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Abstract: Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-
individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet
genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies
of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid
molecular species which are more closely related to the genome. We measured the plasma lipidome
at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-
Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography
coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identi-
fied. Heritable and responsive lipid species were examined for association with single-nucleotide
polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP
findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We
further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine
(CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both
responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple
testing of 132 lipids (α = 5 × 10−8/132 = 4 × 10−10), no SNP was statistically significantly associated
with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1
and 2/FADS1 and FADS2) on chromosome 11 had p < 8.0 × 10−7 for arachidonic acid FA(20:4).
Those SNPs replicated in HAPI Heart with p < 3.3 × 10−3. CpGs around the FADS1/2 region were
associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG
(p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute
jointly and independently to the diet response to a high-fat meal.
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1. Introduction

Most individuals experience continuous fluctuations in postprandial lipemia (PPL)
throughout the day [1]. Results from basic and clinical studies suggest that postpran-
dial lipid levels are associated with prothrombotic and proinflammatory processes [2]
related to cardiovascular disease (CVD) [3–5]. Remnant postprandial particles are partially
catabolized chylomicrons and very low-density lipoproteins (VLDLs) that are reduced
in size, partially depleted of triglycerides (TGs), and enriched with cholesteryl esters
(CEs) [6]. Remnant particles that remain in the circulation for an extended time are inde-
pendently related to coronary artery disease progression [7–9]. Overall, quantifying the
CVD risk associated with PPL has been challenged by the absence of these measures in
large observational studies and the need for standardization of the meal prior to the lipid
measures. Small, controlled studies of response to a high-fat meal have shown striking
inter-individual variation and report that a more pronounced PPL response followed by
delayed lipid clearance predicts the presence of CVD [10–14]. Overall, studies show lipids
peak an average 4–6 h following a meal [7,10,15]. Lipid levels measured 6 h after an
intervention are discriminatory for the presence of CVD [10,16]. Additionally, research
has shown PPL lipid levels are heritable; thus, genes may help better understand PPL
processes [17,18]. A genome-wide association study (GWAS) of PPL has shown a locus
near the apolipoprotein gene cluster (APOA1/C3/A4/A5) on chromosome 11 was associated
with the postprandial TG response [19]. An epigenome-wide association study (EWAS) of
postprandial TG has similarly highlighted known lipid-related genes [20]. Still, complex
biology underlies these responses, and more granular lipid phenotypes may continue to
help unravel proinflammatory mechanisms related to diet [21].

Lipidomics in epidemiological settings characterizes the composition of lipid molec-
ular species in a population [22]. High throughput lipidomics research has been largely
driven by advances in mass spectrometry (MS) and chromatographic technologies. Many
studies have already demonstrated the utility of lipidomics for biomarker discovery related
to CVD [23,24]. Continued research is needed to determine if lipidomic species could
eventually complement conventional lipid measures currently used in the clinic [25–27].

The constituents of the lipidome are proving to be “closer to the genome” than
traditional lipid measurements [28,29]. For example, a targeted lipidomics study by Hicks
et al. reported circulating concentrations of several key molecules involved in sphingolipid
metabolism were strongly associated with common genetic variants (p-values = 10−15 to
10−66) [30]. GWAS of fasting lipidomic traits in the Cooperative Health Research in the
Region Augsburg (KORA) study highlighted single nucleotide polymorphisms (SNPs)
located in or near genes central to lipid metabolism with p-values ranging 3 × 10−24 to
6.5 × 10−179 [31]. However, few studies have examined genomic factors associated with
the postprandial lipidome. In the current study, we conducted lipidomic analysis at two
time points (before and 6 h after a standardized high-fat meal) in over 600 participants from
the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study. We identified
diet-responsive and heritable lipids and further conducted GWAS of those lipid candidates.
We replicated the genetic results in the Heredity and Phenotype Intervention (HAPI) Heart
Study [32]. Finally, we examined methylation markers and methylation quantitative trait
loci (meQTLs) around the GWAS-identified candidates of interest.

2. Materials and Methods
2.1. Study Population

GOLDN participants were identified through 3-generation families previously screened
in the NHLBI Family Heart Study Minnesota or Utah centers [33]. As part of the NHLBI
Programs in Gene by Environment Interaction (PROGENI), participants took part in diet
and/or drug interventions (high-fat meal and/or fenofibrate for 3 weeks) and provided
consent for genetic studies. GOLDN participants who were using lipid-lowering drugs
were required to discontinue them for 4 weeks prior to the study. The GOLDN sample
consisted of 1048 Caucasian individuals belonging to 184 pedigrees (average family size
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6.2). A total 668 of those participants had all available ‘omics’ data to support the current
study. The study was approved by the Institutional Review Board at the University of
Alabama at Birmingham (UAB). The current study focuses on the diet intervention arm of
the study only.

2.2. High-Fat Meal and Measurement of Postprandial Lipemia

Participants fasted for ≥12 h and abstained from alcohol intake for ≥24 h. The PPL
intervention followed the protocol of Patsch et al. [10]. The whipping cream (83% fat) meal
had 700 calories/m2 body surface area; 3% of calories were derived from protein and 14%
from carbohydrates. Blood samples were drawn immediately before (fasting) and at 6 h
after consuming the high-fat meal. During the 6-h study period, participants consumed
only water and abstained from physical activity.

2.3. Genomics

GOLDN participants were genotyped using the Affymetrix Genome-Wide Human
SNP Array 6.0 (Thermo Fisher Scientific, Waltham, MA, USA). DNA extraction and purifi-
cation were done using commercial Puregene reagents (Gentra System, Inc, Minneapolis,
MN, USA) as described in Irvin et al. [34]. We typed 906,600 SNPs and called them using
the Birdseed calling algorithm. Comprehensive quality control (QC) procedures have
been described for GOLDN [19]. Due to the volume of GWAS models for lipidomic out-
comes, we used the QC’d version of the genotyped data to minimize computing time
and resources. Methylation assays were performed using Illumina’s Infinium Human
Methylation 450 Beadchip [35] (Illumina, Inc, San Diego, CA, USA) in GOLDN on DNA
extracted from T-cells derived from buffy coat samples. The GOLDN methylation assays
and QC have been described [36].

2.4. Lipidomics

GOLDN lipidomics data were collected using ultra-performance liquid chromatogra-
phy coupled to (quadrupole) time-of-flight mass spectrometry (UPLC–QTOFMS) at the
West Coast Metabolomics Center (WCMC) at the University of California Davis. The
protocol for this measurement has been described in detail [37,38]. In summary, the process
was divided into three steps: lipid extraction and separation, data acquisition, and lipid
identification. Methyl tert-butyl ether, methanol, and water were used for plasma lipid
extraction. Blanks and pooled human plasma were used for QC samples (Bioreclama-
tionIVT, Westbury, NY, USA). The separated non-polar phase was injected into a Waters
Acquity UPLC CSH C18 (100 mm length × 2.1 mm id; 1.7 µm particle size, Waters Corp,
Milford, MA, USA) with an additional Waters Acquity VanGuard CSH C18 pre-column
(5 mm × 2.1 mm id; 1.7 µm particle size) maintained at 65 ◦C coupled to an Agilent 1290
Infinity UHPLC (Agilent Technologies, Inc, Santa Clara, CA, USA) for electrospray ion-
ization (ESI) positive and negative modes. Mobile phase modifiers included ammonium
formate and formic acid for positive mode and ammonium acetate for negative mode
(MilliporeSigma, Burlington, MA, USA). For both positive and negative modes, the same
mobile phase composition of (A) 60:40 v/v acetonitrile:water (liquid chromatography-mass
spectrometry [MS] grade) and (B) 90:10 v/v isopropanol:acetonitrile was used. An Agilent
6550 QTOF with a jet stream electrospray source was employed for acquiring full scan
data in the mass range m/z 65–1700 in positive and negative modes with a scan rate of
2 spectra/s. Instrument parameters were as follows for the ESI (+) mode—gas temperature
325 ◦C, gas flow 8 L/min, nebulizer 35 psig, sheath gas temperature 350 ◦C, sheath gas
flow 11, capillary voltage 3500 V, nozzle voltage 1000 V, fragmentor voltage 120 V, and
skimmer 65 V. In negative ion mode, gas temperature was 200 ◦C, gas flow 14 L/min,
fragmentor 175 V, with the other parameters identical to positive ion mode. Data were
collected in centroid mode at a rate of 2 scans/s. Injection volumes were 1.7 µL and 5 µL
for the positive and negative modes, respectively. The gradient started at 15% B, ramped
to 30% at 2 min, 48% at 2.5 min, 82% at 11 min, 99% at 11.5 min, and kept at 99% B until
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12 min before ramping down to 15% B at 12.1 min, which was kept isocratic until 15 min
to equilibrate the column. Run time was 15 min and the flow rate was 0.6 mL/min. For
every ten samples, one QC sample was analyzed. Data were acquired in nine batches.
We collected MS1 data for all samples, and we collected MS/MS data for a set of pooled
samples. Data were processed with the Agilent Quant 7.0 software. Lipid levels were
reported as chromatographic peak heights and the data were normalized using the SERRF
method [39]. After normalization, the relative standard deviation (SD) of QC samples
was 4.7% and 3.4% for negative and positive modes, respectively. Lipid identification was
performed by converting the acquired MS/MS spectra to the mascot generic format (MGF)
and then conducting a library search using the in-silico MS/MS library LipidBlast [40]. In
total, 413 lipids were characterized including CEs, lysophosphatidylcholines (LPCs), phos-
phatidylcholines (PCs), phosphatidylethanolamines (PEs), lysophosphatidylethanolamines
(LPEs), sphingomyelins (SMs), phosphatidlyserines, phosphatidylinositols (PIs), ceramides,
and TGs [41].

2.5. Replication Population

The samples used in this study were from participants of the HAPI Heart Study [32].
Briefly, HAPI Heart was initiated in 2002 to identify the genetic and environmental de-
terminants of responses (blood pressure, TG excursion and platelet aggregation) to four
short-term interventions which included a high-fat challenge. Baseline blood drawn from
650 participants was used for the lipidomic profiling in this study. Since both GOLDN
and HAPI Heart were part of the NHLBI PROGENI program, the diet intervention was
harmonized between the studies. The study protocol was approved by the Institutional
Review Board at the University of Maryland. Informed consent was obtained from each
of the study participants. Genome-wide genotyping was performed with the Affymetrix
GeneChip Mapping 500 K Assay at the University of Maryland Biopolymer Core Facility.
QC has been described, resulting in the inclusion of 307,238 genotyped variants for imputa-
tion [42]. The genotype data were uploaded to the Michigan Imputation Server [43] where
the pre-phasing was performed using Eagle v2.4 [44], and then imputation to the TOPMed
Freeze 5b reference panel was performed using Minimac4 [45]. Following imputation,
variants with imputation quality/INFO < 0.9, minor allele frequency < 0.0001, or deviation
from Hardy-Weinberg equilibrium at p < 1.0 × 10−9 were excluded. Finally, the same
lipidomics assays were measured on 639 HAPI Heart participants at the WCMC [41].

3. Statistical Methods

Descriptive Statistics: Participant characteristics in GOLDN and HAPI Heart were
reported as mean (±SD) or counts and percent as appropriate.

Responsive and Heritable Lipids: Using a linear mixed model, we tested whether
the intercept for each lipidomic trait change (6 h-fasting value) measured in GOLDN
was statistically different from zero after adjustment for the fasting value, age, sex, and
family ID (modeled as a random effect). Heritability (h2) estimates of lipidomic traits
were estimated using a variation of the linear mixed model with GWAS data as previously
described [46,47]. Lipids that changed (p < 0.05) in response to the PPL intervention and
had h2 ≥ 20% were included in genetic analysis.

Genetic Analysis: PPL response was defined as the change or delta in the lipidomic
trait value from the fasting value. Each delta was inverse rank-based transformed. We
used linear regression implemented in PLINK (v1.9) for detecting the association between
SNP genotypes and lipidomic trait outcomes. Covariates included age, gender, study
site, and fasting lipidomic concentration. As population substructure within GOLDN
is minimized by the design (Caucasian families from MN and UT), we did not adjust
for ancestry. Inflation corrected p-values are presented in Manhattan and QQ plots in
Supplemental Files. In sensitivity models for the top hits, the family structure was modeled
as a random effect by using the LMEKIN R package [48]. We followed up the top GWAS
findings (p < 1.0 × 10−7) with a regional analysis of cytosine-phosphate-guanine sites
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(CpGs, annotated to the GWAS SNP gene location or a ±20 kb region around the SNP, if
intergenic). For epigenetic association, we took a two-step approach. We first obtained
the residuals from a model regressing four methylation principal components (PCs) onto
the CpG. We then regressed the CpG residual onto the PPL response trait, adjusting for
the same covariates as in the GWAS. For CpGs with association p-value with the lipid
trait of interest <0.01, we examined meQTLs. For meQTL analysis, we regressed the
nearest GWAS SNP onto the CpG, adjusting for age, sex, and methylation PCs. For top
findings from the CpG analysis qualifying as a meQTL (p < 10−9 based on prior work
in GOLDN) [49], mediation analysis was used to determine if the association between
the GWAS SNP and lipid was mediated by the CpG. Mediation analysis was performed
in SAS, version 9.4 (SAS Institute Inc. Cary, NC, USA). The models were adjusted for
age, sex, center, and baseline/fasting lipid. Replication analysis in HAPI Heart for 8 of
the top SNPs was performed similarly to GOLDN where each SNP was regressed on the
inverse normally transformed lipid change adjusting for age, sex, baseline level, and genetic
relationship matrix using Mixed Model Analysis for Pedigree and population (MMAP)
(https://github.com/MMAP DOI:10.5281/zenodo.5033491, accessed on 27 July 2021).

4. Results

The GOLDN cohort was 50% male with an average age of 49 years (Table 1). The
mean body mass index and cholesterol levels were within the normal range at fasting.
Demographics and lipids were, on average, similar in the replication cohort. Among the
ESI (+) mode, 298 lipids were responsive to the PPL, of which 86 were also heritable. On
the ESI (−) mode, 243 lipids were PPL responsive and 48 of those were heritable. Among
the 134 responsive and heritable lipids (see Supplemental Table S1), 132 were unique
species across each mode (PE (36:4) and (38:4) being common). (See Figure 1.) Among
the 132 unique lipid response traits, the three most heritable were PC (28:0), (30:1), and
(30:1) (h2 ≥ 0.60). LPEs (22:6) and (16:0) as well as acylcarnitine (12:0) were among the
most responsive to the PPL challenge (Supplemental Table S1).

Table 1. Demographic and clinical characteristics of the HAPI Heart cohort and the GOLDN cohort.

GOLDN HAPI Heart

N 668 639
Sex, Male 50% 56%

Age (years) 49 (16) 43 (13)
BMI (kg/m2) 28 (5) 26 (4)

Cholesterol (mg/dL) 193 (40) 207 (46)
Fasting LDL (mg/dL) 124 (32) 138 (42)
Fasting HDL (mg/dL) 47 (13) 55 (14)

Fasting Triglycerides (mg/dL) 141 (100) 67 (40)
6 h Triglycerides (mg/dL) 241 (186) 173 (127)

Data recorded as Mean (SD) or %
BMI: body mass index; LDL: low-density lipoprotein; HDL: high-density lipoprotein.

After correction for multiple testing of 132 lipids (α = 5 × 10−8/132 = 4 × 10−10),
no SNP was statistically significantly associated with any lipid. The top GWAS results
for the PPL are presented in Table 2. Replication results from HAPI Heart are provided
in the last three columns where data were available. The Manhattan and QQ plots for
the lipids presented in Table 2 are shown in Supplemental Figures S1–S5. We found a
marginal association in a known lipid locus around fatty acid desaturase 1 and 2 (FADS1
and FADS2) on chromosome 11 for arachidonic acid (FA (20:4)). The four SNPs replicated
after correction for multiple testing in consideration of that locus (p < 0.05/4 SNPs tested
for replication in the FADS1/2 locus). Two SNPs in NTRK2 were also marginally associated
with three LPE traits in GOLDN but were not available for replication in HAPI Heart.
We then expanded the replication to all SNPs 5kb up and downstream of rs12552641 on
chromosome 9 which were available in HAPI Heart. None of the SNPs replicated for LPE

https://github.com/MMAP
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(16:0), (18:0), or (22:6) with p < 0.05. Those results are presented in Supplemental Table S2.
Results from the sensitivity analyses in LMEKIN are presented in Supplemental Table S3.
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We followed up the top GWAS findings (Table 2) with regional epigenetic analyses.
Those results are presented in Supplemental Table S4, representing 133 CpGs, with p-values
for association ranging from 5.2 × 10−7 to 0.98. In Table 3, we present the regional
epigenetic results for the marginally associated (p < 0.01) CpGs from Supplemental Table S4,
representing 2 CpGs in NTRK2 for LPE (16:0) and LPE (18:0) and 14 in FADS1/2 for
arachidonic acid. The association of those 16 CpGs with the nearest GWAS SNP (rs12552641,
rs174547, or rs174577) is also presented in Table 3. The two strongest CpG association
findings were with arachidonic acid for cg27386326 (p = 5.2 × 10−7) and cg19610905
(p = 8.7 × 10−6). Upon SNP-CpG analysis, rs174577 was a strong meQTL for both CpGs
(p = 1.0 × 10−22 for cg27386326 and 4.1 × 10−93 for cg19610905, respectively). Those two
CpGs were examined for mediation with results presented in Table 4. We found that
cg19610905 mediated ~24% (95% CI 7.2–41.2%) of the relationship between rs174577 and
arachidonic acid (p = 0.005). Cg27386326 was not a mediator of the rs174577-arachidonic
acid relationship. Finally, while rs174547 was a meQTL for cg07689907, that CpG did not
mediate the rs174547-arachidonic acid association.
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Table 2. Top GWAS findings from the GOLDN lipidomics discovery effort (PPL intervention) and replication in the HAPI
Heart Study.

Lipid
Variant Information GWAS Discovery Results in GOLDN Replication Results in HAPI Heart

CHR/SNP BP Build38 Gene Functional Annotation EA/RA/EAF SNP Beta (SE) p-Value * EA/RA/EAF SNP Beta (SE) p-Value

FA (20:4) 11/rs174547 61,803,311 FADS1 intronic C/T/0.29 −0.26 (0.05) 1.68 × 10−7 C/T/0.23 −1.20 × 10−1

(0.04) 1.52 × 10−3

FA (20:4) 11/rs174577 61,837,342 FADS2 intronic A/C/0.28 −0.26 (0.05) 1.39 × 10−7 A/C/0.25 −1.08 × 10-1

(0.04) 3.27 × 10−3

FA (20:4) 11/rs174583 61,842,278 FADS2 intronic T/C/0.28 −0.24 (0.04) 7.03 × 10−7 T/C/0.25 −1.08 × 10−1

(0.04) 3.27 × 10−3

FA (20:4) 11/rs4246215 61,796,827 FEN1 UTR3 T/G/0.29 −0.25 (0.04) 1.22 × 10−7 T/G/0.26 −8.77 × 10−2

(0.04) 1.84 × 10−2

FA (20:4) 1/rs12042035 200,710,954 LOC101929224-
CAMSAP2 intergenic G/T/0.01 0.76 (0.12) 6.31 × 10−9 - - -

LPE (16:0) 9/rs12552641 84,838,137 NTRK2 intronic G/C/0.01 1.83 (0.31) 4.38 × 10−8 - - -
LPE (16:0) 9/rs12555204 84,838,239 NTRK2 intronic G/A/0.01 1.83 (0.31) 4.43 × 10−8 - - -
LPE (18:0) 9/rs12552641 84,838,137 NTRK2 intronic G/C/0.01 1.67 (0.31) 3.78 × 10−7 - - -
LPE (18:0) 9/rs12555204 84,838,239 NTRK2 intronic G/A/0.01 1.67 (0.31) 3.88 × 10−7 - - -
LPE (22:6) 9/rs12555204 84,838,239 NTRK2 intronic G/A/0.01 1.68 (0.32) 9.49 × 10−7 - - -
LPE (22:6) 9/rs12552641 84,838,137 NTRK2 intronic G/C/0.01 1.68 (0.32) 9.50 × 10−7 - - -

PC (36:5) A 9/rs10965980 23,625,667 LOC101929563 ncRNA_intronic T/C/0.01 1.53 (0.23) 2.60 × 10−9 T/C/0.02 1.21 × 10−1

(0.18) 5.14 × 10−1

PC (36:5) A 9/rs10965998 23,634,930 LOC101929563 ncRNA_intronic G/A/0.01 1.53 (0.23) 2.90 × 10−9 G/A/0.02 1.21 × 10−1

(0.18) 5.14 × 10−1

PC (36:5) A 9/rs10965994 23,634,530 LOC101929563 ncRNA_intronic A/T/0.01 1.40 (0.25) 8.09 × 10−7 A/T/0.02 1.21 × 10−1

(0.18) 5.14 × 10−1

PC (36:5) A 9/rs17836336 23,619,256 LOC101929563 ncRNA_intronic G/C/0.01 1.55 (0.26) 1.34 × 10−7 - - -

PC (36:5) A 1/rs431675 229,169,403 RHOU;MIR4454 intergenic C/T/0.38 0.25 (0.04) 3.51 × 10−9 C/T/0.36 −3.05 × 10−2

(0.18) 5.62 × 10−1

Abbreviations: PPL-postprandial lipemia; BP-base pair; CHR-chromosome; FA (20:4)-arachidonic acid; GWAS-genome-wide association
study; LPE-lysophosphatidylethanolamine; PC-phosphatidylcholine; SE-standard error, SNP-single-nucleotide polymorphism; EA-Effect
Allele; RA-Reference Allele; EAF-Effect Allele frequency * inflation corrected.

Table 3. Regional CpG-lipid associations and meQTLs in GOLDN.

Lipid Gene CpG CHR:BP
(hg38)

CpG Beta
(SE)

CpG
p-Value SNP Distance

from CpG meQTL Beta (se) Z meQTL
p-Value

LPE
(16:0) NTRK2 cg13504245 9:84667694 −2.41 (0.90) 7.44 × 10−3 rs12552641 +170,443 −1.50 × 10−2

(1.28 × 10−2) −1.17 2.42 × 10−1

LPE
(18:0) NTRK2 cg14447193 9:84818948 −2.45 (0.85) 5.47 × 10−3 rs12552641 +19,189 −3.32 × 10−2

(1.35 × 10−2) −2.45 1.46 × 10−2

FA (20:4) FADS1 cg25448062 11:61812645 −3.46 (1.32) 8.83 × 10−3 rs174547 +9334 −6.40 × 10−3

(6.59 × 10−4) −9.70 6.79 × 10−21

FA (20:4) FADS1 cg07689907 11:61815101 1.50 (0.45) 9.05 × 10−4 rs174547 −11,790 −4.09 × 10-2(3.49
× 10−3) −11.71 6.87 × 10-29

FA (20:4) FADS1 cg14725641 11:61815290 7.20 (2.63) 6.22 × 10−3 rs174547 −11,979 −4.58 × 10−3

(5.44 × 10−4) −8.43 2.22 × 10−16

FA (20:4) FADS1 cg25326896 11:61815312 8.59 (2.81) 2.26 × 10−3 rs174547 −12,001 −3.42 × 10−3

(5.48 × 10−4) -6.24 7.97 × 10−10

FA (20:4) FADS1 cg12517394 11:61815322 5.60 (2.14) 9.07 × 10−3 rs174547 −12,011 −4.21 × 10−3 (6.51
× 10−4) −6.47 1.97 × 10−10

FA (20:4) FADS1 cg15598662 11:61815417 7.19 (2.13) 7.28 × 10−4 rs174547 −12,106 3.42 × 10−3 (1.12
× 10-3) 3.04 2.44 × 10−3

FA (20:4) FADS1 cg23992449 11:61816483 14.82 (5.08) 3.57 × 10−3 rs174547 −13,172 −7.17 × 10−4

(2.60 × 10−4) −2.75 6.06 × 10−3

FA (20:4) FADS1 cg27173322 11:61816639 17.47 (4.99) 4.68 × 10−4 rs174547 −13,328 −6.15 × 10−4

(2.72 × 10−4) −2.26 2.42 × 10−2

FA (20:4) FADS2 cg27386326 11:61820507 −2.03 (0.41) 5.18 × 10−7 rs174577 +16,835 4.57 × 10−2 (4.49
× 10−3) 10.18 1.01 × 10−22

FA (20:4) FADS2 cg06781209 11:61827524 1.16 (0.41) 4.69 × 10−3 rs174577 +9818 −2.92 × 10−2

(4.44 × 10−3) −6.58 9.61 × 10−11

FA (20:4) FADS2 cg16576620 11:61828596 9.80 (3.45) 4.52 × 10−3 rs174577 +8746 −9.60 × 10−4 (4.01
× 10−4) −2.40 1.69 × 10−2

FA (20:4) FADS2 cg19610905 11:61828860 7.06 (1.59) 8.68 × 10−6 rs174577 +8482 −1.56 × 10−2

(6.45 × 10−4) −24.20 4.07 × 10−93

FA (20:4) FADS2 cg00603274 11:61829153 1.68 (0.55) 2.41 × 10−3 rs174577 +8189 −2.15 × 10−2 (2.91
× 10−3) −7.38 4.87 × 10−13

FA (20:4) FADS2 cg14911132 11:61829282 2.86 (1.02) 4.97 × 10−3 rs174577 +8060 −7.46 × 10−3

(1.48 × 10−3) −5.05 5.86 × 10−7

Abbreviations: BP-base pair; CHR- chromosome; CpG-cytosine-phosphate-guanine site; FA (20:4)-arachidonic acid; LPE-lyso phos-
phatidylethanolamine; meQTL-methylation quantitative trait loc;i SE-standard error; SNP-single-nucleotide polymorphism.
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Table 4. Mediation Analysis.

Outcome Treatment Mediator Effect Estimate SE
95% CI

Z p-Value
Lower Upper

FA (20:4)
(6hr diff)

rs174577

cg27386326

Total Effect −0.24 0.04 −0.32 −0.15 −5.39 <0.0001

Natural Direct Effect
(Treatment) −0.18 0.06 −0.29 −0.06 −2.98 0.0029

Natural Indirect
Effect (Mediator) −0.06 0.04 −0.14 0.02 −1.57 0.1173

Percentage Mediated 25.95 17.24 −7.84 59.74 1.51 0.1322

cg19610905

Total Effect −0.24 0.04 −0.32 −0.15 −5.39 <0.0001

Natural Direct Effect
(Treatment) −0.18 0.05 −0.27 −0.09 −3.83 0.0001

Natural Indirect
Effect (Mediator) −0.06 0.02 −0.09 −0.02 −3.18 0.0015

Percentage Mediated 24.17 8.69 7.15 41.20 2.78 0.0054

rs174547 cg07689907

Total Effect −0.24 0.04 −0.32 −0.15 −5.36 <0.0001

Natural Direct Effect
(Treatment) −0.22 0.05 −0.31 −0.12 −4.50 <0.0001

Natural Indirect
Effect (Mediator) −0.02 0.02 −0.06 0.02 −0.96 0.3394

Percentage Mediated 7.99 8.49 −8.65 24.62 0.94 0.3468

Abbreviations: FA (20:4)-arachidonic acid; SE-standard error; CI-confidence interval.

5. Discussion

Postprandial lipemia measures can give additional insight into dyslipidemia and
cardiovascular risk related to chronic inflammation. Lipid levels vary due to the complex
interplay of individual genes and diet but the mechanisms are difficult to understand in
populations partly due to wide variations in diet. To better understand how genes may
affect postprandial traits, we undertook a genetic study of lipidomic species that responded
to a standardized high-fat meal in the familial GOLDN study. Among the lipidomic species,
the majority changed in response to the meal, and a third of the responsive lipids were also
heritable. We conducted GWAS on 132 heritable and responsive lipids and the strongest
and replicated findings were in the well-characterized FADS1/2 locus on chromosome
11. Regional methylation analysis also showed CpG associations at that locus. For one
SNP (rs174577), we report partial mediation of the lipid association by a nearby CpG
(cg19610905). Other novel findings included the biologically plausible NTRK2 locus.

The FADS1/2/3 gene cluster (including nearby FEN1) is a known lipid locus containing
fatty acid desaturase 1 and 2 on chromosome 11 [50]. The function of FADS3 is unknown,
whereas FADS1 and FADS2 encode fatty acid desaturases facilitating conversion of dietary
linoleic and α-linolenic acids into arachidonic and eicosapentaenoic acids, respectively.
These enzymes have both inflammatory and anti-inflammatory properties and are con-
sidered therapeutic targets for cardiovascular disease, cancer, and inflammation [50–52].
Relevant to the GOLDN dietary intervention (~83% fat from heavy cream), lipid loading
meals can invoke a transitory inflammatory response, in which arachidonic acid appears
to play a key role [53,54]. Most arachidonic acid comes from dietary linoleic acid derived
from oils and animal fats [53]. In the cytoplasm, arachidonic acid can be modified by
5-lipoxygenase into leukotrienes or by cyclooxygenases into prostaglandin H2 that sub-
sequently serves as the substrate for enzymatic pathways leading to the production of
prostaglandins and thromboxanes, potent mediators of inflammation [50]. Importantly,
variation in FADS1 and FADS2 is known to contribute to inter-individual differences in
arachidonic acid levels and other long chain polyunsaturated fatty acids (PUFAs) [55]. For
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instance, the SNP rs174547 is located in intron 9 of FADS1 [56]. Several GWAS previously
described rs174547 as being associated with fatty acids [57–59]. A Mendelian Randomiza-
tion study using rs174547 as an instrument reported higher genetically predicted plasma
phospholipid arachidonic acid concentrations were associated with increased risk of col-
orectal and lung cancer [60]. Functional follow-up of that SNP shows it is associated with
decreased FADS1 expression in the human liver [61]. Several studies have focused on
this variant and its association with omega 6 PUFA levels [62–64]. Other human studies
have also noted allele-specific methylation around this locus in liver [65,66], and white
blood cells [67] in smaller samples than GOLDN (N < 100). However, previous studies
have not focused on the response to a standardized high-fat meal or how SNPs and CpGs
may interplay to affect these responses. When examining CpGs in the FADS1/2/3 region,
cg07689907 was associated with arachidonic acid (p = 9 × 10−4), exceeding the Bonferroni
correction for multiple testing for the 46 CpGs in that gene region (p < 0.0001). Rs174547
was a meQTL for cg07689907 with p = 6.9 × 10−29. Further analysis showed cg07689907
did not mediate the relationship between rs147547 and arachidonic acid. However, we
report another arachidonic acid-associated CpG (cg19610905, p = 8.7 × 10−6) partially
mediated the relationship between nearby rs174577 and the arachidonic acid lipid response.
Since methylation is a driver of gene expression, it is possible that the functional effects of
these polymorphisms may be through epigenetic processes. Another study set in an Asian
population demonstrated rs174570 in FADS1 was associated with gene expression through
methylation in adipose tissue [68]. These findings provide novel evidence that both SNPs
and CpGs in this region exert a joint and independent influence on these dietary response
traits adding to their complexity.

Our other top findings were intronic to neurotrophic receptor tyrosine kinase 2
(NTRK2) for LPE (16:0), (18:0), and (22:6). LPEs are considered to be a minor lipid in
milk and have been shown to respond to a dairy meal [69]. The neurotrophins are a family
of growth factors known to be involved in the development, maintenance, and function of
peripheral and central neurons and are hypothesized to play an important role in mediating
neuronal plasticity in the hypothalamus. The neurotrophin receptor, TrkB, and its natural
ligand, brain-derived neurotrophic factor (BDNF), have been implicated in the regulation
of food intake and body weight [70]. Homozygous null mutations in NTRK2, the gene
encoding TrkB, are lethal in rodents [71]. These variants were not available in the HAPI
Heart data; thus, they were not replicated. Though we saw some marginal association of
CpGs nearby these variants with the traits, these SNPs were not meQTLs and we did not
test for mediation.

The main strength of this study included available data on responsive lipidomic
phenotypes from a standardized meal in over 1200 individuals for an unprecedented study
of gene-diet interaction. Unfortunately, some low-frequency (<1%) population variants in
NTRK2 present in GOLDN were not present in HAPI Heart, demonstrating the challenges
of replication of rarer variants in small sample sizes. HAPI Heart did not have methylation
data on the samples with lipidomics to replicate regional CpG findings or the mediation
analysis in the region of the FADS1/2 locus.

In conclusion, genetic factors are known to contribute to variation in response to
dietary exposures. Especially high-fat meals may lead to temporary inflammatory states.
Notably, cumulative exposure to chronic inflammation leads to cardiovascular risk and
as well as other chronic diseases (e.g., cancer). Overall, the genetic mechanisms that
dictate these responses are incompletely understood. In the current study, we report new
information on the FADS1/2 locus showing both SNPs and CpGs contribute to its effects
on diet response. Though genetic variation is largely stable, CpGs may be modified by
external factors over time. Future studies should investigate CpG loci in the region over
the lifespan to determine if they contribute to changes in the metabolism of high-fat meals
with aging, which could influence cardiovascular risk.
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