Rigid Scaffolds: Synthesis of 2,6-Bridged Piperazines with Functional Groups in all three Bridges

Donglin Gao, ${ }^{[a]}$ Christian Penno, ${ }^{[a]}$ and Bernhard Wünsch ${ }^{*[a, b]}$

Abstract

The activity of pharmacologically active compounds can be increased by presenting a drug in a defined conformation, which fits exactly into the binding pocket of its target. Herein, the piperazine scaffold was conformationally restricted by substituted C_{2} - or C_{3}-bridges across the 2 - and 6 -position. At first, a three-step, one-pot procedure was developed to obtain reproducibly piperazine-2,6-diones with various substituents at the N -atoms in high yields. Three strategies for bridging of piperazine-2,6-diones were pursued: 1. The bicyclic mixed ketals 8-benzyl-6-ethoxy-3-(4-methoxybenzyl)-6-(trimethylsilyloxy)-3,8-diazabicyclo[3.2.1]octane-2,4-diones were prepared by Dieckmann analogous cyclization of 2-(3,5-dioxopiperazin-2-yl) acetates. 2. Stepwise allylation, hydroboration and oxidation of piperazine-2,6-diones led to 3-(3,5-dioxopiperazin-2-yl)propionaldehydes. Whereas reaction of such an aldehyde with base

Abstract

provided the bicyclic alcohol 9-benzyl-6-hydroxy-3-(4-meth-oxybenzyl)-3,9-diazabicyclo[3.3.1]nonane-2,4-dione in only 10% yield, the corresponding sulfinylimines reacted with base to give $\quad N$-(2,4-dioxo-3,9-diazabicyclo[3.3.1]nonan-6-yl)-2-meth-ylpropane-2-sulfinamides in $>66 \%$ yield. 3 . Transformation of a piperazine-2,6-dione with 1,4-dibromobut-2-ene and 3-halo-2-halomethylprop-1-enes provided 3,8-diazabicyclo[3.2.1]octane-2,4-dione and 3,9-diazabicyclo[3.3.1]nonane-2,4-dione with a vinyl group at the C_{2} - or a methylene group at the C_{3}-bridge, respectively. Since bridging via sulfinylimines and the one-pot bridging with 3-bromo-2-bromomethylprop-1-ene gave promising yields, these strategies will be exploited for the synthesis of novel receptor ligands bearing various substituents in a defined orientation at the carbon bridge

trazodone (1)

cetirizine (2)

Figure 1. Pharmacologically active compounds containing a piperazine ring.
to adopt an axial orientation..$^{[6]}$ The granatane derivative granisetron is an important $5-\mathrm{HT}_{3}$ receptor antagonist used for the treatment of strong emesis caused by chemotherapy and radiotherapy. In the granatane structure, the piperidine ring is bridged by a three-carbon bridge. As in atropine, this conformational restriction leads to an axial orientation of the acylamino moiety. ${ }^{[7,8]}$ (Figure 2)

In general, we are interested in piperidine and piperazine rings with an additional bridge leading to conformational restriction of the ring system. We have reported the bicyclic KOR agonist $5\left(K_{\mathrm{i}}=73 \mathrm{nM}\right){ }^{[9]}$ in which the 2- and 4-positions of the piperazine ring are connected by a three-carbon bridge substituted with an additional amino moiety (pyrrolidine ring). The same three-carbon bridge connects the 2 - and 5 -positions of the piperazine ring in the ($1 S, 2 R, 5 R$)-configured KOR agonist $6\left(K_{i}=1.0 \mathrm{nM}\right) .{ }^{[10]}$ Although the bicyclic systems 5 and 6 contain the same three-carbon bridge, the piperazine rings adopt different defined conformations due to the different ring positions, which are connected by the bridge (2,4-bridge in 5, 2,5-bridge in 6). The 6,8-diazabicyclo[3.2.2]nonane 7 with an OH moiety at the bridge shows very high affinity towards σ_{1} receptors ($K_{\mathrm{i}}=6.5 \mathrm{nM}$). ${ }^{[11]}$ Embedding the σ_{1} pharmacophoric

atropine (3)

granisetrone (4)

5

6

7

8a: $n=0$
8b: $\mathrm{n}=1$

Figure 2. Potent drugs with a bridged piperidine ring $(3,4)$ and piperazine ring (5-7) stimulating the design of the 2,6-bridged piperazines 8 .
structural elements (basic amino moiety, two lipophilic residues) into a bicyclic framework resulted in particular high σ_{1} affinity. Compared to 6 , the σ_{1} ligand 7 contains an enantiomeric scaffold, two benzyl moieties at the N -atoms and a hydroxy moiety instead of the pyrrolidine ring. (Figure 2)

In order to follow the concept of conformational restriction we became interested in piperazine derivatives bearing a twoor three-carbon bridge across the 2- and 6-positions (see compound 8 in Figure 2). On the one hand, 2,6-bridged piperazines 8 are regarded as aza-analogs of the tropane and granatane scaffolds of $\mathbf{3}$ and 4, on the other hand, they are regarded as regioisomers of 5-7 bearing a 2,6-bridge instead of a 2,4 - or 2,5 -bridge across the piperazine ring.

Some methods for the synthesis of 3,8-diazabicyclo[3.2.1] octane ($8 \mathrm{a}, \mathrm{n}=0$) and 3,9-diazabicyclo[3.3.1]nonane derivatives ($8 \mathrm{~b}, \mathrm{n}=1$) have been reported in literature. Compounds with the scaffold 8a were prepared starting from adipic acid. A fourstep reaction sequence provided pyrrolidine-2,5-dicarboxylate, which was transformed into the bicyclic imide upon reaction with NH_{3} and $\mathrm{Ac}_{2} \mathrm{O}$. Final reduction of the imide functional group was performed with $\mathrm{LiAlH}_{4}{ }^{[12,13]}$ Corresponding 3,9diazabicyclo[3.3.1]nonane derivatives $\mathbf{8 b}$ with an extended C_{3} bridge were prepared by imide formation from piperidine-2,6dicarboxylate and subsequnt LiAlH_{4} reduction. ${ }^{[14]}$ Another onepot synthesis of the bicyclic system 8a started with hexa-1,5diene, which was reacted with trifluoromethanesulfonamide in the oxidation system t-BuOCl/ Nal to introduce two N -atoms oxidatively at 1,6- and 2,5-position of the diene system in 37% yield. ${ }^{[15]}$

However, there are only few reports dealing with the synthesis of 3,8 -diazabicyclo[3.2.1]octane $(8 a, n=0)$ or 3,9 diazabicyclo[3.3.1]nonane derivatives ($8 \mathrm{~b}, \mathrm{n}=1$) with additional substituents at the two- or three-carbon bridge. ${ }^{[16-18]}$ Herein, we report various strategies to synthesize bicyclic compounds of type 8 with different length of the carbon bridge. The particular
feature of type 8 compounds is the additional functional group at the two- or three-carbon bridge allowing introduction of various pharmacophoric elements in a defined 3D orientation.

2. Results and Discussion

2.1. Synthesis

In order to establish the bridge providing the desired bicyclic compounds of type 8 key intermediate piperazine-2,6-diones (e.g. 12, 17) should react with various dielectrophiles stepwise or in a one-pot procedure. Piperazine-2,6-diones can be prepared either by alkylation of α-amino acid esters with bromoacetamide and subsequent cyclization ${ }^{[19,20]}$ or by condensation of iminodiacetic acid derivatives with primary amines or $\mathrm{NH}_{3} \cdot{ }^{[21-24]}$ As reported in literature, iminodiacetic acids 13 and 14 (structures see Scheme 2) were reacted with primary amines under microwave irradiation. However, instead of the desired imides only salts could be isolated.

Therefore, different strategies were pursued to synthesize key piperazine-2,6-diones with two orthogonal protective groups at the N -atoms. At first, piperazinediones 12a ($\mathrm{R}=\mathrm{Cbz}$) and 12b ($R=B z$) were prepared in three steps from diethyl iminodiacetate 9. Acylation of the secondary amine 9 with benzyl chloroformate or benzoyl chloride afforded protected diesters 10a and 10b, respectively, which were hydrolyzed by NaOH to give the diacids 11 a and 11b. CDI coupling of the diacids 11a and 11b with p-methoxybenzylamine led to the imides 12a and 12b in 68% and 60% yield, respectively. The imide formation was conducted in three steps. At first, one equivalent CDI was added, which was supposed to form a cyclic anhydride. The anhydride was then opened by addition of p-methoxybenzylamine to afford an amido acid. Finally, the second acid was activated by another equivalent of CDI to form

Scheme 1. Preparation of piperazine-2,6-diones 12a-d. Reagents and reaction conditions: (a) $\mathrm{Cbz}^{2} \mathrm{Cl}_{1} \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 18 \mathrm{~h}, 70 \%$. (b) $\mathrm{Bz}-\mathrm{Cl}^{2}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{r} . \mathrm{t}$, $24 \mathrm{~h}, 90 \%$. (c) $\mathrm{NaOH}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$, r.t., $18 \mathrm{~h}, 90 \%(11 \mathrm{a}), 90 \%$ (11b). (d) i. CDI (1.0 eq), $\mathrm{CH}_{3} \mathrm{CN}$, THF, reflux, $90 \mathrm{~min} ;$ ii. PMB-NH 2 , THF, reflux, $90 \mathrm{~min} ; \mathrm{iii}$. CDI (2.0 eq), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{THF}$, reflux, $60 \mathrm{~h}, 68 \%$ (12a), 60% (12b). (e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{THF}$, r.t., 1 h, 95%. (f) 12d: $\mathrm{BnBr}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $18 \mathrm{~h}, 84 \%$.

Scheme 2. Preparation of piperazine-2,6-dione 17. Reagents and reaction conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$, THF, $\mathrm{H}_{2} \mathrm{O}$, r.t., $72 \mathrm{~h}, 74 \%$. (b) i. CDI (1.0 eq), $\mathrm{CH}_{3} \mathrm{CN}$, THF, reflux, 60 min ; ii. BnNH_{2}, THF, reflux, 60 min ; iii. CDI (2.0 eq), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{THF}$, reflux, $18 \mathrm{~h}, 62 \%$. (c) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $24 \mathrm{~h}, 99 \%$. (d) PMB-Cl, DIPEA, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $18 \mathrm{~h}, 88 \%$.
the imides 12a and 12b. The N-benzyl derivative 12c was obtained by hydrogenolytic cleavage of the Cbz protective group of 12a followed by alkylation of secondary amine 12d with benzyl bromide. (Scheme 1)

In the second approach leading to piperazine-2,6-dione 17 bearing the benzyl and p-methoxybenzyl protective groups at opposite N -atoms compared to 12c, iminodiacetic acid (13) was used as starting material. Reaction of the secondary amine 13 with $\mathrm{Boc}_{2} \mathrm{O}$ afforded 14 in 74% yield. CDI coupling of diacid 14
with BnNH_{2} provided the Boc-protected imide 15. After removal of the Boc-protective group of 15 with trifluoroacetic acid, the resulting secondary amine 16 was alkylated with p-methoxybenzyl chloride to afford piperazinedione 17 with two orthogonal protective groups at the N -atoms. (Scheme 2)

In order to introduce a side chain with two C-atoms and a functional group for bridging, the piperazinediones 12a-c were deprotonated with LiHMDS or KHMDS and treated with ethyl 2bromoacetate. The monoalkylated piperazinediones 18a-c were obtained in 79-84\% yield. Additionally, small amounts of the dialkylated products 19a and 19b (4-6\%) could be isolated from the reaction mixture. (Scheme 3)

The introduction of both substituents at the same position of the piperazinediones 12 a and $\mathbf{1 2 b}$ was unexpected. Therefore, the monoalkylated piperazinedione 18 b was deprotonated with KHMDS at $-78^{\circ} \mathrm{C}$ and the resulting enolate was subsequently treated with ethyl bromoacetate. This reaction led exclusively to the dialkylated piperazinedione 19b (73\%) bearing both acetate moieties at the same C-atom. (Scheme 3) This experiment showed unequivocally that the CH-group (3(CH) of N -acylated piperazinedione $\mathbf{1 8 b}$ reacted preferably with

Scheme 3. Synthesis of the 3,8-diazabicyclo[3.2.1]octane framework. Reagents and reaction conditions: (a) LiHMDS or KHMDS, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, THF, $-78^{\circ} \mathrm{C}$-r.t., $18 \mathrm{~h}, 84 \%$ (18a), 79% (18b), 84% (18c). (b) $\mathrm{KHMDS}, \mathrm{THF},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{THF},-78^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$. (c) $\mathrm{LiHMDS}, \mathrm{THF}$, $-78^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$, 1 h , then r.t., 12%. (d) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{THF},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t., 21% (21a), 10% (21b).
electrophiles compared to the $5-\mathrm{CH}_{2}-$ moiety. Other electrophiles such as $\mathrm{CH}_{3} \mathrm{I}$ also reacted at the 3 -position of $\mathbf{1 8 b}$. (See Scheme SI1 in Supporting information)

For the synthesis of bicyclic systems, a Dieckmann analogous cyclization making use of trapping the intermediate addition product (anion of an hemiketal) by $\mathrm{Me}_{3} \mathrm{SiCl}$ proved itself well. ${ }^{[25-27]}$ Therefore the piperazinediones $18 \mathbf{a}-\mathbf{c}$ with one acetate moiety were treated with LiHMDS at $-78^{\circ} \mathrm{C}$ and after $15 \mathrm{~min} \mathrm{Me}_{3} \mathrm{SiCl}$ was added to the mixture. Unexpectedly, only the benzylated piperazinedione 18c provided the mixed ethyl silyl ketal 20c in low yield (12\%) and the corresponding mixed ethyl silyl ketals from the Cbz and Bz protected piperazinediones 18a and 18b could not be detected. This failure of the bridging reaction was attributed to the preferred deprotonation in 3-position of N -acylated piperazinediones 18 a and 18b, which could not lead to the cyclization products. (Scheme 3)

Therefore, the 3,3-dialkylated piperazinediones 19a and 19b, which could no longer be deprotonated in 3-position were treated in the same manner with LiHMDS and $\mathrm{Me}_{3} \mathrm{SiCl}$. Although the yields were rather low, both compounds led to the mixed ethyl silyl ketals 21a and 21b. This observation supports the hypothesis of first deprotonation in 3-position of the acylated monoacetates $18 \mathrm{a}, \mathrm{b}$ as reason for the failure of the bridging reaction. (Scheme 3)

In addition to the preferred deprotonation in 3-position, the low yields of the ethano bridged piperazinediones 20 and 21 could be due to the short acetate (two C-atoms) side chain, which could not reach the enolate at the opposite side of the piperazine ring. In order to improve the accessibility of the enolate, a propionate side chain leading to propano bridged piperazinediones was envisaged. Therefore, the conjugate
addition of piperazinediones $12 \mathrm{a}-\mathrm{c}$ at methyl acrylate was investigated. For this purpose, 12a-c were deprotonated with LiHMDS or KHMDS at $-78^{\circ} \mathrm{C}$ and after 1 h , methyl acrylate was added. However, instead of the expected addition products 25, the tetrahydropyridine derivatives 24 were isolated in 40-90\% yields. Several experiments were performed to avoid this undesired reaction, including variation of the base (LiHMDS, KHMDS, NaHMDS, LDA, KDA), the electrophile (methyl acrylate, ethyl acrylate, ethyl 3-bromopropionate, ethyl 3-iodopropionate), the temperature and reaction time. Only, after deprotonation of $\mathbf{1 2 b}$ with KDA or KHMDS and then reaction with ethyl acrylate or ethyl 3-iodopropionate provided a small amount (15% and 9%) of the propionate 25b. (Scheme 4). It is assumed that the larger ethyl ester decreased the reactivity of the intermediate enolate 23 to attack intramolecularely the imide group.

Formation of the tetrahydropyridines 24 was explained by deprotonation of piperazinediones $\mathbf{1 2 a} \mathbf{a}$ c and subsequent addition of the enolates 22 at acrylate resulting in the new enolates 23. Protonation of these enolates 23 can afford the desired propionates 25. However, usually a fast attack of the enolates 23 at one of the imide carbonyl moieties occurred leading to cleavage of the imide and finally to the tetrahydropyridines 24a-c. (Scheme 4)

The structure of the unexpected tetrahydropyridines 24a-c was confirmed unequivocally by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and mass spectrometry. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 24c a singlet at 11.90 ppm typical for an enol proton of a vinylogous acid is observed. Moreover, the imide structure can no longer be identified due to the high field shift of the signals for the CH_{2} group of the p-methoxybenzyl moiety. The doublets of

Scheme 4. Reaction of piperazinediones $12 \mathrm{a}-\mathrm{c}$ with acrylates. Reagents and reaction conditions: (a) LiHMDS or KHMDS, THF, $-78^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$, then methyl acrylate, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, r.t. $16 \mathrm{~h}, 90 \%$ (24a), 34% (24b), 19% (24c). (b) KDA or KHMDS, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then ethyl acrylate, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, r.t. $14 \mathrm{~h}, 15 \%$ (25b). (c) KHMDS, THF, $-78^{\circ} \mathrm{C}, 90 \mathrm{~min}$, then $\mathrm{CH}_{3} \mathrm{I},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, r.t. $15 \mathrm{~h}, 33 \%$.
doubles for these protons indicate an additional coupling with the NH -proton of the amide in 24c. Deprotonation of the β oxoester 24b and subsequent methylation with CH_{3} l, afforded the methylated β-oxoester 26b providing an additional proof for the tetrahydropyridine structure of $\mathbf{2 4 a - c}$.

Since the direct introduction of a propionate side chain was not successful, the stepwise introduction of a C_{3}-fragment with an electrophilic functional group at the end was envisaged. For this purpose, the piperazinediones 12 c and 17 were deprotonated and reacted with allyl bromide to afford racemic allyl substituted piperazinediones 27 and 28 , respectively. After hydroboration with $9-\mathrm{BBN}$ and then oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$, the alcohols 29 and 30 were oxidized with Dess-Martin Periodinane (DMP) and the resulting aldehydes 31 and 32 were condensed with (S)-configured Ellman's sulfinamide (S)-2-methylpropane-2sulfinamide in the presence of $\mathrm{Ti}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}$ to give the sulfinylimines 33 and 34 in 82% and 90% yield, respectively. Due to the high electrophilicity of the sulfinylimines 33 and 34 , the bridge could be established by deprotonation with LiHMDS. The resulting enolates were able to attack intramolecularly the electrophilic C -atom of the sulfinylimine group of 33 and 34 leading to the bicyclic sulfinamides 35 and 36 . Both transformations led to high yields of mixtures of diastereomeric
bridged piperazinediones 35 (66%) and 36 (69%). The main isomer of the mixture of diastereomers could be isolated in 22% and 27% yields, respectively. (Scheme 5)

Since the sulfinylimines 33 and 34 provided the bridged systems 35 and 36 in high yields, the same reaction was tried with the corresponding aldehyde 31. In fact, deprotonation of the aldehyde 31 with LiHMDS led to the endo-oriented bicyclic alcohol 37. However, the yield of 37 did not exceed 10% even after careful optimization. (Scheme 5)

As the reaction of the enolates of piperazinediones 12 c and 17 with allyl bromide gave high yields of substitution products 27 and 28, a dihalide presenting the allyl halide moiety twice should be reacted with the enolate of 17 to establish the bridge in only one reaction step. The linear dibromide 38 was frequently used in the literature to form systems with a vinyl moiety. ${ }^{[28]}$ The branched dihalides 40 were employed to prepare compounds with large rings, ${ }^{[29-32]}$ in particular, 1,5-diazacyclooctanes and tricyclic fused tetrazole derivatives. 3,7-Dimethylene-1,5-diazacyclooctanes were obtained by reaction of two equivalents of p-toluenesulfonamide or methanesulfonamide with two equivalents of dichloride 40a. ${ }^{[31,32]}$ Tricyclic fused tetrazole derivatives were achieved in two steps. At first, diazotizative allylation of 2-aminobenzonitrile derivatives with dibromide

	R^{1}	R^{2}
$\mathbf{1 2 c}, \mathbf{2 7}, \mathbf{2 9}, \mathbf{3 1}, \mathbf{3 3}, \mathbf{3 5}$	Bn	PMB
$\mathbf{1 7}, \mathbf{2 8}, \mathbf{3 0}, \mathbf{3 2}, \mathbf{3 4}, \mathbf{3 6}$	PMB	Bn

Scheme 5. Synthesis of 3,9-diazabicyclo[3.2.1]nonanes. Reagents and reaction conditions: (a) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathrm{BrCH} 2 \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$, 2 h, r.t., 18 h, 61% (27), 67% (28). (b) i. $9-\mathrm{BBN}$, r.t. 16 h; ii. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, \mathrm{THF},-25^{\circ} \mathrm{C}, 45 \mathrm{~min}$, r.t., $60 \mathrm{~min}, 94 \%$ (29), 55% (30) (c) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}$, r.t., 87% (31), 94% (32). (d) (S)-2-methylpropane-2-sulfinamide, $\mathrm{Ti}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}, \mathrm{THF}$, r.t., $3 \mathrm{~h}, 82 \%$ (33), 90% (34). (e) LiHMDS, $\mathrm{THF},-78{ }^{\circ} \mathrm{C}-$ r.t., $6 \mathrm{~h}, 66 \%$ (35), 69% (36). (f) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then r.t. $2.5 \mathrm{~h}, 10 \%$.

40b was performed and then a tandem reaction comprised of a cycloaddition between the nitrile and (TMS) N_{3} followed by an intramolecular N -allylation gave the desired products. ${ }^{[29]}$

For this purpose, piperazinedione 17 was deprotonated with 1.2 equivalents of LiHMDS. Subsequently, trans-1,4-dibro-mobut-2-ene (38) was added and after 16 h , another 1.2 equivalents of LiHMDS were added. Thus, the 2,6-bridged piperazinedione 39 was obtained by subsequent $S_{N} 2$ and $S_{N} 2^{\prime}$ reactions at 1,4-dibromobut-2-ene 38 in 22% yield. As for the alcohol 37, only the endo-oriented vinyl derivative 39 was formed. The reaction of piperazinedione 17 with allylic dihalides 40 was performed in the same manner. Among the three allylic dihalides, the highest yield of 52% was obtained by reacting 17 with 3-bromo-2-(bromomethyl)prop-1-ene (40b). This one-step procedure will allow to prepare large amounts of 41 and exploit the additional double bond in the bridge to introduce further substituents as pharmacophoric elements. (Scheme 6)

3. Conclusions

Different strategies were investigated to obtain 2,6-bridged piperazine derivatives 8 with various functional groups in the third carbon bridge. For this purpose, at first a method was developed to prepare piperazine-2,6-diones 12 and 17 in high and reproducible yields. These piperazine-2,6-diones 12 and 17 contain different orthogonal protective groups at the N -atoms.

The first approach made use of a Dieckmann analogous cyclization of piperazinediones 18 and 19 with an acetate side chain leading to bicyclic ethyl silyl ketals 20 and 21, although in low yields.

Cyclization of sulfinylimines 33 and 34 afforded the 3,9diazabicyclo[3.3.1]nonanes 35 and 36 bearing a sulfinamido group in the C_{3}-bridge in 66% (35) and 69% (36) yields. Both compounds were obtained as mixtures of four diastereomers. It has to be noted that the sulfinylimino group is an ideal functional group to initiate this cyclization, since the intramolecular aldol reaction of aldehyde 31 led to the bicyclic alcohol 37 in only 10% yield.

Two one-step syntheses of the bicyclic compounds 39 and 41 employed the linear and branched allylic dihalides 38 and 40. The bicyclic system 39 with an additional vinyl group at the C_{2}-bridge and 41 with a methylene moiety at the C_{3}-bridge were obtained in 22% (39) and 52% (41) yield, respectively. The vinyl and methylene moiety at the carbon bridge will allow the introduction of various substituents and functional groups at the carbon bridge.

Altogether, bridged piperazines with a mixed ketal $(20,21)$, an OH moiety (37) and a vinyl group (39) at the carbon bridge were obtained in low yields, whereas piperazines with a threecarbon bridge bearing a sulfinamido group $(35,36)$ and a methylene moiety (41) were obtained in high yields. The 3,9diazabicyclo[3.3.1]nonanes 35, 36 and 41 will be exploited for synthesis of pharmacologically active compounds.

Experimental Section

Chemistry, General Methods

Oxygen and moisture sensitive reactions were carried out under nitrogen, dried with silica gel with moisture indicator (orange gel, VWR, Darmstadt, Germany) and in dry glassware (Schlenk flask or Schlenk tube). Temperature was controlled with dry ice/acetone $\left(-78^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}\right)$, ice/water $\left(0^{\circ} \mathrm{C}\right)$, Cryostat (Julabo TC100E-F, Seelbach, Germany), magnetic stirrer MR 3001K (Heidolph, Schwalbach, Germany) or RCT CL (IKA, Staufen, Germany), together with temperature controller EKT HeiCon (Heidolph) or VT-5 (VWR) and PEG or silicone bath. All solvents were of analytical or technical grade quality. Demineralized water was used. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}; THF was distilled from sodium/benzophenone; MeOH was distilled from magnesium methanolate. Thin layer chromatography (tlc): tlc silica gel $60 \mathrm{~F}_{254}$ on aluminum sheets (VWR). Flash chromatography (fc): Silica gel 60, 40-63 $\mu \mathrm{m}$ (VWR); parentheses include: diameter of the column (\varnothing), length of the stationary phase (I), fraction size (v) and eluent. Automated flash chromatography: Isolera ${ }^{\text {TM }}$ Spektra One (Biotage ${ }^{\oplus}$); parentheses include: cartridge size, flow rate, eluent, fractions size was always 20 mL . Melting point: Melting point system MP50 (Mettler Toledo, Gießen, Germany), open capillary, uncorrected. MS: MicroTOFQll mass spectrometer (Bruker Daltonics, Bremen, Germany); deviations of the found exact masses from the calculated exact masses were

Scheme 6. Reaction of piperazinedione 17 with dielectrophiles 38 and 40 . Reagents and reaction conditions: (a) i. LiHMDS, THF, $-78^{\circ} \mathrm{C}, 90 \mathrm{~min}$; ii. trans-1,4-dibromobut-2-ene (38), THF, $-78^{\circ} \mathrm{C}$; 90 min , then r.t., 16 h ; iii. LiHMDS, THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, r.t., $18 \mathrm{~h}, 22 \%$. (b) i. LiHMDS, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii. 3-halo-2-(halomethyl)prop-1-enes $40 \mathrm{a}-\mathrm{c}$, THF, $-78^{\circ} \mathrm{C}$; 90 min ; iii. LiHMDS, THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, r.t., $18 \mathrm{~h}, 26-52 \%$.

5 ppm or less; the data were analyzed with DataAnalysis ${ }^{\circledR}$ (Bruker Daltonics). NMR: NMR spectra were recorded in deuterated solvents on a AV300 (Bruker), DPX (Bruker), AV400 (Bruker), AS400 mercury plus NMR spectrometer (Varian), a 600 MHz unity plus NMR spectrometer (Varian), Agilent DD2 400 MHz and 600 MHz spectrometers (Agilent, Santa Clara CA, USA); chemical shifts (δ) are reported in parts per million (ppm) against the reference substance tetramethylsilane and calculated using the solvent residual peak of the undeuterated solvent; coupling constants are given with 0.5 Hz resolution; assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals was supported by 2-D NMR techniques where necessary.IR: FT/IR IR Affinity ${ }^{\text {- }} 1$ spectrometer (Shimadzu, Düsseldorf, Germany) using ATR technique. Optical rotation: UniPol L1000 (Schmidt + Haensch); 1.0 dm tube; concentration c in $\mathrm{g} / 100 \mathrm{~mL}$; $\mathrm{T}=20^{\circ} \mathrm{C}$; wavelength 589 nm (D-line of Na light); the unit of the specific rotation ($[\alpha]_{D}{ }^{\top}$ grad $m L \mathrm{dm}^{-1} \mathrm{~g}^{-1}$) is omitted for clarity.

HPLC

Equipment 1: Pump: L-7100, degasser: L-7614, autosampler: L-7200, UV detector: L-7400, interface: D-7000, data transfer: D-line, data acquisition: HSM-Software (all from Merck Hitachi, Darmstadt, Germany); Equipment 2: Pump: LPG-3400SD, degasser: DG-1210, autosampler: ACC-3000T, UV-detector: VWD-3400RS, interface: DIONEX UltiMate 3000, data acquisition: Chromeleon 7 (equipment and software from Thermo Fisher Scientific, Lauenstadt, Germany); column: LiChrospher ${ }^{\ominus} 60$ RP-select B (5 $\mu \mathrm{m}$), LiChroCART ${ }^{\oplus}$ 2504 mm cartridge; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; injection volume: $5.0 \mu \mathrm{~L}$; detection at $\lambda=210 \mathrm{~nm}$; solvents: A: demineralized water with $0.05 \%(\mathrm{~V} / \mathrm{V})$ trifluoroacetic acid, $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$ with $0.05 \%(\mathrm{~V} / \mathrm{V})$ trifluoroacetic acid; gradient elution (\% A): 0-4 min: 90\%; 4-29 min: gradient from 90% to $0 \% ; 29-31 \mathrm{~min}: 0 \% ; 31-31.5 \mathrm{~min}$: gradient from 0% to $90 \% ; 31.5-40 \mathrm{~min}: 90 \%$. Unless otherwise mentioned, the purity of all test compounds is greater than 95%.

Synthetic Procedures

Diethyl 2,2'-(N-benzyloxycarbonylimino)diacetate (10a)

Under ice-cooling, benzyl chloroformate ($10.8 \mathrm{~mL}, 75.68 \mathrm{mmol}$) was added slowly to a solution of diethyl iminodiacetate 9 (13.0 g , $68.80 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(10.6 \mathrm{~mL}, 75.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was warmed to rt and stirred for 18 h . Then the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane: ethyl acetate $=3: 1, \varnothing=8.0 \mathrm{~cm}, \mathrm{I}=8.0 \mathrm{~cm}, \mathrm{~V}=100 \mathrm{~mL}, \mathrm{R}_{\mathrm{f}} 0.17$) to yield a colorless oil. Yield $15.6 \mathrm{~g}(70 \%) . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6}$ (323.1). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.21\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}$, $\left.\mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.14(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \quad \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.20(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 7.27-7.39\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 49.3 (1C, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$), $49.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 61.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.5$ (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $68.0\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 127.9\left(2 \mathrm{C}, \mathrm{C}-2_{\text {phenyl }} \mathrm{C}-6_{\text {pheny }}\right)$, 128.2 (1C, C-4 phenyl), 128.6 ($2 \mathrm{C}, \mathrm{C}-3_{\text {phenyl }}$, $\mathrm{C}-5_{\text {phenyl }}$), 136.2 (1C, C-1 pheny), 156.1 (1C, $\mathrm{OCO}_{2} \mathrm{~N}$), 169.5 (1C, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$), 169.6 (1C, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$). FT-IR: v~ $\left(\mathrm{cm}^{-1}\right)=3062(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2982 (m, v, C-H, alkyl), 1744 (s, v, $\mathrm{C}=\mathrm{O}$, ester), 1708 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, carbamate), 737, 698 (m, $\delta, \mathrm{C}-\mathrm{H}$, arom.). MS (APCI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{H}^{+} 324.1442$, found 324.1377. HPLC: purity $98.4 \%, \mathrm{t}_{\mathrm{R}}=19.44 \mathrm{~min}$.

Diethyl 2,2'-(N-benzoylimino)diacetate (10b)

Diethyl iminodiacetate 9 ($1.0 \mathrm{~g}, 5.29 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(535 \mathrm{mg}, 5.29 \mathrm{mmol})$ was added. Then benzoyl
chloride ($817 \mathrm{mg}, 5.81 \mathrm{mmol}$) was added. The reaction mixture was stirred at r for 24 h . The solution was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times)$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo. The remaining residue was purified by fc ($\varnothing=$ $4.5 \mathrm{~cm}, \mathrm{~h}=23 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$, cyclohexane:ethyl acetate $=3: 1, \mathrm{R}_{\mathrm{f}}$ $0.18)$ to obtain a pale yellow oil. Yield $1.39 \mathrm{~g}(90 \%) . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ (293.3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)$, 4.21 ($q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.26\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 7.37-7.47\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. FT-IR: v~ $\left(\mathrm{cm}^{-1}\right)=$ 2983 (w, v, C-H, alkyl), 1739 (s, v, C=O, ester), 1650 (s, v, C=O, amide), 701 (m, $\delta, \mathrm{C}-\mathrm{H}$, arom.). MS (ESI): $609\left[(2 \times \mathrm{M}+\mathrm{Na})^{+}, 100\right]$, $587\left[(2 \times \mathrm{M}+\mathrm{H})^{+}, 14\right]$.

2,2'-(N-Benzyloxycarbonylimino)diacetic acid (11a)

The diester 10a ($14.68 \mathrm{~g}, 45.46 \mathrm{mmol}$) was dissolved in a mixture of $2 \mathrm{M} \mathrm{NaOH}(200 \mathrm{~mL})$ and $\mathrm{EtOH}(200 \mathrm{~mL})$. The mixture was stirred for 18 h at rt . Then this mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ once. Conc. HCl was added to the aqueous layer until pH 1 and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(8 \times)$. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuum. The obtained oil was dried in high vacuum over night to yield a colorless viscous oil. Yield $10.97 \mathrm{~g}(90 \%) . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{6}$ (267.0). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{DMSO}): \delta(\mathrm{ppm})=3.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.02(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$), 5.08 (s, 2H, $\mathrm{PhCH}_{2} \mathrm{O}$), $7.27-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {pheny }}\right), 12.75$ (s , $\left.2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO): $\delta(\mathrm{ppm})=49.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)$, 49.6 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 66.6 ($1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}$), 127.2 ($\left.2 \mathrm{C}, \mathrm{C}-2_{\text {phenyl }}, \mathrm{C}-6_{\text {pheny }}\right)$), 127.8 (1C, C-4 phenyl), 128.4 ($2 \mathrm{C}, \mathrm{C}-3_{\text {phenyl }}$, $\mathrm{C}-5_{\text {phenyl }}$), 136.7 (1C. C- $\left.1_{\text {pheny }}\right)$, 155.6 (1C, $\mathrm{OCO}_{2} \mathrm{~N}$), $170.9\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 171.0\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)$. FT-IR: v~ $\left(\mathrm{cm}^{-1}\right)=3600-2300(\mathrm{~s}, \mathrm{v}, \mathrm{O}-\mathrm{H}$, acid), $3037(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2987 (m, v, C-H, alkyl), 1693 (s, v, C=O, acid), 737, 696 (m, ס, C-H, mono-substituted arom.). A signal for the $\mathrm{C}=\mathrm{O}$ moiety of the carbamate cannot be detected. MS (APCI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{6} \mathrm{H}^{+}$ 268.0821, found 268.0847. HPLC: purity $99.1 \%, t_{R}=12.21 \mathrm{~min}$.

2,2'-(N-Benzoylimino)diacetic acid (11b)

The diester 10b ($839 \mathrm{mg}, 2.86 \mathrm{mmol}$) was dissolved in a mixture of $2 \mathrm{M} \mathrm{NaOH}(25 \mathrm{~mL})$ and $\mathrm{EtOH}(25 \mathrm{~mL})$. The mixture was stirred for 6 h at rt . Then this mixture was acidified with 1 M HCl until pH 1. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo to obtain a colorless viscous oil. Yield 608 mg (90%). $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ (237.2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=3.97(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 7.29-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {phenyl, }} 5-\right.$ $\left.\mathrm{H}_{\text {phenyl }}\right)$, 7.43-7.50 (m,3H,2-H $\mathrm{H}_{\text {phenyl }}$ 4- $\left.\mathrm{H}_{\text {phenyl }}, 6-\mathrm{H}_{\text {phenyl }}\right)$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)$ $=3600-2300(\mathrm{~s}, \mathrm{v}, \mathrm{O}-\mathrm{H}$, acid), 2925 (s, v, C-H, alkyl), 1719, (s, v, $\mathrm{C}=\mathrm{O}$, acid), 1596 (s, v, C=O, amide), 700 (m, $\delta, \mathrm{C}-\mathrm{H}$, arom.). MS (ESI, negative mode): 473 [($\left.2 \times \mathrm{M}-\mathrm{H})^{-}, 100\right], 236\left[(\mathrm{M}-\mathrm{H})^{-}, 89\right]$.

Benzyl 4-(4-methoxybenzyl)-3,5-dioxopiperazine-1-carboxylate (12a)

A solution of the diacid 11a ($11.06 \mathrm{~g}, 41.40 \mathrm{mmol}$) in THF (250 mL) was heated to reflux in a three-neck-flask (Two necks sealed with rubber septa.). Then a solution of carbonyldiimidazole (6.71 g , 41.40 mmol) in acetonitrile (20 mL) was added slowly over 30 min . The mixture was heated to reflux for 90 min . Subsequently a solution of p-methoxybenzylamine ($5.37 \mathrm{~mL}, 41.40 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ was added slowly over 30 min and the mixture was heated to reflux for 90 min . Subsequently a solution of carbonyldiimidazole $(13.42 \mathrm{~g}, 82.80 \mathrm{mmol})$ in acetonitrile $(50 \mathrm{~mL})$ was added slowly to the reaction mixture over 30 min . The mixture was heated to reflux for 60 h . Then most of the solvent was removed in vacuum. The
residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and 2 M HCl was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$, then 5 M NaOH was added to the aqueous layer until pH 12. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=7: 3, \quad \varnothing=8.0 \mathrm{~cm}, \mathrm{I}=8.0 \mathrm{~cm}, \mathrm{~V}=$ 100 mL) to obtain a pale yellow solid. ($\mathrm{R}_{\mathrm{f}} 0.48$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow solid, mp. $71^{\circ} \mathrm{C}$. Yield 10.37 g (68%). $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}(368.1) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.39\left(\mathrm{~s}, 4 \mathrm{H}, 2-\mathrm{CH}_{2}, 6-\mathrm{CH}_{2}\right), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.15(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 6.82\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\mathrm{PMB}}\right), 7.31-7.41(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{\text {phenyl }}$), 7.34 ($\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}$). ${ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=42.4\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 47.3(2 \mathrm{C}, \mathrm{C}-2, \mathrm{C}-6), 55.4$ (1C, $\left.\mathrm{OCH}_{3}\right), 68.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 114.0\left(2 \mathrm{C}, \mathrm{C}-3_{\text {РМВ }}, \mathrm{C}-5_{\text {РМВ }}\right), 128.4$ (1C, C$1_{\text {PMB }}$), 128.5 ($2 \mathrm{C}, \mathrm{C}-2_{\text {phenyl }}$ C $-6_{\text {phenyl }}$), 128.8 (2C, C-3 phenyl , C-5 phenyl), 128.8 (1C, C-4 phenyl 1), 131.0 (2C, C-2 PMB C- - $_{\text {PMB }}$), 135.5 (1C, C-1 $\left.1_{\text {phenyl }}\right), 154.0$ $(1 C, O C(=O) N), 159.4(1 C, C-4$ PMB $), 167.8\left(2 C\right.$, CO $\left._{\text {imide }}\right)$. FT-IR: v~ ($\left.\mathrm{cm}^{-1}\right)$ $=3067$ ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2961 ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, alkyl), 1738 ($\mathrm{w}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 1676 (s, v, C=O, imide), 820 (w, $\delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 747, 694 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). A signal for the $\mathrm{C}=\mathrm{O}$ of the carbamate group cannot be detected. MS (APCI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} 368.1372$, found 368.1362. HPLC: purity 98.9%, $\mathrm{t}_{\mathrm{R}}=20.22 \mathrm{~min}$.

4-Benzoyl-1-(4-methoxybenzyl)piperazine-2,6-dione (12b)

A solution of the diacid 11b ($2.75 \mathrm{~g}, 11.60 \mathrm{mmol}$) in THF (150 mL) was heated to reflux in a three-neck-flask (Two necks sealed with rubber septa.). Then a solution of carbonyldiimidazole (1.88 g , $11.60 \mathrm{mmol})$ in acetonitrile (30 mL) was added slowly over 30 min . The mixture was stirred for 60 min . Subsequently a solution of p methoxybenzylamine ($1.51 \mathrm{~mL}, 11.60 \mathrm{mmol}$) in THF (10 mL) was added slowly over 30 min and the mixture was stirred for 60 min . A solution of carbonyldiimidazole ($3.76 \mathrm{~g}, 23.20 \mathrm{mmol}$) in acetonitrile $(50 \mathrm{~mL})$ was added slowly to the reaction mixture over 30 min . The mixture was refluxed for 18 h . Then most of the solvent was removed in vacuum. The remaining residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 M HCl was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were alkalized with 2 M NaOH and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=7: 3, \varnothing=$ $8.0 \mathrm{~cm}, \mathrm{I}=10.0 \mathrm{~cm}, \mathrm{~V}=100 \mathrm{~mL})$ to obtain a pale yellow oil. ($\mathrm{R}_{\mathrm{f}} 0.35$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield $2.36 \mathrm{~g}(60 \%)$. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}(338.4) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.78(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 4.51 (s, broad, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CO}$), $4.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.83$ (d, $\left.J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}\right), 7.34\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}\right)$, 7.37-7.41 (m, 2H, 3- $\mathrm{H}_{\text {benzoyl }}$ 5- $\left.\mathrm{H}_{\text {benzoyl }}\right)$, 7.41-7.53 (m, 3H, 2- $\mathrm{H}_{\text {benzoyl }}$, 4$\left.\mathrm{H}_{\text {benzoyl, }} 6-\mathrm{H}_{\text {benzoy }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=42.6(1 \mathrm{C}$, $\mathrm{NCH}_{2} \mathrm{Ar}$), 48.7 (s, broad, 2C, $\mathrm{NCH}_{2} \mathrm{CO}$), $55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 114.0$ (2C, C$\left.3_{\text {PMB }}, ~ C-5_{\text {PMB }}\right), 127.6$ (2C, C-2 $2_{\text {benzoyl }}$, C-6 benzoyl), 128.4 (1C, C-1 PMB), 129.1 (2C, C-3 benzoyl C- $5_{\text {benzoyl }}$), 130.9 (1C, C- $4_{\text {benzoyl }}$), 131.3 (2C, C-2 pMB , C$\left.6_{\text {PMB }}\right), 133.1\left(1 \mathrm{C}, \mathrm{C}-1_{\text {benzoy }}\right), 159.4\left(1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}\right), 167.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, 170.2 (1C, NCH ${ }_{2} \mathrm{CO}$). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3060(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2927 ($\mathrm{m}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, alkyl), 1737 ($\mathrm{m}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 1683 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 810 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 721, 701 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, monosubstituted arom.). MS (EI): 338 [M $\left.{ }^{+}, 100\right]$.

4-Benzyl-1-(4-methoxybenzyl)piperazine-2,6-dione (12c)

N-Ethyl-N,N-diisopropylamine ($15.8 \mathrm{~mL}, 88.1 \mathrm{mmol}$) and benzyl bromide ($1.58 \mathrm{~mL}, 13.2 \mathrm{mmol}$) were added to a solution of the secondary amine $12 \mathrm{~d}(2.58 \mathrm{~g}, 11.01 \mathrm{mmol})$ in acetonitrile (60 mL). The mixture was heated to reflux and stirred for 18 h . The solvent was removed in vacuum almost completely. The remaining solution
was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated NaHCO_{3} solution and mixture was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=1: 1, \varnothing=$ $5.0 \mathrm{~cm}, \mathrm{I}=8.5 \mathrm{~cm}, \mathrm{~V}=30 \mathrm{~mL}$) to obtain a pale yellow solid. ($\mathrm{R}_{\mathrm{f}} 0.63$, cyclohexane:ethyl acetate $=1: 1$): Yellow solid. Yield $2.99 \mathrm{~g}(84 \%)$. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}(324.2) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.39(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CO}$), $3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.86(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{Ar}$), 6.82 (d, J=8.7 Hz, 2H, $3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}$), 7.24 (dd, J=6.1/ $\left.4.4 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {benzyl }}, 6-\mathrm{H}_{\text {benzyl }}\right), 7.28-7.39\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {benzyl }}, 4-\mathrm{H}_{\text {benzyl }}, 5-\right.$ $\left.\mathrm{H}_{\text {benzyl }}\right), 7.34\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{PMB}}, 6-\mathrm{H}_{\mathrm{PMB}}\right) .{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=41.9\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 55.4\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 56.5(1 \mathrm{C}$, $\left.\mathrm{OCH}_{3}\right), 60.9\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 113.9\left(2 \mathrm{C}, \mathrm{C}-3_{\text {PMB }}, \mathrm{C}-5_{\mathrm{PMB}}\right), 128.2$ ($1 \mathrm{C}, \mathrm{C}-$
 (1C, C-4 benzyl), 130.7 (2C, C- $2_{\text {РMB }}, ~ C-6_{\text {PMB }}$), 135.4 (1C, C-1 benzyl), 159.2 (1C, C-4 ${ }_{\text {PMB }}$), $170.0\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right)$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3062(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2958 (m, v, C-H, alkyl), 1736 (s, v, C=O, imide), 1679 (s, v, $\mathrm{C}=\mathrm{O}$, imide), 822 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 742, 700 (m , $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{H}^{+}$ 325.1547 , found 325.1582 . HPLC: purity $95.1 \%, t_{R}=20.19 \mathrm{~min}$.

1-(4-Methoxybenzyl)piperazine-2,6-dione (12d)

The imide 12a ($1.01 \mathrm{~g}, 2.73 \mathrm{mmol}$) was dissolved in THF (50 mL) and $\mathrm{Pd} / \mathrm{C}(10 \%, 0.11 \mathrm{mg})$ was added. The mixture was stirred under H_{2} atmosphere (1 atm) at rt for 1 h . The mixture was filtered through Celite ${ }^{\oplus}$ with THF and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=1: 1 \rightarrow 100 \%$ ethyl acetate, $\varnothing=3.0 \mathrm{~cm}, \mathrm{I}=4.5 \mathrm{~cm}, \mathrm{~V}=$ 30 mL) to obtain a pale yellow solid. ($\mathrm{R}_{\mathrm{f}} 0.01$, cyclohexane:ethyl acetate $=1: 1$). mp: $131-132^{\circ} \mathrm{C}$. Yield $0.61 \mathrm{~g}(95 \%) . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (234.1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=3.70\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.82(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}\right), 7.35$ (d, J=8.7 Hz, 2H, 2- $\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}$). ${ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=41.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 50.0\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right)$,
 ($\left.2 \mathrm{C}, \mathrm{C}-2_{\text {PMB }}, ~ C-6_{\text {PMB }}\right), 159.2\left(1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}\right), 171.1$ (2C, $\mathrm{NCH}_{2} \mathrm{CO}$). FT-IR: v^{\sim} $\left(\mathrm{cm}^{-1}\right)=3335(\mathrm{~s}, \mathrm{v}, \mathrm{N}-\mathrm{H}$, amine $), 3075(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}, \operatorname{arom}),. 2962(\mathrm{~m}, \mathrm{v}$, C-H, alkyl), 1714 (s, v, C=O, imide), 1665 (s, v, C=O, imide), 832 (m, $\delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{H}^{+}$ 235.1077, found 235.1103 . HPLC: purity $99.7 \%, t_{R}=11.52 \mathrm{~min}$.

N-(tert-Butoxycarbonyl)iminodiacetic acid (14)

A mixture of iminodiacetic acid ($11.0 \mathrm{~g}, 83 \mathrm{mmol}, 1 \mathrm{eq}$) and NaHCO_{3} $(27.8 \mathrm{~g}, 331 \mathrm{mmol}, 4 \mathrm{eq})$ were dissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ of water. After bubbling finished, THF (100 mL) was added followed by $\mathrm{Boc}_{2} \mathrm{O}(18.0 \mathrm{~g}, 83 \mathrm{mmol}, 1 \mathrm{eq})$. The mixture was stirred at ambient temperature for 3 d . THF was removed in vacuo and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$. The pH of the aqueous layer was then adjusted to pH 1 using 6 M HCl . The aqueous layer was extracted with ethyl acetate $(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo to provide the product. Colorless solid, $\mathrm{mp} 127-131^{\circ} \mathrm{C}$, (decomposition), yield 14.2 g (74%). $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{6}$ (233.2). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COOH}\right), 3.91$ (s, 2H, NCH2COOH), 12.63 (s, 2H, $2 \times \mathrm{COOH}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=27.8\left(3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 49.1\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 49.7$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 79.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 154.8(1 \mathrm{C}, \mathrm{NCOO}), 171.18(1 \mathrm{C}, \mathrm{COOH})$, 171.21 (1C, COOH). IR (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=3113(\mathrm{O}-\mathrm{H}), 2978$ and 2943 ($\mathrm{C}-\mathrm{H}_{\text {aliph }}$), 1724 ($\mathrm{C}=\mathrm{O}$, acid), 1651 ($\mathrm{C}=\mathrm{O}$, carbamate). MS (APCI): m/z= 234.0966 (calcd. 234.0972 for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$).

tert-Butyl 4-benzyl-3,5-dioxopiperazine-1-carboxylate (15)

A solution of the diacid 14 ($15.0 \mathrm{~g}, 64 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (250 mL) was heated to reflux in a three-necked-flask. Two necks were sealed with rubber septum. Then, a solution of carbonyldiimidazole ($10.0 \mathrm{~g}, 64 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$ was added slowly over 30 min . The mixture was stirred for 60 min . Subsequently, a solution of benzylamine ($7.03 \mathrm{~mL}, 64 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (20 mL) was added slowly over 30 min and the mixture was stirred for 60 min . A solution of carbonyldiimidazole ($21.0 \mathrm{~g}, 129 \mathrm{mmol}, 2 \mathrm{eq}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(100 \mathrm{~mL})$ was added slowly to the reaction mixture over 30 min . The mixture was heated to reflux for 18 h . Then, most of the solvent was removed in vacuo. The remaining residue was dissolved in ethyl acetate and 1 M HCl was added. The mixture was extracted with ethyl acetate $(3 \times) .2 \mathrm{M} \mathrm{NaOH}$ was added to the combined ethyl acetate layers and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by fc (cyclohexane: ethyl acetate $=91: 9 \rightarrow 83: 17, \varnothing=5 \mathrm{~cm}, \mathrm{I}=12 \mathrm{~cm}, \mathrm{~V}=$ $100 \mathrm{~mL}) .\left(\mathrm{R}_{\mathrm{f}} 0.66\right.$, cyclohexane:ethyl acetate $\left.=67: 33\right)$. Colorless solid, $\mathrm{mp} 147-149^{\circ} \mathrm{C}$, yield 12.1 g (62%). $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ (304.3). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.32(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.25-7.32\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 4-\mathrm{CH}_{\text {benzyl }}\right.$, $\left.5-\mathrm{CH}_{\text {benzy }}\right), 7.35-7.39\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzy }}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=28.3\left(3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 42.9\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 47.3(2 \mathrm{C}$, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 82.4\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 128.0\left(1 \mathrm{C}, \mathrm{C}-4_{\text {benzy }}\right), 128.7\left(2 \mathrm{C}, \mathrm{C}-3_{\text {benzyl }}\right.$ C-5 $\left.5_{\text {benzyl }}\right), 129.2$ (2C, C- $\left.2_{\text {benzyl }}, ~ C-6_{\text {benzy }}\right), 136.3\left(1 \mathrm{C}, ~ C-1_{\text {benzyl }}\right), 153.2$ (1C, NCOO), $168.2\left(2 \mathrm{C}, \mathrm{NCOCH}_{2}\right) \cdot \mathrm{IR}$ (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=2982\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1678$ $(\mathrm{C}=\mathrm{O}), 856\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$. MS (APCI): $\mathrm{m} / \mathrm{z}=305.1408$ (calcd. 305.1496 for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$). Purity (HPLC): $99.8 \%\left(\mathrm{t}_{\mathrm{R}}=20.9\right.$ and 21.1 min$)$.

1-Benzylpiperazine-2,6-dione (16)

A solution of 15 ($70 \mathrm{mg}, 0.23 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C} . \mathrm{CF}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ was added slowly to the mixture. The mixture was stirred overnight at rt . The solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the mixture was washed with saturated NaHCO_{3} solution $(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The organic layers were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated in vacuo and the residue was purified by fc (cyclohexane:ethyl acetate: dimethylethylamine $=50: 50: 1 \rightarrow 25: 75: 1, \varnothing=1 \mathrm{~cm}, \mathrm{I}=10 \mathrm{~cm}, \mathrm{~V}=$ $7 \mathrm{~mL})$. ($\mathrm{R}_{\mathrm{f}} 0.24$, cyclohexane:ethyl acetate:dimethylethylamine $=$ 20:80:1): Colorless solid, mp $149-151^{\circ} \mathrm{C}$, yield 12.1 g (99%). $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (204.2). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})=3.59(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 4.82 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 7.20-7.27 (m,3H,2-CH ${ }_{\text {benzyl }}$ 4$\left.\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzy }}\right), 7.27-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzyl }}\right) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \quad \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})=40.8 \quad\left(1 \mathrm{C}, ~ \mathrm{NCH}_{2} \mathrm{Ph}\right), 49.1 \quad(2 \mathrm{C}$, $\mathrm{NCH}_{2} \mathrm{CO}$), $126.9\left(1 \mathrm{C}, \mathrm{C}-4_{\text {benzyl }}\right), 127.4\left(2 \mathrm{C}, \mathrm{C}-2_{\text {benzyl }}, \mathrm{C}-\mathrm{C}_{\text {benzyl }}\right), 128.2$ (2C, $\left.\mathrm{C}-3_{\text {benzyl }}, \mathrm{C}-5_{\text {benzyl }}\right), 137.2\left(1 \mathrm{C}, \mathrm{C}-1_{\text {benzyl }}\right), 172.1(2 \mathrm{C}, \mathrm{C}=\mathrm{O})$. IR (neat): v^{\sim} $\left(\mathrm{cm}^{-1}\right)=3321(\mathrm{~N}-\mathrm{H}), 2954,2924$ and $2854\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1724$ and 1662 ($\mathrm{C}=\mathrm{O}$), $840\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right) . \mathrm{MS}(\mathrm{APCl}): \mathrm{m} / \mathrm{z}=205.0973$ (calcd. 205.0972 for $\left.\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}\right)$. Purity (HPLC): $95.9 \%\left(\mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}\right)$.

1-Benzyl-4-(4-methoxybenzyl)piperazine-2,6-dione (17)

N-Ethyl-N,N-diisopropylamine ($24.3 \mathrm{~mL}, 147 \mathrm{mmol}, 3 \mathrm{eq}$) and 4methoxybenzyl chloride ($7.0 \mathrm{~mL}, 52 \mathrm{mmol}, 1.05 \mathrm{eq}$) were added to a solution of the secondary amine $16(10.0 \mathrm{~g}, 49 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$. The mixture was heated to reflux for 18 h . The solvent was removed in vacuo almost completely. The remaining residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and saturated NaHCO_{3} solution (100 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by fc (cyclohexane: ethyl acetate $=91: 9 \rightarrow 75: 25, \quad \varnothing=6 \mathrm{~cm}, \mathrm{I}=18 \mathrm{~cm}, \mathrm{~V}=65 \mathrm{~mL}) .\left(\mathrm{R}_{\mathrm{f}}\right.$
0.38 , cyclohexane:ethyl acetate $=75: 25$). Pale yellow solid, mp. 51$52{ }^{\circ} \mathrm{C}$, yield 14.0 g (88%). $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (324.4). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})=3.46\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right)$, $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.91(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{CH}_{\text {PMB }}, 5-\mathrm{CH}_{\text {PMB }}\right), 7.20\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {РМВ }}, 6-\mathrm{CH}_{\text {РМВ }}\right), 7.21-7.23$ $\left(\mathrm{m}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzy }}\right), 7.23-7.26\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH}_{\text {benzyl }}\right), 7.28-7.34$ $\left(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzy }}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d d_{6}): $\delta(\mathrm{ppm})$ $=41.3\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 55.0\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{O}\right), 55.1\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 58.3(1 \mathrm{C}$,
 (2C, C-2 benzyl C $-6_{\text {benzyl }}$), 127.8 ($1 \mathrm{C}, \mathrm{C}-1_{\text {PMB }}$), 128.4 ($2 \mathrm{C}, \mathrm{C}-3_{\text {benzyl }}$, C- $5_{\text {benzy }}$),
 $170.3\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right)$. IR (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=2955$ and $2931\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right)$, 1735 and 1682 ($\mathrm{C}=\mathrm{O}$), 821 ($\mathrm{C}-\mathrm{H}_{\text {arom }}$). MS (APCI): m/z=325.1553 (calcd. 325.1547 for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$). Purity (HPLC): $97.2 \%\left(\mathrm{t}_{\mathrm{R}}=\right.$ 21.2 min).

Benzyl
 2-(ethoxycarbonylmethyl)-4-(4-meth-
 oxybenzyl)-3,5-dioxopiperazine-1-carboxylate (18a) and diethyl 2,2'-[1-(benzyloxycarbonyl)-4-(4-meth-

oxybenzyl)-3,5-dioxopiperazine-2,2-diyl]diacetate (19a)
A solution of the imide 12a ($1.02 \mathrm{~g}, 2.76 \mathrm{mmol}$) in THF (30 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then a 1 M solution of lithium hexamethyldisilazide (LiHMDS, $2.76 \mathrm{~mL}, 2.76 \mathrm{mmol}$) was added and the mixture was stirred for 1 h . Ethyl 2-bromoacetate $(0.61 \mathrm{~mL}$, 5.51 mmol) was added and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The mixture was warmed to rt overnight. The solvent was removed in vacuum and the remaining residue was purified by fc (n-hexane:ethyl acetate $=8 / 2, \varnothing=4.0 \mathrm{~cm}, \mathrm{I}=8.5 \mathrm{~cm}, \mathrm{~V}=30 \mathrm{~mL}$) to obtain two pale yellow oils. 18a ($\mathrm{R}_{\mathrm{f}} 0.57$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield 1.06 g (84%). $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$ (454.1). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.92 (s, broad, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 3.14 (dd, broad, J=17.3/ $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99-4.15(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}, 2-\mathrm{CH}\right), 4.90\left(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.91$ (s, broad, 2 H , $\left.6-\mathrm{CH}_{2}\right), 4.97\left(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 6.81$ (d, J=8.8 Hz, 2H, 3- $\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}$), $7.29-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {pheny }}\right)$) 7.32 (d , $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}\right)$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3067(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2962 ($\mathrm{m}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, alkyl), 1726 (s, v, C=O, ester), 1712 (s, v, $\mathrm{C}=\mathrm{O}$, carbamate), 1681 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 815 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, parasubstituted arom.), 735, 698 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). A second signal for the imide- $\mathrm{C}=\mathrm{O}$ group cannot be detected. MS (APCI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{H}^{+}$455.1813, found 455.1969. HPLC: purity $82.6 \%, t_{R}=21.24 \mathrm{~min}$. 19a $\left(R_{f} 0.65\right.$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield 0.06 g (4%). $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9}$ (540.2). ${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(300 \mathrm{MHz}, \quad C D C l_{3}\right): \delta \quad(\mathrm{ppm})=1.09 \quad(\mathrm{t}, \quad \mathrm{J}=7.1 \mathrm{~Hz}, \quad 6 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.01\left(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.82-4.10 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 2 \times \mathrm{CH}_{2} \mathrm{CO}_{2}$), $4.45\left(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}_{\text {dioxopiperazine }}\right)$, 4.97 (s, 2H, NCH 2 Ph), 5.14 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 6.79 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{H}_{\text {РМВ }}, 5-\mathrm{H}_{\text {РMB }}\right), 7.27-7.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {phenyl }}\right), 7.32\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {РМВ }}\right.$, 6-H $\mathrm{H}_{\text {PMB }}$). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3062$ ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2958 (m, v, C-H, alkyl), 1728 (s, v, C=O, ester), 1706 (s, v, C=O, carbamate), 1675 (s, v, $\mathrm{C}=0$, imide), 819 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 736, 698 (m, $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). A second signal for the imide$\mathrm{C}=0$ group cannot be detected. MS (ESI, negative mode): $\mathrm{m} / \mathrm{z}(\%)=$ $1103\left[(2 \times M+N a)^{-}, 97\right], 563\left[(M+N a)^{-}, 100\right]$.

Ethyl 2-(1-benzoyl-4-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl) acetate (18b) and diethyl

2,2'-(1-benzoyl-4-(4-meth-

oxybenzyl)-3,5-dioxopiperazine-2,2-diyl)diacetate (19b)
A solution of the imide $\mathbf{1 2 b}$ ($257 \mathrm{mg}, 0.76 \mathrm{mmol}$) in THF (15 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 0.5 M KHMDS-solution in THF (1.59 mL ,
0.76 mmol) was added. After 30 min ethyl 2-bromoacetate ($168 \mu \mathrm{~L}$, 1.52 mmol) was added. The reaction mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ and then warmed to rt . An excess of 1 M HCl solution was added and the mixture was concentrated in vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water $(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo. The residue was purified by fc (cyclohexane:ethyl acetate $=$ 8:2, $\varnothing=3.0 \mathrm{~cm}, \mathrm{I}=12.0 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain two pale yellow oils 18b and 19b. 18b ($\mathrm{R}_{\mathrm{f}} 0.42$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield 254 mg (79%). $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ (424.5). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.00$ (d, broad, J=16.9 Hz, 1H, CH2 CO 2 Et), 3.20 (d, broad, J=16.3 Hz, 1 H , $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.38$ (d, J=16.3 Hz, 1H, NCH CO), 4.61 (s, broad, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 4.94 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), 5.48 (s, broad, 1H, NCHCO), 6.83 (d, J=8.7 Hz, 2H, 3$\mathrm{H}_{\text {РМВ }}, 5-\mathrm{H}_{\text {РМВ }}$), 7.32 (d, J=8.6 Hz, 2H, 2- $\mathrm{H}_{\text {РМВ }}, 6-\mathrm{H}_{\text {РМВ }}$), 7.36 (dd, J=8.0/ $\left.1.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {benzoyl, }} 5-\mathrm{H}_{\text {benzoy }}\right), 7.40-7.53\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{\text {benzoyl }} 4-\mathrm{H}_{\text {benzoyl }}\right.$ $\left.6-\mathrm{H}_{\text {benzoy }}\right) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=14.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 36.5 (1C, C-2), 42.9 (1C, NCH $\left.{ }_{2} \mathrm{Ar}\right), 51.1$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right)$, 60.5 ($1 \mathrm{C}, \mathrm{NCHCO}$), $61.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 114.0\left(2 \mathrm{C}, \mathrm{C}-3_{\text {PMB }}, \mathrm{C}-5_{\text {PMB }}\right)$, 127.4 (2C, C-2 benzoyl, C- $6_{\text {benzoy }}$), 128.4 (1C, C-1 PMB), 129.0 (2C, C- $3_{\text {benzoyl }}$ C-5 benzoyl), 130.5 (1C, C-4 benzoy), 131.1 (2C, C-2 PMB, C-6 PMB), 133.6 (1C C-1 benzoyl), 159.3 ($\left.1 \mathrm{C}, \mathrm{C}-4_{\text {Рмв }}\right), 167.4$ (1C, $\left.\mathrm{CO}_{\text {benzoyl }}\right)$, 167.4 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), $170.0\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 171.3\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3062(\mathrm{w}$, v, C-H, arom.), 2940 (w, v, C-H, alkyl), 1731 (m, v, C=O, imide), 1683 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 1652 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, amide), 811 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, parasubstituted arom.), 722, 702 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (EI): $424 \quad\left[\mathrm{M}^{+}, 100\right], 319 \quad\left[\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)^{+}, 70\right], 303 \quad[(\mathrm{M}-$ $\left.\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)^{+}$, 98]. 19b ($\mathrm{R}_{\mathrm{f}} 0.52$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield 22 mg (6%). $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8}$ (510.5). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.17\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.09\left(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{q}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.16\left(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.36$ (s, 2H, NCH ${ }_{2} \mathrm{CO}$), $4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.80\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}\right.$, $\left.5-\mathrm{H}_{\text {PMB }}\right), 7.22-7.25\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {benzoyl }}, 5-\mathrm{H}_{\text {benzoyl }}\right), 7.31(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, 2- $\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}$), 7.37-7.47 (m, 3H, 2- $\left.\mathrm{H}_{\text {benzoyl }}, 4-\mathrm{H}_{\text {benzoyl }}, 6-\mathrm{H}_{\text {benzoy }}\right) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=14.2\left(2 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 31.1$ (1C, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 41.1\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 43.8$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 51.7$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 60.6(1 \mathrm{C}, \mathrm{NCCO}), 61.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.5$ (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $113.7\left(2 \mathrm{C}, \mathrm{C}-3_{\text {РМВ }}, \mathrm{C}-5_{\text {РМВ }}\right), 126.2$ (2C, C-2 benzoyl, $\mathrm{C}-$ $\left.6_{\text {benzoy }}\right), 128.3$ (1C, C-1 $1_{\text {PMB }}$), 129.1 (2C, C-3 $3_{\text {benzoyl }}$, $\left.-5_{\text {benzoy }}\right), 130.3$ (1C C-4 $4_{\text {benzoyl }}$), 130.5 ($2 \mathrm{C}, \mathrm{C}-2_{\text {PMB }}, \mathrm{C}-6_{\text {PMB }}$), 136.2 (1C, C- $\left.1_{\text {benzoy }}\right)$, 159.1 (1C, C-4 Pмв $), 166.4\left(1 \mathrm{C}, \mathrm{CO}_{\text {benzoyl }}\right), 170.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 171.6\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, $172.9\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3062(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2936 ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, alkyl), 1727 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=0$, imide), 1676 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=0$, imide), 1651 (s, v, C=O, amide), 818 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 728, 702 (m, $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (EI): $510\left[\mathrm{M}^{+}\right.$, 100], $465\left[\left(\mathrm{M}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)^{+}, 16\right], 405\left[\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)^{+}, 15\right]$.

Ethyl 2-(1-benzyl-4-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl) acetate (18c)

A solution of the imide $12 \mathrm{c}(21 \mathrm{mg}, 0.07 \mathrm{mmol})$ in THF (5 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then a 1 M solution of lithium hexamethyldisilazide (LiHMDS, $0.07 \mathrm{~mL}, 0.07 \mathrm{mmol}$) was added and the mixture was stirred for 1 h . Ethyl 2-bromoacetate ($15 \mu \mathrm{~L}$, 0.13 mmol) was added and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The mixture was warmed to rt . The solvent was removed in vacuum and the remaining residue was purified by fc (n-hexane: ethyl acetate $=8 / 2, \varnothing=1.0 \mathrm{~cm}, \mathrm{I}=4.0 \mathrm{~cm}, \mathrm{~V}=5 \mathrm{~mL}$) to obtain a yellow oil. ($R_{f} 0.62$, cyclohexane:ethyl acetate $=1: 1$): Yellow oil. Method A: Yield $0.32 \mathrm{~g}(85 \%)$. Method B; Yield 24 mg (89%). $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ (410.1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.23(\mathrm{t}, \mathrm{J}=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.87$ (dd, J=15.6/7.5 Hz, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 2.96 (dd, J=15.6/5.7 Hz, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.40(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}$, 6- $\mathrm{H}_{\text {dioxoperazine }}$), 3.62 (d, J=12.9 Hz, 1H, NCH N Ar), 3.67 (d, J=17.6 Hz
$1 \mathrm{H}, 6-\mathrm{H}_{\text {dioxopiperazine }}$), 3.68 (d, J=12.9 Hz, 1H, NCH Nr), 3.79 (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 4.04\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\text {dioxopiperazine }}\right), 4.14(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.84\left(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.90(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), $6.83\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{PMB}}, 5-\mathrm{H}_{\mathrm{PMB}}\right), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{H}_{\text {benzy }}\right) 7.34\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\mathrm{PMB}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 34.9\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 42.2(1 \mathrm{C}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 52.4$ (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 55.4 (1C, OCH_{3}), 57.7 (1C, NCHCO), 61.1 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $61.3\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 114.0\left(2 \mathrm{C}, \mathrm{C}-3_{\text {PMB }}, \mathrm{C}-5_{\text {РМВ }}\right), 128.3$ (1C, C-1 PMB), 128.8 (1C, C-4 benzyl), 129.2 (2C, C-2 benzyl C- $\left.6_{\text {benzyl }}\right)$, 129.7 ($2 \mathrm{C}, \mathrm{C}-3_{\text {benzyl }}$ C $-5_{\text {benzy }}$), 130.7 (2C, C-2 PMB, C- $6_{\text {PMB }}$), 135.7 (1C, C- $1_{\text {benzy }}$), 159.2 (1C, C-4 ${ }_{\text {PMB }}$), 169.6 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), $170.3\left(\mathrm{CO}_{\text {ester }}\right), 171.1$ (1C, NCHCO). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3062$ ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}, \operatorname{arom}$.), 2982 (m, v, C-H, alkyl), 1732 (s, v, C=O, ester), 1679 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 819 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 744, 700 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). A second signal for the imide- $\mathrm{C}=\mathrm{O}$ cannot be detected. MS (APCI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{H}^{+}$411.1914, found 411.1944. HPLC: purity $92.8 \%, \mathrm{t}_{\mathrm{R}}=21.05 \mathrm{~min}$.

(1RS,5SR,6RS)-8-Benzyl-6-ethoxy-3-(4-meth-
 oxybenzyl)-6-(trimethylsilyloxy)-3,8-diazabicyclo[3.2.1] octane-2,4-dione (20c)

A solution of the acetate 18 c ($145 \mathrm{mg}, 0.35 \mathrm{mmol}$) in THF (15 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 1.0 M LiHMDS-solution ($531 \mu \mathrm{~L}$, $0.53 \mathrm{mmol})$ was added. After $15 \mathrm{~min} \mathrm{TMS}-\mathrm{Cl}(157 \mu \mathrm{~L}, 1.24 \mathrm{mmol})$ was added. The reaction mixture was stirred for 1.0 h at $-78^{\circ} \mathrm{C}$ and then warmed to rt. The solvent was removed in vacuum, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /saturated NaHCO_{3} and extracted four time with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=9: 1, \varnothing=2.0 \mathrm{~cm}, \mathrm{I}=8.5 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain a pale yellow oil. ($R_{f} 0.72$, cyclohexane:ethyl acetate $=1: 1$). Yield 20 mg $(12 \%) . \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}(482.6) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $0.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.16\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.56(\mathrm{~d}, \mathrm{~J}=$ $\left.11.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.63\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 3.41(\mathrm{dq}, \mathrm{J}=9.4 /$ $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.49(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 3.57(\mathrm{dq}, \mathrm{J}=9.4 / 7.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.62\left(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.70(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.80-3.84 (m, 1H, 1-CH), 4.79 (d, J= $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), 4.85 ($\mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), 6.84 ($\mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}$), 7.14 (dd, J=7.5/2.0 Hz, $2 \mathrm{H}, 2-\mathrm{H}_{\text {benzyl }}$, $6-$ $\left.\mathrm{H}_{\text {benzy }}\right), 7.27-7.34\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {benzyl }}, 4-\mathrm{H}_{\text {benzy }} 5-5-\mathrm{H}_{\text {benzy }}\right), 7.41(\mathrm{~d}, \mathrm{~J}=$ $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {Pмв }}, 6-\mathrm{H}_{\text {PмВ }}\right)$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3067$ ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2925 ($\mathrm{m}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, alkyl), 1736 ($\mathrm{m}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 1685 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 843 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 739,697 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SiH}^{+}$ 483.2315 , found 483.2386 . HPLC: purity $83.1 \%, \mathrm{t}_{\mathrm{R}}=23.87 \mathrm{~min}$.

Benzyl

(1RS,5RS,7SR)-6-ethoxy-1-(ethoxycarbonylmethyl)-3-(4-meth-oxybenzyl)-2,4-dioxo-6-(trimethylsilyloxy)-3,8-diazabicyclo [3.2.1]octane-8-carboxylate (21a)

A solution of the diacetate 19a ($158 \mathrm{mg}, 0.29 \mathrm{mmol}$) in THF (15 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 1.0 M LiHMDS-solution ($438 \mu \mathrm{~L}$, $0.44 \mathrm{mmol})$ was added. After $15 \mathrm{~min} \mathrm{TMS}-\mathrm{Cl}(129 \mu \mathrm{~L}, 1.02 \mathrm{mmol})$ was added. The reaction mixture was stirred for 1.0 h at $-78^{\circ} \mathrm{C}$ and then warmed to rt . The solvent was removed in vacuum, the remaining residue was purified by fc (cyclohexane:ethyl acetate $=$ $8: 2, \varnothing=3.0 \mathrm{~cm}, I=8.0 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL})$ to obtain a pale yellow oil. (R_{f} 0.55 , cyclohexane:ethyl acetate $=1: 1$). Pale yellow oil. Yield 38 mg (21%). $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}(612.7) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 0.01 (s, 9H, Si $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.13\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.20(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.27\left(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.75$ (dd, J= $13.9 / 0.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}$), 3.31 (d, J=16.9 Hz, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 3.44 (d,
$\left.\mathrm{J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.43-3-54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.54-3.63$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05-4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 4.68 (d, J = $\left.13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.81$ (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), 4.96 ($\mathrm{s}, 1 \mathrm{H}, 5-\mathrm{CH}$), 4.96 (d, J=12.2 Hz, $1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 5.04 (d, J= $12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 6.77 (d, J=8.8 Hz, 2H, $3-\mathrm{H}_{\text {РМВ }}, 5-\mathrm{H}_{\text {РМВ }}$), $7.19-$ 7.25 (m, 2H, 3- $\left.\mathrm{H}_{\text {phenyl }} 5-\mathrm{H}_{\text {phenyl }}\right), 7.28-7.38\left(\mathrm{~m}, 5 \mathrm{H}, 2-\mathrm{H}_{\text {phenyl }}, 4 \mathrm{H}_{\text {phenyl }}\right.$, $6-\mathrm{H}_{\text {phenyl }}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}$).

Ethyl
 2-[(1RS,5RS,6SR)-8-benzoyl-6-ethoxy-3-(4-meth-oxybenzyl)-2,4-dioxo-6-(trimethylsilyloxy)-3,8-diazabicyclo [3.2.1]octan-1-yl]acetate (21b)

A solution of the diacetate $19 \mathrm{~b}(42 \mathrm{mg}, 0.08 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and 1.0 M LiHMDS-solution in THF ($123 \mu \mathrm{~L}$, $0.12 \mathrm{mmol})$ was added. After 15 min TMS-Cl ($36 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) was added. The reaction mixture was stirred for 1.0 h at $-78^{\circ} \mathrm{C}$ and then warmed to rt . The solvent was removed in vacuum, the residue was purified by fc (cyclohexane:ethyl acetate $=8: 2, \varnothing=$ $1.5 \mathrm{~cm}, \mathrm{I}=8.0 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain a pale yellow oil. Yield 5 mg (10\%). $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}$ (582.7). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=$ $0.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.19\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right), 1.20(\mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.32\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.87(\mathrm{~d}, \mathrm{~J}=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}$), $3.28\left(\mathrm{dq}, \mathrm{J}=8.8 / 6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $3.50(\mathrm{~d}$, $\left.\mathrm{J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.53-3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60(\mathrm{~d}, \mathrm{~J}=$ $\left.16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06-4.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.61(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 4.73\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.90$ (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), 6.83 (d, J= $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}$), $7.31\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {РМВ }}, 6-\mathrm{H}_{\text {PMB }}\right), 7.35-7.51\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {benzoy }}\right)$.

1-Benzyl 4-methyl 5-hydroxy-2-[(4-methoxybenzyl) carbamoyl]-1,2,3,6-tetrahydro-pyridine-1,4-dicarboxylate (24a)

A solution of the imide $12 \mathrm{a}(0.51 \mathrm{~g}, 1.38 \mathrm{mmol})$ in THF (20 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then a 1 M solution of lithium hexamethyldisilazide (LiHMDS, $1.38 \mathrm{~mL}, 1.38 \mathrm{mmol}$) was added and the mixture was stirred for $-78^{\circ} \mathrm{C}$ for 1 h . Methyl acrylate (0.37 mL , 4.13 mmol) was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then warmed to rt overnight. The reaction was stopped with a few drops of a solution of saturated NaHCO_{3}. The solvent was almost completely evaporated in vacuum and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water were added to the residue. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed in vacuum and the residue was purified by fc (cyclohexane:ethyl acetate $=7: 3 \rightarrow 1: 1 \rightarrow 100 \%$ ethyl acetate, $\varnothing=3.0 \mathrm{~cm}, \mathrm{I}=8.5 \mathrm{~cm}, \mathrm{~V}=30 \mathrm{~mL}$) to obtain a pale yellow solid. ($\mathrm{R}_{\mathrm{f}}: 0.34$, cyclohexane:ethyl acetate $=1: 1$). Yield $0.56 \mathrm{~g}(90 \%)$. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$ (454.5). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.26(\mathrm{dd}$, broad, $J=15.6 / 5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.09$ (dd, broad, $J=27.8 / 15.9 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}$), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.85$ (d, broad, J = $22.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), $4.24-4.48$ (s, broad, $3 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}, 2-\mathrm{H}$), 4.96 (d, broad, J=22.8 Hz, 1H, 6-H), 5.14 (d, J=13.0 Hz, 1H, PhCH2O), 5.19 (d, J $=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 6.06 (d, broad, J $=32.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $6.83\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {РМВ }}, 5-\mathrm{H}_{\text {РМВ }}\right), 7.12\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {РМВ }}\right.$, $\left.6-\mathrm{H}_{\mathrm{PMB}}\right), 7.27-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {phenyl }}\right), 11.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=22.6(1 \mathrm{C}, \mathrm{C}-3), 43.2(1 \mathrm{C}, \mathrm{C}-6), 43.4$ (1C, $\left.\mathrm{NHCH}_{2} \mathrm{Ar}\right), 52.0\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.8(1 \mathrm{C}, \mathrm{C}-2), 55.4\left(1 \mathrm{C}, \mathrm{ArOCH}_{3}\right), 68.4$ (1C, $\mathrm{PhCH}_{2} \mathrm{O}$), 95.1 (1C, C-4), 110.1 (1C, C-5), 114.3 (2C, C-3 ${ }_{\text {PMB, }}$, C$5_{\text {PMB }}$), 128.2 ($\left.2 \mathrm{C}, \mathrm{C}-2_{\text {phenyl }}, \mathrm{C}-6_{\text {phenyl }}\right), 128.6$ (1C, C-1 PMB), 128.7 (1C, C$\left.4_{\text {phenyl }}\right)$, 128.8 (2 C, C- $3_{\text {phenyl }}$ C- $5_{\text {phenyl }}$), 129.0 (2C, C-2 PMB, C- PMB), 135.8 (1C, C-1 phenyl $^{\text {) }} 159.2$ (1C, C-4 pmв), 165.2 (1C, OCON), 169.7 (1C, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 171.7(1 \mathrm{C}, \mathrm{CONH})$. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3331(\mathrm{~m}, \mathrm{v}, \mathrm{O}-\mathrm{H}), 3067$ (w, v, C-H, arom.), 2954 (m, v, C-H, alkyl), 1747 (s, v, C=O, ester), 1704 (s, v, C=O, carbamate), 1665 (s, v, C=O, imide), 808 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 734, 698 (m, $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted
arom.). MS (APCI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{H}^{+}$455.1813, found 455.1858.

Methyl 1-benzoyl-5-hydroxy-2-[N-(4-methoxybenzyl) carbamoyl]-1,2,3,6-tetrahydropyridine-4-carboxylate (24b)

A solution of the imide $\mathbf{1 2 b}(49 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (5 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 0.5 M KHMDS-solution in THF ($290 \mu \mathrm{~L}$, $0.15 \mathrm{mmol})$ was added. After 180 min methyl acrylate $(39 \mu \mathrm{~L}$, 0.44 mmol) was added. The reaction mixture was stirred for 2.0 h at $-78^{\circ} \mathrm{C}$ and then at rt for 16 h . The solvent was removed in vacuum and the residue was purified by fc (cyclohexane:ethyl acetate $=7: 3$, $\varnothing=1.5 \mathrm{~cm}, \mathrm{I}=7.5 \mathrm{~cm}, \mathrm{~V}=10 \mathrm{~mL})$ to obtain a colorless solid. $\left(\mathrm{R}_{\mathrm{f}}\right.$ 0.21, cyclohexane:ethyl acetate $=1: 1$): Colorless solid. Yield 21 mg (34%). $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ (424.5). The ${ }^{1} \mathrm{H}$ NMR spectrum shows only broad signals. The structure of $\mathbf{2 4 b}$ was identified by subsequent transformation. FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3316(\mathrm{~m}, \mathrm{v}, \mathrm{N}-\mathrm{H}$, amide), $3059(\mathrm{w}, \mathrm{v}$, C-H, arom.), 2953 (m, v, C-H, alkyl), 1733 (s, v, C=O, ester), 1667 (s, $\mathrm{v}, \mathrm{C}=\mathrm{O}$, amide), 810 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 730, 702 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (EI): 424 [M $\left.{ }^{+}, 15\right], 392$ [(M$\left.\left.\mathrm{HOCH}_{3}\right)^{+}, 50\right], 287\left[\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)^{+}\right.$, 100].

Methyl 1-benzyl-5-hydroxy-2-[(4-methoxybenzyl) carbamoyl]-1,2,3,6-tetrahydro-pyridine (24c)

A solution of the imide $12 \mathrm{c}(210 \mathrm{mg}, 0.65 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and 1.0 M LiHMDS-solution in THF ($646 \mu \mathrm{~L}$, 0.65 mmol) was added. After 180 min methyl acrylate $(70 \mu \mathrm{~L}$, 0.78 mmol) was added. The reaction mixture was stirred for 2.0 h at $-78^{\circ} \mathrm{C}$ and then at rt for 16 h . The solvent was removed in vacuum and the residue was purified by fc (cyclohexane:ethyl acetate $=$ 19:1, $\varnothing=2.0 \mathrm{~cm}, \mathrm{I}=9.0 \mathrm{~cm}, \mathrm{~V}=10 \mathrm{~mL}$) to obtain a colorless solid. ($R_{f}: 0.38$, cyclohexane:ethyl acetate $=1: 1$). Yield 50 mg (19\%). $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}(410.5) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.61$ (dd, $J=16.5 / 6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 2.85 (dd, J=16.5/6.3 Hz, 1H,3-H), 3.17 (d, $\mathrm{J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.48(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}$), 3.62 ($\mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 3.71 (d, J=13.2 Hz, 1 H , $\mathrm{NCH}_{2} \mathrm{Ph}$), 3.79 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{ArOCH}_{3}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 4.36 (dd, J=14.4/5.6 Hz, 1 H , $\left.\mathrm{NHCH}_{2} \mathrm{Ar}\right), 4.45$ (dd, J = $\left.14.3 / 6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}\right), 6.84(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB, }} 5-\mathrm{H}_{\text {PMB }}$), 7.07-7.23 (m, 4H, 2- $\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}, 2-\mathrm{H}_{\text {benzyl }}$, 6$\mathrm{H}_{\text {benzyl }}$) $7.27-7.39\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {benzyl }}, 4-\mathrm{H}_{\text {benzyl }} 5-\mathrm{H}_{\text {benzyl }}\right), 11.90(\mathrm{~s}, 1 \mathrm{H}$, OH). A signal for the $\mathrm{N}-\mathrm{H}$ of the amide cannot be detected. ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=19.1$ (1C, C-3), 43.1 (1C, $\mathrm{NHCH}_{2} \mathrm{Ar}$), 50.0 (1C, C-6), $51.8\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 55.4$ (1C, $\left.\mathrm{ArOCH}_{3}\right), 57.0(1 \mathrm{C}, \mathrm{C}-2)$, 60.2 ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{~N}$), 95.2 ($1 \mathrm{C}, \mathrm{C}-4$), 114.3 ($2 \mathrm{C}, \mathrm{C}-3_{\text {РМВ }}, \mathrm{C}-5_{\text {РМВ }}$), 127.1 ($\left.2 \mathrm{C}, \mathrm{C}-2_{\text {phenyl }}, \mathrm{C}-6_{\text {pheny }}\right)$, 127.8 (1C, C-1 $1_{\text {PMB }}$), 128.75 (1C, C-4 pheny), 128.76 (2C, C-3 phenyl C $-5_{\text {phenyl }}$), 129.3 ($2 \mathrm{C}, \mathrm{C}-2_{\text {PMB }}, ~ C-6_{\text {PMB }}$), 137.5 (1C, C$\left.1_{\text {pheny }}\right), 159.2\left(1 \mathrm{C}, \mathrm{C}-4_{\mathrm{PMB}}\right), 167.6\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 171.1(1 \mathrm{C}, \mathrm{C}-5), 172.1$ (1C, CONH). FT-IR: v~ $\left(\mathrm{cm}^{-1}\right)=3378(\mathrm{~m}, \mathrm{v}, \mathrm{O}-\mathrm{H}), 3285(\mathrm{~m}, \mathrm{v}, \mathrm{N}-\mathrm{H}$, amide), 3062 (w, v, C-H, arom.), 2952 (m, v, C-H, alkyl), 1732 (s, v, $\mathrm{C}=\mathrm{O}$, ester), 1666 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 817 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 735, 699 (m, $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{H}^{+}$411.1914, found 411.1949.

Ethyl 3-(1-benzoyl-4-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl) propanoate (25b)

A solution of the imide $\mathbf{1 2 b}$ ($155 \mathrm{mg}, 0.46 \mathrm{mmol}$) in THF (10 mL) was cooled to $-78^{\circ} \mathrm{C}$ and a freshly prepared potassium diisopropylamide solution (KDA, 1 M in THF, $0.46 \mathrm{~mL}, 0.46 \mathrm{mmol}$) was added. After 30 min ethyl acrylate ($100 \mu \mathrm{~L}, 0.92 \mathrm{mmol}$) was added. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$, then warmed to rt and stirred for additional 14 h . Then an excess of 1 M HCl solution was added. The solvent of the mixture was removed in vacuum, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water $(4 \times)$. The
combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo. The residue was purified by fc (cyclohexane: ethyl acetate $=3: 1, \varnothing=2.5 \mathrm{~cm}, \mathrm{I}=12.0 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain a pale yellow oil. ($\mathrm{R}_{\mathrm{f}} 0.40$, cyclohexane:ethyl acetate $=1: 1$). Yield $30 \mathrm{mg}(15 \%) . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}(438.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $=1.27\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}\right.$, broad, $\left.2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.47(\mathrm{~s}$, broad, $\left.2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.04-4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.25 (s, broad, 1H, NCHCO), 4.86 (d, J=13.7 Hz, 1H, NCH2Ph), 4.91 (d, J = $13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 6.83 (d, J= $8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {РMВ }}$), 7.31 (d, J = $\left.=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {РМВ }}\right), 7.35(\mathrm{dd}, \mathrm{J}=8.1 / 1.4 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{H}_{\text {benzoyl, }} 5-\mathrm{H}_{\text {benzoyl }}\right), 7.40-7.52\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{\text {benzoyl }}, 4-\mathrm{H}_{\text {benzoyl }}, 6-\mathrm{H}_{\text {benzoy }}\right)$. The signals for the CH_{2} protons of the piperazine ring appear as very broad signals and are therefore not given. ${ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 29.9(1 \mathrm{C}, \mathrm{C}-1), 32.1(1 \mathrm{C}, \mathrm{C}-2)$, 42.6 (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 52.8$ (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 55.4 (1C, OCH_{3}), 60.6 (1C, $\mathrm{NCHCO}), 61.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 114.0\left(2 \mathrm{C}, \mathrm{C}-3_{\text {РМВ }}, \mathrm{C}-5_{\text {РмВ }}\right), 127.4$ (2C, C$2_{\text {benzoyl, }}$ C- $\left.6_{\text {benzoyl }}\right), 128.5$ (1C, C- $1_{\text {PMB }}$), 129.1 (2C, C-3 $3_{\text {benzoyl }}$, C- $\left.5_{\text {benzoy }}\right)$, 130.6 (1C, C-4 $4_{\text {benzoyl }}$), 131.1 ($2 \mathrm{C}, \mathrm{C}-2_{\text {РмВ }}, \mathrm{C}-6_{\text {PMB }}$), 133.4 (1С, C- $1_{\text {benzoy }}$), 159.4 (1C, C-4 Рмв), 166.5 ($1 \mathrm{C}, \mathrm{CO}_{\text {benzoyl }}$), 167.4 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), 170.6 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), $177.4\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right) . \mathrm{MS}(\mathrm{El}): 438\left[\mathrm{M}^{+}, 20\right], 333$ [(M$\left.\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)^{+}, 64\right], 121\left[\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 100\right]$.

Methyl
 1-benzoyl-2-(4-methoxybenzylcarbamoyl)-4-meth-yl-5-oxopiperidine-4-carboxylate (26b)

A solution of the amide 24b ($312 \mathrm{mg}, 0.73 \mathrm{mmol}$) in THF (20 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 0.5 M KHMDS-solution in THF (1.47 mL , $0.73 \mathrm{mmol})$ was added. After $60 \mathrm{~min} \mathrm{CH}_{3} \mathrm{l}(181 \mu \mathrm{~L}, 2.57 \mathrm{mmol})$ was added. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and then warmed to rt over 15 h . The solvent was removed in vacuum and the residue was purified by fc (cyclohexane:ethyl acetate $=8: 2, \varnothing=$ $3.0 \mathrm{~cm}, \mathrm{I}=8.5 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain a colorless oil. ($\mathrm{R}_{\mathrm{f}} 0.48$, cyclohexane:ethyl acetate $=3: 7$): Colorless oil. Yield 107 mg (33%). $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}(438.5) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 2.46$ (dd, J=14.7/10.3 Hz, 1H, 3-CH2), 2.64 (dd, J=14.7/ $\left.8.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 4.00(\mathrm{~d}$, $\left.\mathrm{J}=19.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 4.33\left(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 4.36$ (dd, $14.4 / 5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}$), 4.44 (dd, J=14.6/6.0 Hz, 1H, NHCH2 Ar), $5.24(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.86\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{PMB}}, 5-\mathrm{H}_{\mathrm{PMB}}\right)$, 6.99 (s, broad, $1 \mathrm{H}, \mathrm{NH}$), 7.19 (d, J=8.5 Hz, $2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}$), $7.24-$ $7.28\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {benzoyl, }} 5-\mathrm{H}_{\text {benzoy }}\right), 7.38-7.47\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{\text {benzoyl }} 4-\mathrm{H}_{\text {benzoyl }}\right.$ $\left.6-\mathrm{H}_{\text {benzoyl }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.2\left(1 \mathrm{C}, \mathrm{CCH}_{3}\right), 31.2$ (1C, C-3), 43.3 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ar}$), 51.6 (1C, C-5), $53.1\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.5$ (1C, C-4), 53.7 (1C, C-2), 55.5 (1C, ArOCH $_{3}$), 114.3 (2C, C-3 PMB, C-5 PMB), 127.1 (2C, C-2 benzoyl, C- b benzoy), 128.9 (1C, C-1 PMB), 129.0 (2C, C- $3_{\text {benzoyl }}$ C-5 benzoyl), 130.2 ($\left.1 \mathrm{C}, \mathrm{C}-4_{\text {benzoy }}\right)$, 130.8 ($2 \mathrm{C}, ~ C-2_{\text {PMB }}, ~ C-6_{\text {PMB }}$), 133.1 (1C, C- $1_{\text {benzoyl }}$), 159.2 ($1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}$), 169.3 (1C, $\left.\mathrm{CO}_{\text {benzoyl }}\right)$, 171.5 (1C, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 171.8 (1C, CONH), 202.3 (1C, CO ${ }_{\text {ketone }}$). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3309(\mathrm{~m}, \mathrm{v}$, N-H, amide), 3062 (w, v, C-H, arom.), 2936 (m, v, C-H, alkyl), 1726 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, ester), 1644 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, amide), 819 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, parasubstituted arom.), 728,701 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (EI): $438[M+, 12], 302\left[\left(M-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}\right)^{+}, 100\right]$. HPLC: purity $82.3 \%, \mathrm{t}_{\mathrm{R}}=18.65 \mathrm{~min}$.

3-Allyl-4-benzyl-1-(4-methoxybenzyl)piperazine-2,6-dione (27)

A solution of the imide $12 \mathrm{c}(1.42 \mathrm{~g}, 4.38 \mathrm{mmol})$ in THF (30 mL) was cooled down to $-78^{\circ} \mathrm{C}$ and a 1 M LiHMDS-solution in THF $(4.38 \mathrm{~mL}$, $5.26 \mathrm{mmol})$ was added. After 30 min , allyl bromide $(0.46 \mathrm{~mL}$, 0.40 mmol) was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then warmed up to rt overnight. The reaction was stopped with an excess of saturated NaHCO_{3} solution. The solvent was removed in vacuum and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated NaHCO_{3} solution ($4 \times$). The combined
organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=19: 1, \varnothing=4.0 \mathrm{~cm}, \mathrm{I}=9.5 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain two pale yellow oils. ($\mathrm{R}_{\mathrm{f}} 0.58$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield $0.97 \mathrm{~g}(61 \%) . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}(364.4) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.38(\mathrm{~d}, 17.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $3.54\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\text {piperazine-2,6-dione }}\right), 3.63(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), 3.72 ($\mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), $3.72(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}$, 5-H), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.83 (d, J=13.7 Hz, 1H, NCH Nar), 4.91 (d, J= 13.7 Hz, 1H, NCH 2 Ar), $5.08-5.12$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.70-5.87$ (m, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $6.83\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{PMB}}, 5-\mathrm{H}_{\mathrm{PMB}}\right.$), 7.18-7.25 (m, 2H, 2- $\mathrm{H}_{\text {benzyl }}$, 6- $\mathrm{H}_{\text {benzy }}$), 7.27-7.36 (m, 3H, 3- $\mathrm{H}_{\text {benzyl }}$, 4$\left.\mathrm{H}_{\text {benzyl }} 5-\mathrm{H}_{\text {benzyl }}\right), 7.33\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{PMB}}, 6-\mathrm{H}_{\mathrm{PMB}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=33.2\left(1 \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 41.8$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 51.7\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 58.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 63.3$ (1C, NCHCO), 113.9 ($2 \mathrm{C}, \mathrm{C}-3_{\text {РМВ }}, \mathrm{C}-5_{\text {РMВ }}$), 118.1 ($1 \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 128.1 (1C, C- $1_{\text {PMB }}$), 128.8 ($2 \mathrm{C}, \mathrm{C}-2_{\text {benzyl }}$, C- $6_{\text {benzy }}$), 129.1 (2C, C- $3_{\text {benzyl }}$, C$\left.5_{\text {benzy }}\right), 129.4$ (1C, C-4 benzy $)$, 130.6 ($2 \mathrm{C}, \mathrm{C}-2_{\text {PMB, }}$ C-6 PMB), 133.5 (1C, $\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 136.4 (1C, $\mathrm{C}-1_{\text {benzy }}$), 159.1 ($1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}$), 170.1 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 172.0 (1C, NCHCO). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3064(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2933 (w, v, C-H, alkyl), 1729 (m, v, C=O, imide), 1677 (s, v, $\mathrm{C}=\mathrm{O}$, imide), 821 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 737, 700 (m , $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). $\mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=365\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right]$. HPLC: purity $98.2 \%, t_{R}=22.17 \mathrm{~min}$.

3-Allyl-1-benzyl-4-(4-methoxybenzyl)piperazine-2,6-dione (28)

A solution of imide $17(22.1 \mathrm{~g}, 68 \mathrm{mmol}, 1 \mathrm{eq})$ in dry THF (500 mL) was cooled down to $-78^{\circ} \mathrm{C}$ and a 1 M LiHMDS-solution in THF ($72 \mathrm{~mL}, 72 \mathrm{mmol}, 1.05 \mathrm{eq}$) was added. After 1 h , allyl bromide ($7.1 \mathrm{~mL}, 82 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then warmed up to rt overnight. The reaction was stopped with an excess of saturated NaHCO_{3} solution. The solvent was removed in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with saturated NaHCO_{3} solution $(4 \times)$ and the organic solvent was evaporated in vacuo. The residue was purified by fc (cyclohexane:ethyl acetate $=95: 5 \rightarrow$ 83:17). ($\mathrm{R}_{\mathrm{f}} 0.62$, cyclohexane:ethyl acetate $=2: 1$). Pale yellow solid, $\mathrm{mp} 58-60^{\circ} \mathrm{C}$, yield 16.62 g (67%). $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (364.4). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.56-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.44$ (d, J=17.9 Hz, 1H, NCH 2 CO), $3.59\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 3.65 (d, J=12.9 Hz, $1 \mathrm{H}, ~ \mathrm{NCH}_{2} \mathrm{PhOMe}$), $3.70(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{PhOMe}$), 3.76 (d, J=17.9 Hz, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.91 ($\mathrm{d}, \mathrm{J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), $4.96\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $5.09\left(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.70-5.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.85(\mathrm{~d}, \mathrm{~J}=$ $\left.8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {РМВ }}, 5-\mathrm{CH}_{\text {РМВ }}\right), 7.14\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {РМВ }}, 6-\right.$ $\left.\mathrm{CH}_{\text {PMB }}\right), 7.24-7.28\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH}_{\text {benzy }}\right), 7.28-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }} 5-\right.$ $\left.\mathrm{CH}_{\text {benzyl }}\right), 7.34-7.39\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzyl }}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=33.1\left(1 \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 42.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 51.3$ $\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 55.5\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 57.7\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 62.9(1 \mathrm{C}$, $\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 114.3 (2C, C-3 PMB, $\mathrm{C}-5_{\text {PMB }}$), 118.4 (1C, $\mathrm{CHCH}_{2} \mathrm{CH}=$
 $\left.5_{\text {benzy }}\right), 129.0\left(2 \mathrm{C}, \mathrm{C}-2_{\text {benzyl }}, \mathrm{C}-6_{\text {benzy }}\right), 130.6$ (2C, C-2 PMB , $\left.\mathrm{C}-6_{\text {PMB }}\right), 133.1$ (1C, $\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $136.9\left(1 \mathrm{C}, \mathrm{C}-1_{\text {benzy }}\right), 159.7\left(1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}\right), 169.4$ (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 171.3 (1C, NCHCO). IR (neat): $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3066$ (C$\left.\mathrm{H}_{\text {arom }}\right), 2951\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1732$ and $1670(\mathrm{C}=\mathrm{O}), 721\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right) . \mathrm{MS}(\mathrm{APCI})$: $\mathrm{m} / \mathrm{z}=365.1882$ (calcd. 365.1860 for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$). Purity (HPLC): $97.6 \%\left(t_{R}=23.5 \mathrm{~min}\right)$.

4-Benzyl-3-(3-hydroxypropyl)-1-(4-methoxybenzyl) piperazine-2,6-dione (29)

The allyl compound 27 ($0.89 \mathrm{~g}, 2.45 \mathrm{mmol}$) was dissolved in THF (100 mL). Under N_{2} atmosphere, 9-borabicyclo[3.3.1]nonane (0.5 M
solution, $9.81 \mathrm{~mL}, 4.91 \mathrm{mmol}$) was slowly added. The solution was stirred overnight. On the next morning again 9-borabicyclo[3.3.1] nonane (0.5 M solution, $3.68 \mathrm{~mL}, 1.84 \mathrm{mmol}$) was slowly added to transform 27 completely. 90 min later the solution was cooled to $-25^{\circ} \mathrm{C}$ and then NaOH (2 M solution, $3.68 \mathrm{~mL}, 7.36 \mathrm{mmol}$) was added while vigorously stirring. After $15 \mathrm{~min} \mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution, $2.79 \mathrm{~mL}, 24.5 \mathrm{mmol}$) was added. The mixture was stirred for further 45 min at $-25^{\circ} \mathrm{C}$ and subsequently for 60 min at rt . Then it was warmed to $40^{\circ} \mathrm{C}$ to destroy the excess of $\mathrm{H}_{2} \mathrm{O}_{2}$. When the formation of gas while cooling to rt was finished, the solution was poured into $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=8: 2 \rightarrow 1: 1, \varnothing=3.0 \mathrm{~cm}, \mathrm{I}=10.0 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain a colorless oil. ($\mathrm{R}_{\mathrm{f}} 0.16$, cyclohexane:ethyl acetate $=1: 1$). Yield 0.88 g (94\%). $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ (382.5). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.72$ (q, J=13.1/6.6 Hz, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $1.91-1.99 \quad(\mathrm{~m}, \quad 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.44\left(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.52(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3-\mathrm{H}_{\text {piperazine-2,6-dione }}\right), 3.53-3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.69(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$), $3.75\left(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.85$ (d, J=13.7 Hz, 1H, NCH2Ar), 4.90 (d, J=13.7 Hz, 1H, NCH2Ar), 6.84 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{PMB}}, 5-\mathrm{H}_{\mathrm{PMB}}$), $7.20(\mathrm{dd}, \mathrm{J}=7.7 / 1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-$ $\left.\mathrm{H}_{\text {benzyl }}, 6-\mathrm{H}_{\text {benzyl }}\right), 7.28-7.36\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {benzyl }}, 4-\mathrm{H}_{\text {benzyl }}, 5-\mathrm{H}_{\text {benzyl }}\right), 7.33$ (d, $\left.\mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{PMB}}, 6-\mathrm{H}_{\mathrm{PMB}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 26.0 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 29.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 41.7 (1C, $\mathrm{NCH}_{2} \mathrm{Ar}$), 50.9 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), $55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 58.7$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 62.4$ (1C, $\mathrm{NCHCO}), 63.4$ ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 114.0 ($2 \mathrm{C}, \mathrm{C}-3_{\text {PMB }}, \mathrm{C}-5_{\text {PMB }}$), 128.2 (1C, C- $1_{\text {PMB }}$), 128.9 (2C, C-2 benzyl C- $\left.6_{\text {benzyl }}\right)$, 129.3 (2C, C- $3_{\text {benzyl }}$, C- $5_{\text {benzyl }}$), 129.3 (1C, C-4 benzy), 130.6 ($2 \mathrm{C}, \mathrm{C}-2_{\text {PMB }}, ~ C-6_{\text {PMB }}$), 136.0 (1C, C-1 benzyl), 159.2 (1C, C-4 рмв), 169.7 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 172.7 (1C, NCHCO). FT-IR: v~ $\left(\mathrm{cm}^{-1}\right)=3454(\mathrm{~m}, \mathrm{v}, \mathrm{O}-\mathrm{H}$, alcohol $), 3062(\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), $2931(\mathrm{~m}$, v, C-H, alkyl), 1727 (s, v, C=O, imide), 1674 (s, v, C=O, imide), 822 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 736, 700 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, monosubstituted arom.). MS (EI): m/z (\%) $=382\left[\mathrm{M}^{+}, 40\right], 91\left[\mathrm{PhCH}_{2}{ }^{+}\right.$, 100]. HPLC: purity $99.1 \%, t_{R}=19.19 \mathrm{~min}$.

1-Benzyl-3-(3-hydroxypropyl)-4-(4-methoxybenzyl) piperazine-2,6-dione (30)

The allyl derivative 28 ($9.1 \mathrm{~g}, 25 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in THF (400 mL). Under N_{2} atmosphere, a 0.5 M solution of 9 -borabicyclo [3,3,1]nonane in THF ($0.5 \mathrm{M}, 100 \mathrm{~mL}, 50 \mathrm{mmol}$) was slowly added. The solution was stirred overnight. After 20 h , again 9-BBN in THF $(0.5 \mathrm{M}, 38 \mathrm{~mL}, 19 \mathrm{mmol})$ was slowly added to transform 28 completely. 90 min later the solution was cooled to $-25^{\circ} \mathrm{C}$ and then 2 M NaOH ($37 \mathrm{~mL}, 75 \mathrm{mmol}$) was added while vigorously stirring. After $15 \mathrm{~min} \mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 26 \mathrm{~mL}, 250 \mathrm{mmol})$ was added. The mixture was stirred for further 45 min at $-25^{\circ} \mathrm{C}$ and subsequently for 60 min at rt . Then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added to destroy the excess of $\mathrm{H}_{2} \mathrm{O}_{2}$. After the mixture was stirred for 30 min , most of the solvent was removed in vacuo. The residue was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ saturated NaHCO_{3} solution and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by fc (cyclohexane:ethyl acetate $=91: 9 \rightarrow 50: 50, \varnothing=5 \mathrm{~cm}, \mathrm{I}=14 \mathrm{~cm}, \mathrm{~V}=$ $35 \mathrm{~mL}) .\left(\mathrm{R}_{\mathrm{f}} 0.34\right.$, cyclohexane:ethyl acetate $=50: 50$): Colorless oil, yield $5.2 \mathrm{~g}(55 \%) .{ }_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}(382.5) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): δ $(\mathrm{ppm})=1.40-1.60 \quad\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.93-1.70 \quad(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.37 (q, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.43 (d, $J=$ $18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 3.48 (dd, $J=8.9 / 6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), 3.62 (d, $\left.J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 3.67\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right)$, $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 4.40(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 4.80 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 4.81 (d, $\left.J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.90\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\mathrm{PMB}}, 5-\mathrm{CH}_{\text {PMB }}\right)$, $7.15\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {PMB }}, 6-\mathrm{CH}_{\text {PMB }}\right), 7.21-7.26\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}\right.$, $\left.4-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzyl }}\right), 7.32\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzy }}\right) .{ }^{13} \mathrm{C}$

NMR (101 MHz, DMSO- d_{6}): $\delta(p p m)=24.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 28.7$ $\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 41.3\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 50.4\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 55.0(1 \mathrm{C}$, OCH_{3}), 56.5 (1C, $\mathrm{NCH}_{2} \mathrm{PhOMe}$), 60.01 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 61.9 (1C, NCHCO), 113.8 ($2 \mathrm{C}, \mathrm{C}-3_{\text {PMB }}, ~ C-5$ PMB), 127.1 ($\left.1 \mathrm{C}, \mathrm{C}-4_{\text {benzyl }}\right)$, 127.3 (2C, C$2_{\text {benzyl }}$, C- $\left.6_{\text {benzy }}\right)$, 128.3 (2C, C-3 benzyl , C-5 benzyl $)$, 128.9 (1C, C-1 PMB), 130.0 ($2 \mathrm{C}, \mathrm{C}-2_{\text {РMB }}, ~ C-6_{\text {РMB }}$), 137.2 (1C, C-1 benzy), 158.7 (1C, C-4 PMB), 170.1(1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 172.7 (1C, NCHCO). IR (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=3390(\mathrm{OH}), 2935$ $\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1728$ and $1674(\mathrm{C}=\mathrm{O}), 817$ and 698 ($\mathrm{C}-\mathrm{H}_{\text {arom }}$). MS (APCI): $\mathrm{m} / \mathrm{z}=383.1957$ (calcd. 365.1965 for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$). Purity (HPLC): $99.7 \%\left(t_{R}=19.8 \mathrm{~min}\right)$.

3-[1-Benzyl-4-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl] propanal (31)

The primary alcohol 29 ($0.77 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and Dess-Martin-Periodinane ($1.02 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added. The mixture was stirred at rt for 2 h . Then $\mathrm{NaOH}(2 \mathrm{M}$ solution, 30 mL) was added. When the mixture was clear again the mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=9: 1 \rightarrow 8: 2, \varnothing=3.0 \mathrm{~cm}, \mathrm{I}=9.5 \mathrm{~cm}$, $\mathrm{V}=20 \mathrm{~mL}$) to obtain a colorless oil. ($\mathrm{R}_{\mathrm{f}} 0.42$, cyclohexane:ethyl acetate $=1: 1$). Yield $0.66 \mathrm{~g}(87 \%) . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (380.4). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=2.02-2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right), 2.55(\mathrm{t}$, $\left.\mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right), 3.38\left(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.41$ (dd, J=6.8/2.4 Hz, 1H, 2-H), $3.64(\mathrm{~s}, 2 \mathrm{H}, 5-\mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.84\left(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.90$ ($\mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), $6.84\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {РМВ }}, 5-\mathrm{H}_{\text {РМВ }}\right.$), 7.17 (d, J=7.7 Hz, 2H, 2- $\left.\mathrm{H}_{\text {benzyl }}, 6-\mathrm{H}_{\text {benzyl }}\right), 7.27-7.37\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {benzyl }}\right.$, $\left.4-\mathrm{H}_{\text {benzyl, }} 5-\mathrm{H}_{\text {benzyll }}\right), 7.32\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {PMB }}, 6-\mathrm{H}_{\text {PMB }}\right), 9.77(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right)$, 40.0 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), 41.7 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ar}$), 50.9 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), 55.3 (1C, OCH_{3}), 58.8 (1C, $\mathrm{NCH}_{2} \mathrm{Ph}$), 62.4 (1C, NCHCO), 113.9 (2C, C-3 PMB , C- $5_{\text {PMB }}$), 128.1 ($1 \mathrm{C}, \mathrm{C}-1_{\text {PMB }}$), 128.8 ($2 \mathrm{C}, \mathrm{C}-2_{\text {benzyl }}$ C- $6_{\text {benzyl }}$), 129.1 ($2 \mathrm{C}, \mathrm{C}-$ $3_{\text {benzyll, }}$ C-5 benzyl), 129.2 (1C, C-4 benzyl), 130.5 (2 C, C- $2_{\text {PMB, }}$ C- P $_{\text {PMB }}$), 136.2 (1C, C-1 benzy), 159.1 (1C, C-4 PMB), 169.9 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), 172.1 (1C, NCHCO), 200.7 (1C, CHO). FT-IR: v $\left(\mathrm{cm}^{-1}\right)=3067$ ($\mathrm{w}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, arom.), 2929 (m, v, C-H, alkyl), 1731 (s, v, C=O, aldehyde), 1677 (s, v, C=O, imide), 819 (m, $\delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 745, 701 (m, $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{H}^{+}$ 381.1809 , found 381.1813 . HPLC: purity $91.2 \%, \mathrm{t}_{\mathrm{R}}=19.87 \mathrm{~min}$.

3-[4-Benzyl-1-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl] propanal (32)

The primary alcohol 30 ($5.15 \mathrm{~g}, 13.5 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and Dess Martin Periodinane ($6.85 \mathrm{~g}, 16.2 \mathrm{mmol}$, 1.2 eq) was added. The mixture was stirred at rt for 3 h . Then 2 M $\mathrm{NaOH}(300 \mathrm{~mL})$ was added. When the mixture became clear again, it was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by fc (cyclohexane: ethyl acetate $=91: 9 \rightarrow 75: 25, \varnothing=4 \mathrm{~cm}, \mathrm{I}=$ $10 \mathrm{~cm}, \mathrm{~V}=25 \mathrm{~mL}$). ($\mathrm{R}_{\mathrm{f}} 0.34$, cyclohexane:ethyl acetate $=2: 1$): Colorless oil, yield 4.8 g (94%). $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (380.4). ${ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})=1.96-2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right), 2.15-2.22$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), 2.51 ($\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), 3.39 (d, J=17.8 Hz, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 3.53 (dd, $J=9.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), 3.62 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, ~ N C H_{2}$ PhOMe), $3.66(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{PhOMe}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, 4.79 (s, 2H, NCH ${ }_{2} \mathrm{Ph}$), $6.89\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {PMB }}, 5-\mathrm{CH}_{\text {PMB }}\right), 7.13$ (d, J = $\left.8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {PMB }}, 6-\mathrm{CH}_{\text {PMB }}\right), 7.22\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}\right.$, $\left.6-\mathrm{CH}_{\text {benzy }}\right), 7.25\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\text {benzy }}\right), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzyl }}\right)$, $9.65-9.63\left(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right)$. The
peak at 2.51 ppm is partly overlapping with the signal for DMSO. ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})=21.2\left(1 \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right)$, 39.5 (1C, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), 41.3 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}$), 49.9 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), $55.0\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 56.9\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 61.6$ (1C, NCHCO), 113.9 (2C, C-3 PMB, $\mathrm{C}-5_{\text {PMB }}$), 127.1 (1C, C-4 benzyl), 127.4 (2C, C- $\left.2_{\text {benzyl }}, C-6_{\text {benzyl }}\right)$, 128.4 (2C, C-3 benzyl C-5 $\left.5_{\text {benzyl }}\right)$, 128.7 (1C, C- $1_{\text {PMB }}$), 130.1 (2C, C-2 PMB, C$6_{\text {РМВ }}$), 137.1 ($\left.1 \mathrm{C}, \mathrm{C}-1_{\text {benzyl }}\right), 158.7$ ($1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}$), 170.1 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), 172.2(1C, NCHCO), $202.4(\mathrm{CH}=\mathrm{O})$. IR (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=2835\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right)$, 1720 and $1674(\mathrm{C}=\mathrm{O})$, 821and $698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right) . \mathrm{MS}(\mathrm{APCI}): \mathrm{m} / \mathrm{z}=$ 383.1768 (calcd. 381.1809 for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$). Purity (HPLC): $98.3 \%\left(t_{R}=20.7 \mathrm{~min}\right)$.
(S)-N-\{(E)-3-[(S)- and
(R)-1-Benzyl-4-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl]
propylidene\}- 2-methylpropane-2-sulfinamide (33)

The aldehyde $31(0.16 \mathrm{~g}, 0.42 \mathrm{mmol})$ was dissolved in THF $(10 \mathrm{~mL}) .(\mathrm{S})$-2-methylpropane-2-sulfinamide ($0.06 \mathrm{~g}, 0.49 \mathrm{mmol}$) and titanium(IV) ethanolate (0.20 mL) were added to this mixture, which was stirred for 3 h at rt . Then the mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ saturated NaHCO_{3} solution and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuum. The residue was purified by fc (cyclohexane: ethyl acetate $=8: 2 \rightarrow 1: 1, \varnothing=3.0 \mathrm{~cm}, I=9.5 \mathrm{~cm}, V=20 \mathrm{~mL}$) to obtain a colorless oil of both diastereomers. ($\mathrm{R}_{\mathrm{f}} 0.36$, cyclohexane:ethyl acetate $=1: 1$). Yield $0.17 \mathrm{~g}(82 \%) . \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (483.6). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.166\left(\mathrm{~s}, 9 \times 0.5 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.169(\mathrm{~s}, 9 \times$ $\left.0.5 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), $3.42\left(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right.$), $3.50(\mathrm{dd}, \mathrm{J}=8.2 /$ $6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCHCO}$), 3.57 (dd, J = $8.2 / 6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCHCO}$), 3.65 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 3.72 ($\mathrm{d}, \mathrm{J}=17.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}$), 3.73 (d, J= $18.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}$), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.85(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 4.86\left(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.90(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.84\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {РмВ }}, 5-\mathrm{H}_{\text {PMB }}\right), 7.15-7.24(\mathrm{~m}, 2 \mathrm{H}, 2-$ $\mathrm{H}_{\text {benzyl }}$, 6- $\mathrm{H}_{\text {benzy }}$), 7.27-7.35 (m,5H, 3- $\mathrm{H}_{\text {benzyl }}$, 4- $\mathrm{H}_{\text {benzyl }} 5-\mathrm{H}_{\text {benzyl }}, 2-\mathrm{H}_{\text {PMB }}$, $\left.6-\mathrm{H}_{\text {PMB }}\right), 8.07(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NH}), 8.10(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NH})$. Ratio of diastereomers $1: 1 .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 22.5 ($0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), 22.4 ($0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), 22.5 ($9 \mathrm{C}, \mathrm{C}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 24.3\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 24.5\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 41.7$ (1C, $\mathrm{NCH}_{2} \mathrm{Ar}$), 51.1 ($0.5 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), 51.3 ($0.5 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), 55.4 (1 C , $\left.\mathrm{OCH}_{3}\right), 56.78\left(0.5 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 56.82\left(0.5 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 58.7(0.5 \mathrm{C}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), 58.8 ($0.5 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}$), 62.4 ($0.5 \mathrm{C}, \mathrm{NCHCO}$), 62.6 (0.5 C , NCHCO), 114.0 (2C, C-3 PMB, $\mathrm{C}-5_{\text {PMB }}$), 128.2 (1С, C-1 $1_{\text {PMB }}$), 128.9 (2C, C$\left.2_{\text {benzyl }}, C-6_{\text {benzy }}\right), 129.1\left(2 C, C-3_{\text {benzyl }}, C-5_{\text {benzyl }}\right), 129.3\left(1 \mathrm{C}, \mathrm{C}-4_{\text {benzy }}\right)$, 130.5 (2С, C-2 PMB, C- $6_{\text {PMB }}$), 136.3 (1C, C-1 benzyl), 159.2 (1C, C-4 PMB), 168.1 ($1 \mathrm{C}, \mathrm{C}=\mathrm{N}$), 169.9 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), 172.2 (2C, NCHCO). FT-IR: v~ $\left(\mathrm{cm}^{-1}\right)=3063$ (w, v, C-H, arom.), 2928 (m, v, C-H, alkyl), 1724 (m, v, $\mathrm{C}=\mathrm{O}$, imide), 1678 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 822 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}, \mathrm{para}-$ substituted arom.), 745, 702 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{H}^{+} 484.2265$, found 484.2347. HPLC: purity $79.2 \%, \mathrm{t}_{\mathrm{R}}=21.66 \mathrm{~min}$.
(S)- $\mathrm{N}-\{(\mathrm{E})-3-[(\mathrm{S})$ - and
(R)-4-Benzyl-1-(4-methoxybenzyl)-3,5-dioxopiperazin-2-yl]
propylidene\}-2-methylpropane-2-sulfinamide (34)

The aldehyde 32 ($3.13 \mathrm{~g}, 8.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in THF $(200 \mathrm{~mL}) . ~(S)$-2-Methylpropane-2-sulfinamide $(1.00 \mathrm{~g}, 8.2 \mathrm{mmol}$, $1.0 \mathrm{eq})$ and titanium(IV) ethanolate (4 mL) were added to this mixture, which was stirred for 4 h at rt . Then the mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ saturated NaHCO_{3} solution and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for four times. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by fc (cyclohexane:ethyl acetate $=90: 10 \rightarrow 67: 33, \varnothing=4 \mathrm{~cm}$, $\mathrm{I}=16 \mathrm{~cm}, \mathrm{~V}=35 \mathrm{~mL}) .\left(\mathrm{R}_{\mathrm{f}} 0.19\right.$, cyclohexane:ethyl acetate $\left.=67: 33\right)$.

Colorless oil of both diastereomers, yield $3.6 \mathrm{~g} \mathrm{(90} \mathrm{\%)}. \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (483.6). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})=1.07(\mathrm{~s}, 9 \times 0.5 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.08 \quad\left(\mathrm{~s}, \quad 9 \times 0.5 \mathrm{H}, \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), \quad 2.01-2.10 \quad(\mathrm{~m}, \quad 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 2.17-2.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 2.58-2.65(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), 3.44 (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 3.55 (dd, $J=$ $9.6 / 5.3 \mathrm{~Hz}, \quad 0.5 \mathrm{H}, ~ \mathrm{NCHCO}), 3.60-3.65(\mathrm{~m}, 1.5 \mathrm{H}, \mathrm{NCHCO}(0.5 \mathrm{H})$, $\mathrm{NCH}_{2} \mathrm{PhOMe}(1 \mathrm{H})$), 3.68 (d, $J=13.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}$), 3.69 (d, $\left.J=13.1 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 3.735\left(\mathrm{~s}, 3 \times 0.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.737(\mathrm{~s}, 3 \times$ $0.5 \mathrm{H}, \mathrm{OCH}_{3}$), $3.898\left(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 3.901$ (d, $J=$ $17.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), $4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \times$ $\left.0.5 \mathrm{H}, 3-\mathrm{CH}_{\text {PMB }}, 5-\mathrm{CH}_{\text {PMB }}\right), 6.89\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \times 0.5 \mathrm{H}, 3-\mathrm{CH}_{\text {PMB }}, 5-\right.$ $\mathrm{CH}_{\text {PMB }}$), $7.14\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \times 0.5 \mathrm{H}, 2-\mathrm{CH}_{\text {PMB }}, 6-\mathrm{CH}_{\text {PMB }}\right.$), $7.15(\mathrm{~d}, J=$ $\left.8.5 \mathrm{~Hz}, 2 \times 0.5 \mathrm{H}, 2-\mathrm{CH}_{\mathrm{PMB}}, 6-\mathrm{CH}_{\mathrm{PMB}}\right), 7.20-7.26\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 4-\right.$ $\left.\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzyl }}\right), 7.32\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzyl }}\right), 7.96$ $\left(\mathrm{t}, J=3.9 \mathrm{~Hz}, \quad 0.5 \mathrm{H}, \quad \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 7.98(\mathrm{t}, J=3.9 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$). Ratio of diastereomers $1: 1 .{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}): $\delta \quad(\mathrm{ppm})=21.8 \quad\left(3 \mathrm{C}, \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), \quad 23.7 / 23.8 \quad(1 \mathrm{C}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), 31.75/31.76 (1C, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), $41.3 \quad(1 \mathrm{C}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), $50.27 / 50.31$ ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}$), $55.0\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 55.9 / 56.0$ (1C, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 56.8 / 56.9(1 \mathrm{C}, \mathrm{NCH} 2 \mathrm{PhOMe}), 61.3 / 61.5$ (1C, NCHCO), 113.8/ 113.9 (2C, C-3 РМВ, C-5 РРВ), 127.1 (1C, C-4 benzyl), 127.33/127.35 (2C, C$\left.2_{\text {benzyl }}, C-6_{\text {benzyl }}\right), 128.4$ (2C, C-3 $\left.3_{\text {benzyl }}, C-5_{\text {benzy }}\right), 128.7$ (1C, C-1 $1_{\text {PMB }}$),
 $4_{\text {PMB }}$), $169.10 / 169.14$ ($1 \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}$), 170.05/170.07 (1C, $\mathrm{NCH}_{2} \mathrm{CO}$), $172.28 / 172.31$ (1C, NCHCO). IR (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=2958(\mathrm{C}-$ $\left.\mathrm{H}_{\text {aliph }}\right), 1728,1674$ and $1620(\mathrm{C}=\mathrm{O}), 1342(\mathrm{~S}=\mathrm{O}), 817$ and $698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$. MS (APCI): $m / z=484.2347$ (calcd. 484.2265 for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+$ $\left.\mathrm{H}^{+}\right)$. Purity (HPLC): $83.2 \%\left(\mathrm{t}_{\mathrm{R}}=22.9 \mathrm{~min}\right)$.

9-Benzyl-3-(4-methoxybenzyl)-2,4-dioxo-3,9-diazabicyclo[3.3.1] nonan- 6-yll-2-methylpropane-2-sulfinamide (35)

A solution of (S)-sulfinylimine 33 (ratio of diastereomers $1: 1$, $589 \mathrm{mg}, 1.22 \mathrm{mmol}$) in THF (30 mL) was cooled under N_{2} atmosphere to $-78^{\circ} \mathrm{C}$. Then LiHMDS (1 M solution in THF, 1.82 mL , 1.82 mmol) was added. After 3 h , the mixture was warmed to rt, poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=19: 1 \rightarrow 1: 1 \rightarrow 100 \%$ ethyl acetate, $\varnothing=$ $3.0 \mathrm{~cm}, \mathrm{I}=9.5 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL}$) to obtain two pale oils of the main diastereomer of 35 and a mixture of the other three diastereomers of 35 . Total yield 386 mg (66%). Main stereoisomer 35 a ($R_{f} 0.32$, cyclohexane:ethyl acetate $=1: 1$): Pale yellow oil. Yield 127 mg (22\%). $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (483.6). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 1.24 (s, 9H, C $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39-1.48\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 1.63-1.68(\mathrm{~m}, 1 \mathrm{H}, 7-$ $\left.\mathrm{CH}_{2}\right), 1.70-1.78\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 1.89-1.99\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.52-3.54$ (m, 1H, 1-CH), $3.53\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.69(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.71-3.75(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93(\mathrm{~m}$, $1 \mathrm{H}, 5-\mathrm{CH}$), $4.44(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.83$ (d, $\left.\mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {PMB }}, 5-\mathrm{H}_{\text {PMB }}\right), 7.13-7.20\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {phenyl }}, 6-\mathrm{H}_{\text {pheny }}\right)$, $7.27-7.34\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {phenyl }}, 4-\mathrm{H}_{\text {phenyl}}, 5-\mathrm{H}_{\text {pheny }}\right)$, $7.36(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2-\mathrm{H}_{\text {Рмв }}, 6-\mathrm{H}_{\text {РМв }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=22.7(3 \mathrm{C}, \mathrm{C}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 23.0(1 \mathrm{C}, \mathrm{C}-8), 25.3(1 \mathrm{C}, \mathrm{C}-7), 41.6\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 51.9$ (1C, C6), $55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 56.0\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 58.3(1 \mathrm{C}, \mathrm{C}-1), 59.4(1 \mathrm{C}$, $\mathrm{PhCH}_{2} \mathrm{~N}$), 65.9 (1C, C-5), 114.0 (2C, C-3 PMB , C-5 PMB), 128.2 (1C, C-1 PMB), 128.9 (2C, C-2 benzyl C- $\left.6_{\text {benzyl }}\right)$, 129.2 (2C, C-3 benzyl C-5 $\left.5_{\text {benzy }}\right)$, 129.3 (1C,
 $\left.4_{\text {PMB }}\right), 170.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 172.1$ (1C, NCHCO). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3267$ ($\mathrm{w}, \mathrm{v}, \mathrm{N}-\mathrm{H}$, sulfinamide), 2932 ($\mathrm{m}, \mathrm{v}, \mathrm{C}-\mathrm{H}$, alkyl), 1728 (m, v, C=O, imide), 1674 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 818 ($\mathrm{m}, \mathrm{\delta}, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 733, 698 (m, $\delta, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (APCI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SH}^{+}$484.2265, found 484.2282. HPLC: purity $97.9 \%, t_{R}=21.74 \mathrm{~min}$. specific rotation: $[\alpha]^{20}{ }_{D}=+53.0 \quad(c=0.80$; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

N-[-3-Benzyl-9-(4-methoxybenzyl)-2,4-dioxo-3,9-diazabicyclo [3.3.1]nonan-6-yl]-2-methylpropane-2-sulfinamide (36)

A solution of the (S)-sulfinylimine 34 (ratio of diastereomers 1:1, $3.37 \mathrm{~g}, 7.0 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (150 mL) was cooled down to $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. Then LiHMDS (1 M solution in THF, 10.4 mL , $10.4 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added dropwise. After 3 h , the mixture was warmed to rt. Saturated NaHCO_{3} was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo. The residue was purified by fc (cyclohexane : ethyl acetate $=90: 10 \rightarrow 50: 50, \varnothing=$ $4 \mathrm{~cm}, \mathrm{I}=15 \mathrm{~cm}, \mathrm{~V}=35 \mathrm{~mL}$) to obtain a pale yellow oil of the main diastereomer of 36 and a mixture of the other three diastereomers of 36 . Total yield 2.34 g (69%). Main stereoisomer 36 a ($R_{f} 0.47$, cyclohexane:ethyl acetate $=50: 50$): pale yellow oil, yield 0.91 g (27%). $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (483.6). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})=$ $1.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.47\left(\mathrm{tt}, J=14.0 / 4.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 1.57-1.71$ (m, 2H, 7-CH2, 8-CH2), 2.07-2.20 (m, 1H, 8-CH2), 3.50-3.57 (m, 2H, 1$\mathrm{CH}, 6-\mathrm{CH}), 3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 3.73\left(\mathrm{~s}, 4 \mathrm{H}, 5-\mathrm{CH}, \mathrm{OCH}_{3}\right), 4.85(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{Ph}$), 5.12 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{CH}_{\text {PMB }}, 5-\mathrm{CH}_{\text {PMB }}\right), 7.13\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\mathrm{PMB}}, 6-\mathrm{CH}_{\mathrm{PMB}}\right), 7.24-7.31$ $\left(\mathrm{m}, 3 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 4-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzyl }}\right), 7.38-7.32\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}\right.$, $\left.5-\mathrm{CH}_{\text {benzy }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})=22.0(1 \mathrm{C}, \mathrm{C}-8)$, $22.4\left(3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.3(1 \mathrm{C}, \mathrm{C}-7), 41.6$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.7$ (1C, C-6), $55.0\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 55.3\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 57.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 58.2(1 \mathrm{C}$, C-1), 64.3 (1C, C-5), 113.8 (2C, C-3 PMB,$~ C-5_{\text {PMB }}$), 127.3 (1C, C-4 benzy), 128.1 (2C, C- benzzyl, C-6 benzyl), 128.3 (1C, C-1 $1_{\text {PMB }}$), 128.4 (2C, C- benenzyl C$\left.5_{\text {benzy }}\right)$, 129.8 ($2 \mathrm{C}, \mathrm{C}-2_{\text {PMB }}, ~ C-6_{\text {PMB }}$), 137.1 (1C, C- $1_{\text {benzyl }}$), 158.7 (1C, C$4_{\text {Рмв }}$), 170.7 (1C, C-4), 171.9 (1C, C-2). IR (neat): $v \sim_{\sim}^{\left(\mathrm{cm}^{-1}\right)}=3275$ $(\mathrm{N}-\mathrm{H}), 2951\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1732$ and $1678(\mathrm{C}=\mathrm{O}), 1346$ and $1330(\mathrm{~S}=\mathrm{O})$, 806 and 698 ($\mathrm{C}-\mathrm{H}_{\text {arom }}$). MS (APCI): $\mathrm{m} / \mathrm{z}=484.2275$ (calcd. 484.2265 for $\left.\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}\right)$. Purity (HPLC): $98.3 \% \quad\left(\mathrm{t}_{\mathrm{R}}=22.8 \mathrm{~min}\right)$. Specific rotation: $[\alpha]^{20}{ }_{D}=+57.1\left(c=0.18 ; \mathrm{CH}_{3} \mathrm{CN}\right)$.

(1RS,5SR,6RS)-9-Benzyl-6-hydroxy-3-(4-meth-oxybenzyl)-3,9-diazabicyclo[3.3.1]no-nane-2,4-dione (37)

A solution of the aldehyde 31 ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) in THF (10 mL) was cooled under N_{2} atmosphere to $-78^{\circ} \mathrm{C}$. Then LiHMDS (1 M solution in THF, $0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was added. After 30 min at $-78^{\circ} \mathrm{C}$, the mixture was warmed to rt and stirred at rt for 3 h . The mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuum. The residue was purified by fc (cyclohexane:ethyl acetate $=9: 1, \varnothing=2.0 \mathrm{~cm}, \mathrm{I}=$ $9.5 \mathrm{~cm}, \mathrm{~V}=20 \mathrm{~mL})$ to obtain a pale yellow oil. ($\mathrm{R}_{\mathrm{f}} 0.26$, cyclohexane: ethyl acetate $=1: 1$). Yield $10 \mathrm{mg}(10 \%) . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (380.4). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.07-1.22\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 1.92-1.99(\mathrm{~m}$, $\left.2 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.00-2.08\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.53(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH})$, 3.61 (d, J=13.2 Hz, 1H, NCH 2 Ph), 3.63-3.70 (m, 1H, 5-CH), 3.67 (d, $\left.\mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{dt}, \mathrm{J}=14.2 / 4.0 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{CH}), 4.93\left(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.97(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.85\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {РМВ }}, 5-\mathrm{H}_{\text {РМВ }}\right), 7.13-7.17(\mathrm{~m}, 2 \mathrm{H}, 2-$ $\mathrm{H}_{\text {benzyl }}$ 6- $\mathrm{H}_{\text {benzyl }}$), $7.27-7.35\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\text {benzyl }}, 4-\mathrm{H}_{\text {benzyl }}, 5-\mathrm{H}_{\text {benzyl }}\right), 7.38(\mathrm{~d}$, $\left.\mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {РМВ }}, 6-\mathrm{H}_{\text {РМВ }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 26.9 (1C, C-8), 27.8 (1C, C-7), 41.6 (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 59.0$ (1C, C-1), 59.1 ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{~N}$), 64.6 (1C, C-5), 68.1 (1C, 6-C), 114.0 (2C,
 (2C, C- $3_{\text {benzyl }}$ C $-5_{\text {benzyl }}$), 129.5 (1C, C-4 benzy), 130.8 (2C, C-2 PMB C $-6_{\text {РМВ }}$), 136.2 (1C, C-1 $\left.{ }_{\text {benzy }}\right), 159.2\left(1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}\right), 171.1\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CO}\right), 172.5(1 \mathrm{C}$, NCHCO). FT-IR: $\mathrm{v}^{\sim}\left(\mathrm{cm}^{-1}\right)=3434(\mathrm{~m}, \mathrm{v}, \mathrm{O}-\mathrm{H}$, alcohol), 3062 (w, v, C-H, arom.), 2932 (m, v, C-H, alkyl), 1726 (m, v, C=O, imide), 1671 ($\mathrm{s}, \mathrm{v}, \mathrm{C}=\mathrm{O}$, imide), 823 ($\mathrm{m}, \delta, \mathrm{C}-\mathrm{H}$, para-substituted arom.), 730, 698 (m, $\mathrm{\delta}, \mathrm{C}-\mathrm{H}$, mono-substituted arom.). MS (EI): $380\left[\mathrm{M}^{+}, 7\right], 121$ $\left[\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 88\right], 91\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}, 100\right]$.
(1RS,5SR,6SR)-3-Benzyl-8-(4-meth-
oxybenzyl)-6-vinyl-3,8-diazabicyclo[3.2.1]octane-2,4-dione (39)
A solution of 17 ($120 \mathrm{mg}, 0.37 \mathrm{mmol}$) in dry THF (4 mL) was cooled down to $-78^{\circ} \mathrm{C}$ and LiHMDS ($0.44 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added slowly. After 90 min , trans-1,4-dibromobut-2-ene $(38,95 \mathrm{mg}$, 0.44 mmol) was added. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 90 min and then warmed up to rt for 16 h . Another portion of LiHMDS ($0.44 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for another 2 h and then warmed up to room temperature overnight. Saturated NaHCO_{3} solution was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by column chromatography (cyclohexane: ethyl acetate $=98: 2 \rightarrow 94: 6, \varnothing=$ $1.5 \mathrm{~cm}, \mathrm{I}=20 \mathrm{~cm}, \mathrm{~V}=10 \mathrm{~mL}) . \mathrm{R}_{\mathrm{f}} 0.24$, cyclohexane:ethyl acetate $=$ $80: 20$. Pale yellow oil, yield 30 mg (22%). $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (376.5). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.73$ (dd, $J=13.7 / 5.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-$ CH_{2}), 2.64 (ddd, $\left.J=13.7 / 10.6 / 7.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 3.30-3.39(\mathrm{~m}, 1 \mathrm{H}, 6-$ CH), 3.63 (d, J=12.7 Hz, 1H, NCH 2 PhOMe), 3.66 (d, J=12.1 Hz, 1 H , $\left.\mathrm{NCH}_{2} \mathrm{PhOMe}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}), 3.85$ (d, J=7.7 Hz, 1H, 1-CH), 4.91 (s, 2H, NCH 2 Ph), 5.02 (dt, $J=10.4 /$ $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.05\left(\mathrm{dt}, \mathrm{J}=16.9 / 1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.41$ (ddd, J=17.1/10.3/7.7 Hz, 1H, CH=CH2), $6.83(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\left.\mathrm{CH}_{\text {РМВ }}, 5-\mathrm{CH}_{\text {РМВ }}\right), 7.06\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {РМВ }}, 6-\mathrm{CH}_{\text {РМВ }}\right), 7.26-7.29$ $\left(\mathrm{m}, 1 \mathrm{H}, 4-\mathrm{CH}_{\text {benzyl }}\right), 7.32\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzyl }}\right)$, 7.44 (d, J $\left.=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzy }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=31.9(1 \mathrm{C}, \mathrm{C}-7), 41.8(1 \mathrm{C}, \mathrm{NCH} 2 \mathrm{Ph}), 43.2(1 \mathrm{C}, \mathrm{C}-6), 52.8(1 \mathrm{C}$, $\left.\mathrm{NCH}_{2} \mathrm{PhOMe}\right), 55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 63.7$ (1C, C-1), 68.1 (1C, C-5), 114.2 ($2 \mathrm{C}, \mathrm{C}-3_{\text {Рмв }}, \mathrm{C}-5_{\text {РМВ }}$), $118.4\left(1 \mathrm{C}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 127.6 (1C, C-1 $1_{\text {PMB }}$), 128.0 (1C, C- $\left.4_{\text {benzyl }}\right)$, 128.6 ($\left.2 \mathrm{C}, \mathrm{C}-3_{\text {benzyl }}, \mathrm{C}-5_{\text {benzy }}\right)$, 129.6 (2C, C- $2_{\text {benzyl }}$, C$\left.6_{\text {benzy }}\right), 130.4\left(2 \mathrm{C}, \mathrm{C}-2_{\text {PMB }}, \mathrm{C}-6_{\text {PMB }}\right), 134.3\left(1 \mathrm{C}, \mathrm{CH}=\mathrm{CH}_{2}\right), 136.9(1 \mathrm{C}, \mathrm{C}-$ $\left.1_{\text {benzy }}\right), 159.6$ (1C, C-4 PMB), 170.4 (1C, C-4), 172.9 (1C, C-2). IR (neat): v^{\sim} $\left(\mathrm{cm}^{-1}\right)=2959\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1732$ and $1678(\mathrm{C}=\mathrm{O}), 822$ and $698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$. MS (APCI): m/z=377.1869 (calcd. 377.1860 for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$). Purity (HPLC): $98.7 \%\left(t_{R}=23.3 \mathrm{~min}\right)$.

3-Benzyl-9-(4-methoxybenzyl)-7-methylene-3,9-diazabicyclo [3.3.1]nonane-2,4-dione (41)

A solution of 17 ($214 \mathrm{mg}, 0.66 \mathrm{mmol}$) in dry THF (5 mL) was cooled down to $-78{ }^{\circ} \mathrm{C}$ and LiHMDS ($0.73 \mathrm{~mL}, 0.73 \mathrm{mmol}$) was added slowly. After 30 min , 3-bromo-2-bromomethylprop-1-ene (40b, $0.83 \mu \mathrm{~L}, 0.73 \mathrm{mmol}$) was added. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 90 min and then LiHMDS ($0.73 \mathrm{~mL}, 0.73 \mathrm{mmol}$) was added again. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 2 h and then warmed up to room temperature overnight. Saturated NaHCO_{3} solution was added and THF was removed almost completely in vacuo. The residue was extracted with ethyl acetate $(4 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated in vacuo. The residue was purified by column chromatography (cyclohexane: ethyl acetate $=20: 1, \varnothing=1 \mathrm{~cm}, \mathrm{I}=12 \mathrm{~cm}, \mathrm{~V}=8 \mathrm{~mL}$). R_{f} 0.62 , cyclohexane:ethyl acetate $=2: 1$. Pale yellow solid, mp 58 $60^{\circ} \mathrm{C}$, yield 129 mg (52%). $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (376.5). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.48\left(\mathrm{dm}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{CH}_{2}, 8-\mathrm{CH}_{2}\right), 2.69(\mathrm{dm}$, $\left.J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{CH}_{2}, 8-\mathrm{CH}_{2}\right), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{PhOMe}\right), 3.68-3.71$ $(\mathrm{m}, 2 \mathrm{H}, 1-\mathrm{CH}, 5-\mathrm{CH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.70(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.84\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\mathrm{PMB}}, 5-\right.$ $\left.\mathrm{CH}_{\text {PMB }}\right), 7.11\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {РМВ }}, 6-\mathrm{CH}_{\text {РМВ }}\right), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4-\mathrm{CH}_{\text {benzy }}\right), 7.29\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{\text {benzyl }}, 5-\mathrm{CH}_{\text {benzy }}\right), 7.37$ (d , $\left.\mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{\text {benzyl }}, 6-\mathrm{CH}_{\text {benzyl }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=36.7(2 \mathrm{C}, \mathrm{C}-6, \mathrm{C}-8), 42.1\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 55.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 58.3$ (1C, $\mathrm{NCH}_{2} \mathrm{PhOMe}$), 60.3 (2C, C-1, C-5), 114.2 ($2 \mathrm{C}, \mathrm{C}-3_{\text {РMB }}, \mathrm{C}-5_{\text {РМВ }}$), $114.6\left(1 \mathrm{C}, \mathrm{C}=\mathrm{CH}_{2}\right), 127.7\left(2 \mathrm{C}, \mathrm{C}-1_{\text {PMB }}, \mathrm{C}-4_{\text {benzy }}\right), 128.4$ (2C, C-3 benzyl C $\left.5_{\text {benzyl }}\right), 129.2$ (2C, C-2 $\left.2_{\text {benzyl }}, ~ C-6_{\text {benzy }}\right)$, $130.4\left(2 C, C-2_{\text {PMB }}, ~ C-6_{\text {PMB }}\right), 137.1$ (1C, C-1 benzy), $137.7\left(1 \mathrm{C}, \mathrm{C}=\mathrm{CH}_{2}\right), 159.6\left(1 \mathrm{C}, \mathrm{C}-4_{\text {PMB }}\right), 172.2(2 \mathrm{C}, 2 \times$
$\mathrm{C}=\mathrm{O})$. IR (neat): $v^{\sim}\left(\mathrm{cm}^{-1}\right)=2959$ and $2936\left(\mathrm{C}-\mathrm{H}_{\text {aliph }}\right), 1670(\mathrm{C}=\mathrm{O}), 733$ and 694 (C-H arom). MS (APCI): $\mathrm{m} / \mathrm{z}=377.1852$ (calcd. 377.1860 for $\left.\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\right)$. Purity (HPLC): $97.9 \%\left(\mathrm{t}_{\mathrm{R}}=22.4 \mathrm{~min}\right)$.

Supporting Information

Supporting Information contains the methylation of monoalkylated piperazinedione 18 b and all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Acknowledgement

Financial support by the Deutsche Forschungsgemeinschaft and the Cluster of excellence Cells in Motion (CiM) is gratefully acknowledged. Thanks to the China Scholarship Council (CSC). Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: bridged piperazines • rigid scaffolds • Dieckmann cyclization \cdot aldol reactions \cdot medicinal chemistry
[1] K. Singh, H. Siddiqui, P. Shakya, A. Kumar, M. Khalid, M. Arif, S. Alok, Int. J. Pharm. Sci. Res 2015, 6, 4145-4158.
[2] M. Haria, A. Fitton, D. McTavish, Drugs Aging 1994, 4, 331-355.
[3] D. M. Campoli-Richards, M. M. T. Buckley, A. Fitton, Drugs 1990, 40, 762781.
[4] C. M. Spencer, D. Faulds, D. H. Peters, Drugs 1993, 46, 1055-1080.
[5] B. Lai, C. Oostenbrink, Theor. Chem. Acc. 2012, 131, 1272.
[6] L. E. Shutt, J. B. Bowes, Anaesthesia 1979, 34, 476-490.
[7] S. E. Clarke, N. E. Austin, J. C. Bloomer, R. E. Haddock, F. C. Higham, F. J. Hollis, M. Nash, P. C. Shardlow, T. C. Tasker, F. R. Woods, G. D. Allen, Xenobiotica 1994, 24, 1119-1131.
[8] S. K. V. Vernekar, H. Y. Hallaq, G. Clarkson, A. J. Thompson, L. Silvestri, S. C. R. Lummis, M. Lochner, J. Med. Chem. 2010, 53, 2324-2328.
[9] D. Kracht, E. Rack, D. Schepmann, R. Fröhlich, B. Wünsch, Org. Biomol. Chem. 2010, 8, 212-225.
[10] C. Geiger, C. Zelenka, K. Lehmkuhl, D. Schepmann, W. Englberger, B. Wünsch, J. Med. Chem. 2010, 53, 4212-4222.
[11] C. Geiger, C. Zelenka, M. Weigl, R. Fröhlich, B. Wibbeling, K. Lehmkuhl, D. Schepmann, R. Grünert, P. J. Bednarski, B. Wünsch, J. Med. Chem. 2007, 50, 6144-6153.
[12] G. Cignarella, G. Nathansohn, E. Occelli, J. Org. Chem. 1961, 26, 27472750.
[13] H. Liu, T.-M. Cheng, H.-M. Zhang, R.-T. Li, Arch. Pharm. 2003, 336, 510513.
[14] G. A. Pinna, G. Murineddu, M. M. Curzu, S. Villa, P. Vianello, P. A. Borea, S. Gessi, L. Toma, D. Colombo, G. Cignarella, II Farmaco 2000, 55, 553562.
[15] B. A. Shainyan, M. Y. Moskalik, V. V. Astakhova, U. Schilde, Tetrahedron 2014, 70, 4547-4551.
[16] J. Bermudez, L. Gaster, J. Gregory, J. Jerman, G. F. Joiner, F. D. King, S K. Rahman, Bioorg. Med. Chem. Lett. 1994, 4, 2373-2376.
[17] P. Garner, K. Sunitha, T. Shanthilal, Tetrahedron Lett. 1988, 29, 35253528.
[18] E. S. Nikitskaya, E. I. Levkoeva, V. S. Usovskaya, M. V. Rubtsov, Chem. Heterocycl. Compd. 1965, 1, 195-197.
[19] T. Mancilla, L. Canillo, L. S. Zamudio-Rivera, H. I. Beltrán, N. Farán, Org. Prep. Proced. Int. 2002, 34, 87-94.
[20] X. Hou, Z. Ge, T. Wang, W. Guo, J. Wu, J. Cui, C. Lai, R. Li, Arch. Pharm. 2011, 344, 320-332.
[21] D. D. Dischino, R. R. Covington, C. M. Combs, R. E. Gammans, J. Labelled Compd. Radiopharm. 1988, 25, 359-367.
[22] J. Roh, G. Karabanovich, V. Novakova, T. Šimůnek, K. Vávrová, Synthesis 2016, 48, 4580-4588.
[23] S. Kumar, N. Kumar, P. Roy, S. M. Sondhi, Med. Chem. Res. 2013, 22, 4600-4609.
[24] S. Kumar, N. Kuma r, P. Roy, S. M. Sondhi, Med. Chem. Res. 2014, 23, 3953-3969.
[25] M. Weigl, B. Wünsch, Org. Lett. 2000, 2, 1177-1179.
[26] C. Geiger, C. Zelenka, R. Fröhlich, B. Wibbeling, B. Wünsch, Z. Naturforsch. B 2005, 60, 1068.
[27] R. Holl, M. Dykstra, M. Schneiders, R. Fröhlich, M. Kitamura, E.-U. Würthwein, B. Wünsch, Aust. J. Chem. 2008, 61, 914-919.
[28] S. Rath, D. Schepmann, B. Wünsch, Bioorg. Med. Chem. 2017, 25, 53655372.
[29] F. Ek, S. Manner, L.-G. Wistrand, T. Frejd, J. Org. Chem. 2004, 69, 13461352.
[30] J. J. W. Duan, L. Chen, C.-B. Xue, Z. R. Wasserman, K. D. Hardman, M. B. Covington, R. R. Cope, E. C. Arner, C. P. Decicco, Bioorg. Med. Chem. Lett. 1999, 9, 1453-1458.
[31] P. R. Dave, F. Forohar, T. Axenrod, K. K. Das, L. Qi, C. Watnick, H. Yazdekhasti, J. Org. Chem. 1996, 61, 8897-8903.
[32] P. R. Dave, F. Forohar, T. Axenrod, L. Qi, C. Watnick, H. Yazdekhasti, Tetrahedron Lett. 1994, 35, 8965-8968.

Manuscript received: June 29, 2020

Revised manuscript received: July 6, 2020

