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ABSTRACT The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on
the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of
ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring
across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent
evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged
in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests.
Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community mem-
bers, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar
bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses
span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome
nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our
findings indicate that this represents an example of convergence of entire host-microbe complexes.

IMPORTANCE The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has
enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Al-
though the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacte-
rial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community
composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome
similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important
and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these
insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota.
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Symbioses between metazoans and microbial communities are
ubiquitous in nature and have contributed to many of the

watershed events in the history of life on Earth (1–3). These sym-
biotic microbiota, which range from simple consortia of relatively
few species to highly complex and dynamic communities, have
been shown to benefit their hosts through defense against patho-
gens (4–7), degradation of recalcitrant dietary material (8–10),
and biosynthesis of essential nutrients (11–13). The vast physio-
logical potential of microbes plays an important role in the acqui-
sition of novel ecological strategies in metazoans, and microbial
symbionts have been argued to play an important role in host
adaptation and speciation (14). Despite the importance of symbi-

otic microbiota for the evolution and physiology of their host, the
forces that shape the structure and dynamics of these communi-
ties are not well understood.

Metazoans collectively associate with a vast phylogenetic diver-
sity of microbes encompassing all three domains of life (15). Al-
though these host-associated communities are also physiologi-
cally diverse, there often exists substantial functional redundancy
between distantly related community members (15, 16). This di-
versity and functional redundancy of host-associated microbiota
have implications for community structure. Specifically, patterns
of convergence observed in the functional potential of host-
associated communities of distantly related hosts have been pos-
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tulated to be the product of selection for microbial groups that
possess particular traits but are not always closely related (17, 18).
For example, studies of various metazoan hosts have indicated
that host niche is a primary determinant of the overall physiolog-
ical capacity of microbiota that can lead to functional convergence
irrespective of the evolutionary history of the host (19–21). More-
over, other recent studies have generally found that niche-specific
factors are important in structuring host-associated microbiota
(22–24). However, host phylogeny has also been linked to micro-
bial community composition in studies of primates and insects
(24–31), indicating that a number of factors are important for
structuring the phylogenetic composition and functional capacity
of host-associated microbiotas.

In this study, we characterized bacterial microbiotas associated
with fungus-growing insects, which comprise distantly related
ant, beetle, and termite lineages that have independently estab-
lished symbioses with fungi (32). The microbial symbioses of
these hosts are central to their life histories and have enabled them
to become dominant herbivores and prevalent tree pests in wide-
spread tropical and temperate ecosystems (32–34). These insects
are able to shape ecosystems around the globe largely because their
symbiotic microbiota act as “ancillary guts” that degrade recalci-
trant plant biomass and convert it into nutrients more accessible

to their hosts (32, 35–39), thereby allowing these insects to exploit
ecological niches that would otherwise be unavailable. In some
fungus-growing insects, the external digestive systems have led to
the evolution of species that build elaborate colonies composed of
millions of insects divided into castes with distinct tasks, behav-
iors, and morphologies, as demonstrated by leaf-cutter ants of the
genus Atta and fungus-growing termites of the genus Macrotermes
(32, 33).

Here, we analyzed fungus-growing ants (Tribe: Attini), ambro-
sia beetles (Tribe: Xyleborini), and termites (subfamily: Macroter-
mitinae), which all engage in obligate fungal agriculture (32), as
well as mountain and southern pine beetles (genus Dendroctonus),
which, although lacking many of the true agricultural character-
istics of the other insects, also associate with mutualistic fungi that
they consume for food (34, 40). Our samples included three insect
orders and spanned a considerable portion of the global distribu-
tion of these insect-fungal symbioses (Fig. 1A and B; see Table S1
in the supplemental material). Due to the independent origins of
these nutritional fungal symbioses across distantly related host
lineages collected from across the globe, our analyses of their mi-
crobiotas provides a unique opportunity to assess the extent to
which the similarity of their ecological niches has influenced the
structure of their associated microbial communities. To this end,
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we sought to provide a fine-scale comparison of the composition
of bacterial communities associated with these insect fungal sym-
bioses through sequencing of 18 16S amplicon libraries compris-
ing a total of 136,400 quality-filtered sequences (minimum length
of 200 bp) and 18 community metagenomes comprising a total of
6.8 Gbp of raw sequence data from which we reconstructed 37
composite genomes of dominant community members (see Ta-
bles S2 and S3).

RESULTS AND DISCUSSION

The 16S libraries of all insect samples were dominated by se-
quences classified as belonging to the class Gammaproteobacteria
(ranging from 54 to 99% of sequences per sample), except in the
adult ambrosia beetles, where the phylum Bacteroidetes domi-
nated (46% of sequences) and Gammaproteobacteria were the next
most abundant group (23% of sequences) (Fig. 1A). The genera
Pseudomonas, Enterobacter, and Rahnella were the most abundant
in our genus-level analysis, and rank-abundance curves demon-
strated that 2 or 3 groups dominated the composition of our 16S
libraries (see Fig. S1 and S2 in the supplemental material). All
libraries contained between 31 and 753 operational taxonomic
units (OTUs; 95% identity cutoff), and the rarefaction analyses
demonstrate sufficient sampling (Fig. S3). Relative abundance
quantification of the contigs in the community metagenomes cor-
roborated those of our 16S-based analysis in showing that the
gammaproteobacterial families Enterobacteriaceae and Pseu-
domonadaceae dominated all of our samples (Fig. 2A). Compari-

son of the Clusters of Orthologous Groups (COG [41]) and Pro-
tein Families (Pfam [42]) profiles of these metagenomes to
publicly available metagenomes revealed clustering into three
groups: one containing all fungus-associated insect samples, one
containing other host-associated communities, and one contain-
ing environmental (non-host-associated) communities (Fig. 3;
see Table S4). In addition to the correspondence identified for the
phylogenetic composition of the insect communities sampled
here, this functional clustering demonstrates a general equiva-
lence of the physiological potential of these microbiota that is
distinct from other microbial communities for which metag-
enomes are available.

The genera Pseudomonas, Enterobacter, and Rahnella were par-
ticularly well represented in the community metagenomes, with
the genus Pseudomonas abundant in most of the ant, beetle, and
termite systems, the genus Enterobacter more common in the
fungus-growing ant samples, and the genus Rahnella more abun-
dant in the termite- and beetle-associated samples (Fig. 2B).
Genus-level rank-abundance analysis also found these three gen-
era to be overwhelmingly the most abundant in these communi-
ties (Fig. 2B and C). Mapping of all genes recovered from the
Enterobacteriaceae and Pseudomonas bins onto a multilocus phy-
logeny of reference genomes (Fig. 4A) revealed highly similar phy-
logenetic profiles among the ambrosia beetle, termite, and pine
beetle samples, with sequences most similar to Rahnella aquatilis
and Pseudomonas fluorescens strains dominating the phylogenetic
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profiles of these metagenomes. The fungus-growing ant samples
were also dominated by sequences mapping to Enterobacteriaceae
and Pseudomonas genomes, but the genes in these metagenomes
mapped primarily to the Enterobacter and Pseudomonas putida
clades in the phylogeny (Fig. 4A). This pattern held for all fungus-
growing ants, including Apterostigma dentigerum, which culti-
vates a pterulaceous fungus distantly related to the Lepiotaceae
family of fungi grown by other attine ants (43).

We reconstructed composite genomes for the dominant mi-
crobial community members to compare genomes directly across
insect-fungal symbioses (see Materials and Methods). These in-
cluded 12 Enterobacter genomes, 15 Pseudomonas genomes, and
10 Rahnella genomes, all estimated to be �40% complete (see
Table S5 in the supplemental material). Calculation of the pair-
wise average nucleotide identities (ANI) of the reconstructed ge-
nomes revealed that the microbiota from different insect-fungal
symbioses contained dominant bacterial constituents that were
highly similar to each other at the whole-genome level (often
�95% ANI) (Fig. 4B, and see Fig. S4), and multilocus phyloge-
netic analysis of conserved housekeeping genes confirmed that the
majority of the reconstructed Enterobacter, Rahnella, and Pseu-
domonas genomes grouped together in well-supported clades
(Fig. 5). The Rahnella and Pseudomonas fluorescens genomes re-
constructed from the ambrosia beetle, fungus-growing termite,
and pine beetle metagenomes were particularly similar across in-
sect systems, with ANI values in some cases exceeding 98%
(Fig. 4B). Composite genomes from the genus Enterobacter could
be reconstructed from ant and termite samples and segregated
into two distinct groups (ANI of 95.9 to 98.5% and 85.5 to 99.1%
within the groups) (Fig. 4B; Fig. S4), while the reconstructed ge-
nomes from the Pseudomonas putida group were specific to fungus-
growing ants (Fig. 4B and see Fig. S4).

Our results demonstrate that the microbiotas of diverse insect-
fungal symbioses that collectively shape terrestrial ecosystems

worldwide contain prevalent and highly similar bacterial constit-
uents. Our comparison of the coding potential of these microbio-
tas demonstrates broad functional congruence. Moreover, our
composite-genome reconstructions reveal that the Enterobacter,
Rahnella, and Pseudomonas groups that dominate these commu-
nities exhibit high degrees of whole-genome similarity, with the
ANI of reconstructed genomes often exceeding 95% (Fig. 4B). In
other metazoans, similarities in host niche have been shown to
drive convergence in the functional potential of associated micro-
biota but to influence the phylogenetic composition at broad tax-
onomic levels (e.g., phylum level) only weakly (19, 21). This pat-
tern, where different hosts possess physiologically congruent
microbiotas with phylogenetically distinct composition, is likely
due to selection for particular physiological traits that are not nec-
essarily linked to specific phylogenetic groups of microbes. Al-
though the broad congruence of functional profiles across the
communities described here is consistent with other systems in
which distantly related hosts occupy similar ecological niches (19,
21), our finding of fine-scale phylogenetic convergence across
hosts is unexpected, given that the insects analyzed collectively
reside on three continents in both tropical and temperate ecosys-
tems in which they are exposed to a vast diversity of microbes. This
coupling of both functional and phylogenetic convergence in the
microbiotas of insect-fungal symbioses, together with the domi-
nance of 2 or 3 bacterial groups in each insect, suggests that highly
specific mechanisms for maintaining host-bacterial or fungal-
bacterial interactions are responsible for shaping diversity in these
systems.

Our findings indicate that bacteria are a common and perhaps
even defining feature of widespread insect-fungal symbioses. This
is supported by the high degrees of similarity in the dominant
bacterial constituents of the ants, termites, and beetles, despite
contrasts in the details of the insect-fungal symbioses. For exam-
ple, these insects cultivate phylogenetically disparate fungi that

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �� �
��

�
�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

� �

�

�

�

� �

�
�

�

�

�

�

� ��

�

��

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

� �

�

�

�

�

�

� �
�

�

�

�

�

�

�
�

�

�

�
� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �
��

�

�

�

�

�

�

�

�

�

�

�

�

�

Dimension 1 (14.38% of Variation)

D
im

en
si

on
 2

 (9
.7

4%
 o

f V
ar

ia
tio

n)

Dimension 1 (12.25% of Variation)

D
im

en
si

on
 2

 (7
.7

6%
 o

f V
ar

ia
tio

n)

COG Pfam

Other host-associated

Environmental
(non-host associated)

Insect-Fungal 
Symbioses

Honey Bee

Honey BeeTermite Workers
Termite Workers

FIG 3 Principle component analyses (PCA) comparing the functional profiles of the metagenomes of insect-fungal symbioses to those of 57 publicly available
metagenomes generated from environmental or gut-associated samples. Annotations were performed using both the Clusters of Orthologous Groups (COG)
and Protein Families (Pfam) databases. A full list of metagenomes used can be found in Table S4. A metagenome constructed from the gut of the honey bee was
the only metagenome found to cluster near the insect-fungal symbiosis samples (labeled in both panels and in both cases closest to the fungus-growing termite
adult sample). Squares indicate the category averages.

Aylward et al.

4 ® mbio.asm.org November/December 2014 Volume 5 Issue 6 e02077-14

mbio.asm.org


SPB Gallery
Ambrosia Beetle Adult

Ambrosia Beetle Gallery
Ambrosia Beetle Larvae

MPB (BC) Beetle
MPB (AB) Beetle
Termite Garden
Termite Worker

MPB (AB) Gallery
MPB (BC) Gallery

Ac. echinatior Bin 1
T. zeteki Bin 1

At. colombica Bot. Bin 3
At. cephalotes Bin 2

At. colombica Top Bin 1
T. zeteki Bin 2

Termite Worker Bin 1
At. colombica Top Bin 2

At. colombica Bottom Bin 1
At. cephalotes Bin 1
C. longiscapus Bin 1

Ap. dentigerum Bin 2

At. 
ce

ph
al

ot
es

   A
t. 

co
lo

m
bi

ca
 To

p

    
  A

t. 
co

lo
m

bi
ca

 B
ot

to
m

    
    

 A
c. 

ec
hi

na
tio

r

T. 
ze

te
ki

    
    

    
  C

. lo
ng

isc
ap

us

    
    

    
    

  A
p. 

de
nt

ig
er

um

X.
 sa

xe
se

ni
i A

du
lts

X.
 sa

xe
se

ni
i G

al
le

ry

X.
 sa

xe
se

ni
i L

ar
va

e

M
. n

at
al

en
sis

 G
ar

de
n

M
. n

at
al

en
sis

 W
or

ke
rs

D. p
on

de
ro

sa
e A

du
lts

 (A
B)

D. p
on

de
ro

sa
e G

al
le

ry
 (A

B)

D. p
on

de
ro

sa
e A

du
lts

 (B
C)

D. p
on

de
ro

sa
e G

al
le

ry
 (B

C)

D. f
ro

nt
al

is 
Ad

ul
ts

D. f
ro

nt
al

is 
Gal

le
ry

Fungus-Growing Ants

Ambrosia Beetles

Fungus-Growing Termites

Mountain Pine Beetles

Southern Pine Beetles

Rahnella Enterobacter

Pseudomonas aeruginosa PA14---------------
Pseudomonas aeruginosa PAO1---------------
Pseudomonas stutzeri A1501-------------------
Pseudomonas stutzeri ATCC 17588------------
Pseudomonas fulva 12X--------------------------
Pseudomonas mendocina NK01---------------
Pseudomonas mendocina ymp----------------
Pseudomonas entomophila L48---------------
Pseudomonas putida W619---------------------
Pseudomonas putida S16-----------------------
Pseudomonas sp. Strain FGI 182---------------
Pseudomonas putida GB-1----------------------
Pseudomonas putida F1-------------------------
Pseudomonas putida KT2440------------------
Pseudomonas fluorescens PF5------------------
Pseudomonas syringae DC30000--------------
Pseudomonas syringae phaseolicola 1448A
Pseudomonas syringae B728a------------------
Pseudomonas fluorescens SBW25--------------
Pseudomonas brassicacearum NFM421------
Pseudomonas fluorescens Pf0-------------------
Serratia sp. Strain FGI 94-------------------------
Serratia proteamaculans 568-------------------
Serratia sp. Strain AS12--------------------------
Rahnella aquatilis ATCC 33071-----------------
Rahnella aquatilis HX2---------------------------
Rahnella sp. Strain. Y9602-----------------------
Pantoea sp. Strain AT-9b-------------------------
Pantoea ananatis LMG 20103------------------
Pantoea vagans C9--------------------------------
Citrobacter koseri ATCC BAA 895---------------
Escherichia coli K12--------------------------------
Escherichia coli CFT073---------------------------
Enterobactereaceae sp. strain FGI 57---------
Enterobacter cloacae SCF1----------------------
Enterobacter sp. Strain 638----------------------
Enterobacter asburiae LF7a---------------------
Enterobacter cloacae ATCC 13047-------------
Enterobacter sp. Strain FGI 35------------------
Enterobacter aerogenes KCTC 2190-----------
Klebsiella pneumoniae 342----------------------
Klebsiella variicola AT-22-------------------------
Klebsiella pneumoniae NTUH K2044----------
Klebsiella pneumoniae MGH 78578-----------

A
p.

 d
en

tig
er

um
 B

in
 2

C.
 lo

ng
is

ca
pu

s B
in

 1
A

t. 
ce

ph
al

ot
es

 B
in

 1
A

t. 
co

lo
m

bi
ca

 B
ot

to
m

 B
in

 1
A

t. 
co

lo
m

bi
ca

To
p 

Bi
n 

2
Te

rm
ite

 W
or

ke
r B

in
 1

T.
 z

et
ek

i B
in

 2
A

t. 
co

lo
m

bi
ca

To
p 

Bi
n 

1
A

t. 
ce

ph
al

ot
es

 B
in

 2
A

t. 
co

lo
m

bi
ca

 B
ot

. B
in

 3
T.

 z
et

ek
i B

in
 1

A
c.

 e
ch

in
at

io
r B

in
 1

M
PB

 (B
C)

 G
al

le
ry

M
PB

 (A
B)

 G
al

le
ry

Te
rm

ite
 A

du
lts

Te
rm

ite
 G

ar
de

n
M

PB
 (A

B)
 B

ee
tle

M
PB

 (B
C)

 B
ee

tle
A

m
br

os
ia

 B
ee

tle
 L

ar
va

e
A

m
br

os
ia

 B
ee

tle
 G

al
le

ry
A

m
br

os
ia

 B
ee

tle
 A

du
lt

SP
B 

G
al

le
ry

Ap. dentigerum
C. longiscapus
Ac. echinatior

Termite Worker
MPB (BC) Beetle Bin 1

SPB Beetle Bin 1
Ambrosia Beetle Larvae

Ambrosia Beetle Adult
MPB (AB) Gallery

MPB (BC) Beetle Bin 2
Ambrosia Beetle Gallery

MPB (AB) Beetle Bin 1
SPB Beetle Bin 2

MPB (AB) Beetle Bin 2
SPB Beetle Gallery

SP
B 

Be
et

le
 G

al
le

ry
M

PB
 (A

B)
 B

ee
tle

 B
in

 2
SP

B 
Be

et
le

 B
in

 2
M

PB
 (A

B)
 B

ee
tle

 B
in

 1
A

m
br

os
ia

 B
ee

tle
 G

al
le

ry
M

PB
 (B

C)
 B

ee
tle

 B
in

 2
M

PB
 (A

B)
 G

al
le

ry
A

m
br

os
ia

 B
ee

tle
 A

du
lt

A
m

br
os

ia
 B

ee
tle

 L
ar

va
e

SP
B 

Be
et

le
 B

in
 1

M
PB

 (B
C)

 B
ee

tle
 B

in
 1

Te
rm

ite
 W

or
ke

r
A

c.
 e

ch
in

at
io

r
C.

 lo
ng

is
ca

pu
s

A
p.

 d
en

tig
er

um

Pseudomonas

A.

B.

Pseudomonas
Enterobacter
Rahnella

Relative Abundance of
the Dominant Genera

Re
fe

re
nc

e 
Ph

yl
og

en
y

% Average Nucleotide Identity (ANI)
70                               100

FIG 4 Comparisons of dominant groups represented in the metagenomes of insect-fungal symbioses. (A) Bubble chart showing the relative abundance of the
most prevalent phylogenetic groups identified in the metagenomes. Relative abundances of the genera Pseudomonas, Enterobacter, and Rahnella were calculated
using abundance-weighted coverage estimates of binned contigs. For the phylogenetic mapping analysis, all genes predicted from contigs classified to the family
Enterobacteriaceae and genus Pseudomonas were mapped onto a maximum-likelihood phylogeny of representative sequenced genomes constructed using
concatenated amino acid sequences from 9 highly conserved proteins (see Materials and Methods). Bootstrap support values have been omitted for clarity (a full
phylogeny with support values can be found in Fig. S5). (B) Heatmaps showing the ANI values obtained from pairwise BLASTN comparisons of the composite
Enterobacter, Pseudomonas, and Rahnella genomes reconstructed in this study. Dendrograms were constructed using a neighbor-joining algorithm with distance
matrices constructed from pairwise ANI comparisons (see Materials and Methods).
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FIG 5 Maximum-likelihood multilocus phylogeny of reference Enterobacter, Pseudomonas, and Rahnella genomes together with the composite genomes
reconstructed in this study (color coded according to host insects, as shown in the key). The phylogeny is based on concatenated amino acid sequences of 9
conserved proteins, and local support values were computed using the Shimodaira-Hasegawa test (see Materials and Methods for details).
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collectively span two phyla (32), and it is even unclear to what
extent mountain and southern pine beetles depend on their sym-
biotic fungi for nutrition (34). Due to the influence host-
associated microbes have been shown to exert on metazoan be-
havior (44, 45), these findings raise the possibility that similar life
history traits in distantly related insect lineages may in some ways
be a consequence rather than the cause of the similar bacterial
communities they harbor. Together with recent evidence that pat-
terns of host speciation are recapitulated and potentially driven by
symbiotic microbiota (14), our finding of convergent community
assembly in the bacterial communities of insect-fungal symbioses
underscores the fundamental importance of host-microbe inter-
actions in shaping metazoan evolution.

MATERIALS AND METHODS
Insect distributions. The distributions of insect-fungal symbioses as de-
picted in Fig. 1 were compiled from previously reported estimates for
attine ants (46, 47), Macrotermes natalensis (48), and Xyleborinus saxesenii
(49). The distribution of Dendroctonus frontalis is based on estimates from
the United States Department of Agriculture (USDA; http://www.fs.usda
.gov/Internet/FSE_DOCUMENTS/fsbdev2_042840.pdf). The Invasive
Species Compendium (http://www.cabi.org/isc/) was also used for Xyle-
borinus saxesenii and Dendroctonus ponderosae.

Sample collection, processing, and sequencing. Insect samples were
collected between April and November of 2009. Details regarding the
times and locations in which insect samples were acquired can be found in
Table S1 in the supplemental material. Sampling of the leaf-cutter ant
species Atta cephalotes and Atta colombica and the mountain pine beetle
Dendroctonus ponderosae has been described previously (50, 51). All sam-
ples were placed on ice immediately after sampling and transported to the
laboratory for processing. For all fungus garden, gallery, or whole-insect
samples, the bacterial fraction was isolated by gently vortexing the samples
in 1% phosphate-buffered saline (PBS) and 0.1% Tween before conduct-
ing a modified differential centrifugation procedure, as previously de-
scribed (50). For the ambrosia beetles, fungus-growing termites, moun-
tain pine beetles, and southern pine beetles, whole-insect or larval samples
were also prepared for sequencing. For these samples, 90 to 300 whole
insects were pooled for each sample. Once the bacterial fraction of each
sample was isolated, DNA was extracted using the bacterial extraction
protocol available in the Qiagen DNeasy plant maxikit (Qiagen Sciences,
Germantown, MD), which has been shown to yield an accurate represen-
tation of community DNA (51). Community metagenomes were subse-
quently generated by using Roche 454 Titanium pyrosequencing (52), and
assemblies were generated using Newbler version 2.1 with the default
parameters. Details of the metagenomes and assembly statistics can be
found in Table S2.

16S amplicon sequencing, processing, and analysis. Amplicon li-
braries spanning the V6-to-V8 (V6-8) region of the 16S ribosomal gene
were constructed from DNA extracted from the 18 insect, fungus garden,
and gallery samples using methods described previously (53). The librar-
ies were processed using mothur (54) with procedures based on those
outlined by Schloss et al. (55) and described on the mothur website
(http://www.mothur.org/wiki/454_SOP) as of 1 July 2013. Briefly, flow
data associated with the .sff files were extracted using the sffinfo com-
mand, and PyroNoise (56) as implemented by the shhh.flows command
in mothur was used to trim sequences. Bar code and primer sequences
were then removed, and all sequences of �200 bp were discarded.
Sequences were then aligned to the SILVA 16S reference dataset (57) using
the align.seqs command, and any not overlapping with the V6-8 region
were removed (screen.seqs and filter.seqs commands). The pre.cluster
command and UCHIME (58), as implemented by the chimera.uchime
command, were used to remove chimeras. Sequences were classified
through comparison with the NCBI 16S Ribosomal RNA Sequence
Library (downloaded 2 January 2013) using BLASTN with the

parameter -e�50. Bacterial family- and phylum-level assessments were then
made by comparing the top BLASTN hit with the UniProt taxonomy hier-
archy (http://www.uniprot.org/taxonomy/) (downloaded 1 May 2013). Se-
quences not having a BLASTN hit were removed from subsequent analyses
on the grounds that they comprised primarily misamplified fungal or in-
sect 18S or chloroplast 16S sequences. Genus-level classifications were per-
formed using only BLASTN hits with �97% nucleotide identity.

To generate operational taxonomic units (OTUs), quality-trimmed
pyrotags were aligned using MAFFT version 5.662 E-INS-I (59), and dis-
tances were calculated using the dist.seqs command in mothur. OTUs
were then generated using the cluster command in mothur. We focused
our analyses on OTUs generated with a 95% identity cutoff, as the more
traditional 97% cutoff has been shown to be more appropriate for full-
length 16S sequences (60). To calculate the Shannon diversity index of the
bacterial component of each 16S library, we first rarefied the data sets
down to the number contained in the smallest library (248 bacterial se-
quences in the ambrosia beetle adult sample). The Shannon diversity in-
dex was then calculated for the 95% OTU cutoff for each of the 16S
libraries using the summary.single command in mothur. Rarefaction
curves for the confirmed bacterial sequences in each of the 16S libraries
were also constructed using mothur (the rarefaction.single command).
OTUs represented by a single sequence were not included in the rarefac-
tion analysis on the grounds that these OTUs are more likely to be un-
identified chimeras or misamplified sequences that may artificially inflate
diversity estimates (61). Sequencing statistics for the 16S libraries can be
found in Table S3 in the supplemental material, and rarefaction curves for
the bacterial sequences are shown in Fig. S3.

Phylogenetic binning and relative abundance estimation. Phylogenetic
bins from all metagenomes were generated using a combination of BLASTN
(62) and PhymmBL (63). All contigs and singletons were first compared to a
reference data set containing all completely sequenced bacterial and archaeal
genomes available in the NCBI as of 1 January 2012. All contigs having
BLASTN hits with E values of �1e�10 were classified according to their best
hit, while all other contigs were subsequently classified using PhymmBL.
Contigs with no BLASTN matches that were classified by PhymmBL with
confidence scores of �50 were considered “unclassified.” A relative abun-
dance value for each contig was calculated by multiplying the length of the
contig by its percent coverage. The relative abundances of each phylogenetic
group in the metagenomes were then calculated by summing the abundance
value for each contig classified in a particular bacterial family or genus. To
estimate the proportion of a particular phylogenetic group compared to the
rest of the metagenome (as depicted for the genera Enterobacter, Pseudomo-
nas, and Rahnella in Fig. 4A), the summed relative abundance of all contigs
classified to that group was divided by the summed relative abundance of all
contigs in that metagenome.

Phylogenetic mapping of community metagenome data. All contigs
in the community metagenomes binned to the family Enterobacteriaceae
or genus Pseudomonas were separated, and genes were predicted from
these contigs by using Prodigal (64) with the metagenomic gene caller
option. BLASTN was used to map genes and contigs onto the reference
Enterobacteriaceae and Pseudomonas genomes listed in Fig. 4A (using
nondefault parameters of -X 150, -q -1, -F F, and -e 1e�5), as these ge-
nomes represented bacterial families or genera found to be abundant in
our phylogenetic binning analysis. Only best hits were retained, and the
number of hits was catalogued for each genome. A phylogeny of the ref-
erence genomes was created (see below) and the number of hits to each
reference were mapped using the interactive Tree of Life (iTOL [65]).

Composite genome reconstruction and completeness estimates.
Composite genomes were reconstructed from the assembled community
metagenomes through manual analysis of BLASTN-based homology
searches against reference genomes, PhymmBL binning of contigs, and
coverage estimates of contigs. First, all contigs �800 bp were binned at the
genus level based on their binning assignment, and plots of contig length
versus coverage were then generated for each genus in each metagenome.
Contigs having similar coverage were placed in the same bin, and the best
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BLASTN hit of each contig was again cross-referenced to ensure the con-
tigs in each bin were mapping to the same genome (or genomes of closely
related bacteria: for example, different strains of Pseudomonas putida).
Estimates of the completeness of the composite genomes were generated
by extrapolating from the number of single-copy housekeeping genes
present in the assembled contig bins. We used a list of 182 core proteins
previously used for this purpose (53), although 20 of these proteins were
excluded on the grounds that they were not present in complete genomes
of bacteria closely related to those identified in the metagenomes, namely,
other sequenced Pseudomonas, Enterobacter, and Rahnella genomes. COG
models for the remaining 162 core proteins were used for their identifi-
cation, and the presence of these proteins in each composite genome was
ascertained using reverse position specific (RPS)-BLAST (66) (E value,
�1e�5) of the predicted proteins in each bin. Only bins with �2 Mb of
total sequence that were predicted to be �40% complete (see below) were
considered for subsequent analyses (a list of the final composite genomes
used can be found in Table S5 in the supplemental material).

Phylogenetic analysis of complete and composite genomes. Phyloge-
netic trees of select Enterobacteriaceae and Pseudomonas genomes were con-
structed from a concatenated amino acid alignment of translations of the
highly conserved single-copy housekeeping genes recA, fusA, recG, rpoB, rplB,
lepA, ileS, pyrG, and leuS, which have previously been shown to be useful
phylogenetic markers (67). Hidden Markov models (HMMs) were created
from curated alignments of these proteins available from the Ribosomal
Database Project (68), using the hmmbuild command in HMMER3 (69).
Proteins encoded in the genomes of interest were predicted using Prodigal
(64) and compared to the HMMs using the hmmersearch command in
HMMER3, and only best matches were retained. Partial-length proteins were
manually annotated before being included in the final protein set. Proteins
from the same genome were concatenated using custom PERL scripts, and
missing proteins were replaced with the character “X,” as this would allow
proteins to be included in the final concatenated alignment even if they were
not present in all genomes analyzed. Alignments were created using MAFFT
version 5.662 E-INS-I (59) and trimmed using the program Trimal version
1.2 (70) with the parameter -automated1. Maximum-likelihood phylo-
genetic trees were constructed using FastTree (71), and support values for
the nodes were calculated using the Shimodaira-Hasegawa (SH) test (72).
Trees were visualized using iTOL.

Composite genome comparisons and BLASTN mapping. Composite
genomes were compared to each other and to complete genomes in the
same genera using both average nucleotide identity (ANI) and average
amino acid identity (AAI) analyses. While ANI is typically used for com-
paring closely related bacteria, AAI is useful for more divergent compar-
isons. Thus, we used ANI to ascertain the degrees of similarity between
our composite genomes belonging to the same genus, which were typi-
cally very similar, while AAI was used for comparisons of our composite
genomes and representative genomes spanning a broader phylogenetic
diversity (i.e., across the genus Pseudomonas). Overall, the results of our
AAI, ANI, and multilocus phylogenetic analyses provided equivalent re-
sults in terms of the overall similarity of the composite genomes analyzed
(Fig. 4B, and see Fig. S4 and S5 in the supplemental material). ANI and
AAI values were generated for pairs of complete or composite genomes by
averaging the percent identities of reciprocal best BLASTN or BLASTP
hits of each gene/protein using the parameters -X 150, -q -1, -F F, and -e
1e�5. These BLASTN parameters have previously been shown to provide
accurate ANI and AAI values (73). Dendrograms representing the ANI- or
AAI-based similarity between different genomes were generated by con-
verting ANI or AAI percent identity values into distances and using the
Neighbor algorithm in PHYLIP (74) to calculate corresponding newick
trees with the Mobyle web interface (75).

Comparison of the functional profiles of metagenomes. The 18 met-
agenomes generated here were compared to 24 gut-associated metag-
enomes and 33 non-host-associated metagenomes that are publicly avail-
able in the Integrated Microbial Genomes/Metagenomes database
(IMG/M) (76) or the Metagenome Rapid Annotation using Subsystem

Technology (MG-RAST) database (77) (details are in Table S4 in the
supplemental material). Predicted proteins obtained from either the
IMG/M or MG-RAST databases were compared to the Clusters of Or-
thologous Groups (COG) (41) and Protein Families (Pfam) (42) data-
bases using RPS-BLAST (66) (E value, �1e�5). Best RPS-BLAST hits were
compiled in a matrix and normalized by the total number of COG or Pfam
hits. COG or Pfam families representing �0.1% of total annotated pro-
teins were excluded from subsequent analyses. The normalized matrices
were then used to for principle component analyses (PCA) using the mod-
ule FactoMineR (http://factominer.free.fr/) in the R statistical program-
ming environment (http://www.R-project.org/) (78).

Accession numbers. All metagenomic data generated in this study can
be found in the Integrated Microbial Genomes/Metagenomes Database
(IMG/M [76]) under accession numbers 2029527003 to 2029527007,
2030936005, 2032320008, 2032320009, 2035918000, 2035918003,
2043231000, 2044078006, 2044078007, 2065487013, 2065487014,
2084038008, 2084038018, and 2228664020; further details on the meta-
genomic data are presented in Table S2 in the supplemental material. All
16S pyrotag data sets have been deposited in the NCBI Sequence Read
Archive (SRA) under accession numbers SRP006785 and SRA047411.
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