Ala419Glu.

Four of the DAGLA variants were observed in multiple samples (p.His810Gln in 7 samples,

p.Arg815His in 5 samples, p.Ala858Val in 2 samples, and p.Leu988Val in 3 samples)—S5

Table. Three of the subjects with p.His810Gln had infantile spasms and two had focal seizures.

5/6 of the subjects with p.Arg815His had seizures and developmental disorders and two had a

brain abnormality. The subjects with p.Ala858Val did not have shared phenotypes. All three

subjects with p.Leu988Val had seizures; two had developmental delay and the third had a

brain abnormality in addition. One subject (ECS158) had two DAGLA variants, p.Arg197Trp

and p.Ter1043GlnextTer29; the chromosomal phasing of those variants is unknown.

Additional genes with variants that could contribute to the observed phenotypes in the sub-

jects, based on clinical reports, are noted in S5 Table.

Several 3D x-ray crystal structures of CB1 were published recently, by two groups [58–60].

We mapped the position of the rare coding variants onto one of those structures with bound

agonist, PDB ID: 5XRA, as well as onto the primary structure and domain organization of the

enzyme (Fig 1). Of the variants that could be mapped, 6/7 were in the 7-transmembrane can-

nabinoid binding domain (Fig 1). The other CNR1 variants, located near the N- or C-terminus,

could not be mapped since those regions were deleted from the crystalized proteins. A similar

exercise was performed for DAGLA using the primary structure and domain organization of

the enzyme as described by Reisenberg, et al. [61] and NCBI Reference Sequence:

NP_006124.1, since a crystal structure is not available. Most of the DAGLA variants mapped to

the C-terminal end of the protein, a region that contains many regulatory phosphorylation

sites (Fig 2).

Discussion

We report a set of 155 rare missense or short deletion variants in the core ECS genes CNR1,

CNR2, DAGLA, FAAH and MGLL. A subset of those variants, in CNR1 and DAGLA, were

found to be statistically associated with neurological phenotypes by case control analysis at the

gene level. It is perhaps not surprising that CNR2, FAAH and MGLL were not associated with

any phenotypes. Those genes are significantly more tolerant to missense and loss of function

(LOF) variation than CNR1 and DAGLA, based on ExAC gene constraint values [57, 62]. Fur-

thermore, our testing focuses on neurological phenotypes, so metabolic or immunological

phenotypes associated with those genes may not have been reported.

The CNR1 variants were found to be associated with headache (including migraine), sleep

and memory disorders, alone or in combination with anxiety, compared to a control set of 950

randomly selected patients without such CNR1 variants. The Fisher odds ratios for the

Rare variants in CNR1 and DAGLA

PLOS ONE | https://doi.org/10.1371/journal.pone.0187926 November 16, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0187926


Fig 1. A. Depiction of the x-ray crystal structure of the type I cannabinoid receptor with bound agonist

AM11542 from PDB ID 5XRA. The location of rare coding variants that could be mapped to the structure are

shown by magenta dots, with annotations indicating the amino acid substitutions and the cannabinoid binding

site. B. The location of rare coding variants relative to domains of the enzyme and regulatory phosphorylation

sites are indicated, based on NCBI Reference Sequence: NP_001153731.1. Red dot: rare variant; T (light

green shading): transmembrane domain; P (blue vertical lines): phosphorylation sites.

https://doi.org/10.1371/journal.pone.0187926.g001

Fig 2. Mapping of rare variants to diacylglycerol lipase alpha. The location of rare coding variants relative

to domains of the enzyme and regulatory phosphorylation sites are indicated, based on NCBI Reference

Sequence: NP_006124.1. Red dot: rare variant; purple dots: two variants present in one subject; T (light

green shading): transmembrane domain; light blue shading: lipase domain; A (purple shading): Active site; N

(magenta shading): Nucleophilic elbow; blue vertical lines: phosphorylation sites.

https://doi.org/10.1371/journal.pone.0187926.g002
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associated variants ranged from 4.5 up to 150, with the highest ratios being associated with

sleep disorder plus headache (18.9), sleep disorder plus anxiety (26.2), memory disorder with

or without headache (150) and the combined phenotypes of headache, memory disorder and

anxiety and/or sleep disorder, which did not occur in any of the controls (Table 1).

Based on ExAC gene constraint values [57, 62], the CNR1 gene is predicted to be somewhat

tolerant of single missense and loss of function variants (missense z score = 2.7 and

pLI = 0.15), but intolerant of dual heterozygous LOF variants (pRec = 0.78). All but one of the

variants that could be mapped to the 3D structure of CB1 were in the 7-transmembrane

domain. One additional variant, Ile339Val, would have mapped to the cytoplasmic domain if

the region containing it had not been substituted in the 5XRA sequence. While we have no

direct evidence that the variants we discovered impair function of the receptor, we note that

three of the variants, p.Gly194Ala, p.Val249Met and p.Thr242Ile, map near the cannabinoid

binding pocket in the 3-dimensional structure (Fig 1). In addition, two other variants, p.

Arg148His and p.Val306Ile, map near the boundary between the 7-transmembrane and cyto-

plasmic signaling domains. Such variants could affect signal transduction of the receptor.

There were four variants (at residues 7, 27,57 and 93) that could not be mapped since the N-

terminus was deleted from the structure. The N-terminal region is not required for cannabi-

noid binding, but may play a role in regulating the stability and surface expression of CB1[63].

We also note that the PolyPhen 2 deleteriousness scores of the CNR1 variants are generally

high (mean PP2 score = 0.85 with 11/24� 0.95).

Mice that are experimentally manipulated to harbor a non-functional CNR1 gene (CB1

knockout), or that are treated with CB1 antagonists, display behaviors that suggest impacts

related to pain sensitivity, anxiety, memory and sleep, amongst others (S2 Table). The behav-

iors include elevated avoidance, freezing and risk-assessment behaviors [64], accelerated early

learning and memory decline [65], food-seeking, and non-REM sleep alterations [66, 67].

There is a strong correlation between those phenotypes and those we observed in the present

study (anxiety, sleep and memory disorders). Three of the eight subjects with rare CNR1 vari-

ants and headaches in our study also have memory disorders (mainly short term memory),

and two of those have comorbid anxiety and sleep disorders.

Two of the subjects with migraine headaches harbor variants in other genes that have previ-

ously been associated with migraine (TRAP1 and CACNA1A) [68, 69]. However, the clinical

correlation of the variants present in those subjects (TRAP1 p.Ile253Val in subject ECS031 and

CACNA1A p.Ser2423_Gly2424del in subject ECS100) with migraine and anxiety is uncertain.

Interestingly, 2/5 subjects with a CNR1 p.Ala419Glu variant (ExAC MAF = 0.00038) had the

shared phenotypes: anxiety, sleep disorder, and abnormality of the autonomic nervous system.

Only one of the other three subjects with that variant, however, had any of those phenotypes.

These observations suggest that additional factors (genetic or environmental) may contribute

to expression of the CNR1-associated phenotypes. Additional work will be required to resolve

this.

The CB1 receptor encoded by CNR1 binds the natural endocannabinoid agonists AEA and

2-AG. A theory of Clinical Endocannabinoid Deficiency (CED), first described by Russo, pos-

its that migraine, fibromyalgia, irritable bowel syndrome and comorbid anxiety may be related

manifestations of reduced endocannabinoid tone, specifically AEA and 2-AG levels [70, 71].

These conditions frequently occur together, and a growing body of evidence suggests that they

respond well to cannabinoid therapy, particularly THC [71]. Our results suggest that impaired

CB1 signaling may be associated with increased susceptibility to a related set of clinical pheno-

types: migraine, sleep and memory disorders with co-morbid anxiety. It would be interesting

to explore whether migraine, anxiety and sleep disorders in patients with rare deleterious vari-

ants in CNR1 could be alleviated by treatment with CB1 agonists that could effectively

Rare variants in CNR1 and DAGLA
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stimulate the impaired and/or remaining functional CB1 receptors. Compounds that increase

endocannabinoid levels such as CBD [72], or inhibitors of fatty acid amyl hydrolase, monoa-

cylglycerol lipase, or fatty acid binding proteins [73, 74], might also be effective. We note that a

recent observational study of 121 adults with migraine reported a decrease in mean headache

frequency from 10.4 to 4.6 headaches per month (p<0.0001) for patients receiving medicinal

cannabis [75]. However, the genetic basis (if any) of migraine in those patients was not investi-

gated, and the therapeutic effect of THC could be a result of other mechanisms [75]. It is not

clear whether high levels of THC could effectively remediate defective CB1 receptors because

of its partial agonist nature and potential antagonistic effects on AEA and 2-AG signaling. Fur-

thermore, the effects of THC may be different from AEA and 2-AG due to biased agonism [76,

77].

DAGLA encodes diacylglycerol lipase alpha, which is the major enzyme involved in 2-AG

biosynthesis in the central nervous system. 2-AG levels have been reported to drop by ~80% in

DAGLA knockout mice, resulting in pronounced anxiety and depression-like behaviors [78],

and increased severity of kainate-induced seizures[79]. Developmental alterations observed in

DAGLA knockout mice include altered cholinergic innervation of CA1 pyramidal cells of the

hippocampus [18], and compromised adult neurogenesis in the hippocampus and subventri-

cular zone [80]. In addition, altered axon formation in the midbrain-hindbrain region (associ-

ated with vision and locomotion) has been observed in response to transient morpholino

DAGLA knockdown in zebrafish [81].

Heterozygous rare variants in DAGLA were found to be significantly associated with sei-

zures, developmental disorders and abnormalities of brain morphology compared to controls.

Based on ExAC gene constraint values, the DAGLA gene is predicted to be intolerant of mis-

sense and LOF variants (missense z score = 5.3 and pLI = 0.95 [57, 62]. We observed that 15/

23 of the unique variants observed in our study map to the C-terminal third of the DAGLA
coding sequence, a region that is predicted to contain numerous regulatory phosphorylation

sites based on aggregate data from several biochemical studies [61]. This region appears to be

more tolerant of variation than the catalytic domain, in which variation was sparse, despite its

similar size. In contrast to mouse knockout models, anxiety phenotypes appear to be depleted

in the clinical subjects—but the result was not significant. This raises the possibility that some

of the variants might augment diacylglycerol lipase function. Further studies will be required

to evaluate that possibility.

The frequency of seizures and developmental disorders in subjects with rare DAGLA vari-

ants were each elevated by a factor of approximately 4 compared to controls. The developmen-

tal disorders observed included several types of brain abnormalities: abnormalities of the

cerebral white matter, brain malformations, posterior delayed myelination, heterotopia, and

porencephaly with encephalomalacia. The prevalence of developmental disorders and brain

abnormalities in these subjects aligns with the observations in animal models. Only two of the

35 samples with rare DAGLA variants harbored a likely pathogenic variant in another gene

known to be associated with seizures and developmental delay (GRIN2A in subject 061 and

MEF2C in subject 044). This represents about half the number of positive tests that would be

expected based on the overall positive rate of the epiSEEK panel in our patient population

(13%). Further work will be necessary to define whether rare variants in DAGLA are causa-

tively associated with seizures and developmental disorders.

While the variants described in this study occur at extremely low frequencies in the general

population, we suspect that patient populations with disorders of the nature studied here will

be enriched for them. The allele frequencies observed in our test database for the rare CNR1
and DAGLA variants were approximately 4.5-fold higher, on average, than those observed in

the ExAC database. It will be interesting to evaluate what fraction of patients with migraine,
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with or without anxiety, sleep, or memory disorders, harbor low frequency or rare variants in

CNR1. Similarly, the prevalence of rare DAGLA variants in patients with developmental disor-

ders should be investigated.
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