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Acute myocardial infarction (AMI) is a major cause of morbidity and mortality worldwide. Angiotensin (Ang) IV possesses many
biological properties that are not yet completely understood. Therefore, we investigated the function and mechanism of Ang IV in
AMI in in vivo and in vitro conditions. AMI was performed by ligation of the left anterior descending coronary artery (LAD) in
male C57 mice. Ang IV was continuously infused by a minipump 3 d before AMI for 33 d. The neonatal rat ventricular myocytes
(NRVCs) were stimulated with Ang IV and cultured under hypoxic conditions. In vivo, Ang IV infusion significantly reduced the
mortality after AMI. By the 7th day after AMI, compared with the AMI group, Ang IV reduced the inflammatory cytokine
expression. Moreover, terminal deoxyribonucleotidyl transferase- (TDT-) mediated dUTP nick-end labeling (TUNEL) assay
showed that Ang IV infusion reduced AMI-induced cardiomyocyte apoptosis. Compared with AMI, Ang IV reduced
autophagosomes in cardiomyocytes and improved mitochondrial swelling and disarrangement, as assessed by transmission
electron microscopy. By 30th day after AMI, Ang IV significantly reduced the ratio of heart weight to body weight.
Echocardiography showed that Ang IV improved impaired cardiac function. Hematoxylin and eosin (H&E) and Masson
staining showed that Ang IV infusion reduced the infarction size and myocardial fibrosis. In vitro, dihydroethidium (DHE)
staining and comet assay showed that, compared with the hypoxia group, Ang IV reduced oxidative stress and DNA damage.
Enzyme-linked immunosorbent assay (ELISA) showed that Ang IV reduced hypoxia-induced secretion of the tumor necrosis
factor- (TNF-) ɑ and interleukin- (IL-) 1β. In addition, compared with the hypoxia group, Ang IV reduced the transformation
of light chain 3- (LC3-) I to LC3-II but increased p62 expression and decreased cardiomyocyte apoptosis. Overall, the present
study showed that Ang IV reduced the inflammatory response, autophagy, and fibrosis after AMI, leading to reduced
infarction size and improved cardiac function. Therefore, administration of Ang IV may be a feasible strategy for the treatment
of AMI.
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1. Introduction

Acute myocardial infarction (AMI) is the most severe man-
ifestation of the coronary artery disease (CAD) [1], which
causes more than a third of deaths in developed nations
annually and remains the leading cause of death worldwide
[2]. AMI results in myocardial remodeling and heart failure
[3]. Apoptosis and necrosis of cardiomyocytes in response to
infarction trigger an inflammatory response and an imbal-
ance of collagen synthesis and degradation [4]. After AMI,
myofibroblasts in the infarcted heart migrate into the
injured myocardium, replace the damaged cardiomyocytes,
and form scar tissue to avoid cardiac rupture. However,
excessive myofibroblast accumulation and fibrosis in the
uninjured area of the heart contribute to cardiac fibrosis
and heart failure [5].

Autophagy is a type of cell death that is closely associ-
ated with the development of heart failure [6]. It is a process
in which the cytoplasmic constituents are sequestered in
double-membraned autophagosomes and then delivered to
lysosomes for degradation [7]. Under physiological condi-
tions, autophagy plays a critical role in maintaining the car-
diomyocyte function and survival by removing the damaged
organelles and protein aggregates [8]. However, dysregulated
or excessive autophagy can contribute to the development of
many cardiovascular diseases [9]. Moreover, autophagy
induced by ischemia may play a protective or pathogenic
role in heart disease [10]. Given the controversial role of
autophagy during myocardial infarction (MI) and heart fail-
ure, a better understanding of the underlying molecular and
cellular mechanisms is critical for preserving heart function
after AMI.

Angiotensin [3–8], also known as angiotensin (Ang) IV,
which is hydrolyzed from Ang II by dipeptidylaminopepti-
dase III or from Ang III by aminopeptidase N, has sparked
great interest because of its wide range of physiological
effects [11]. Ang IV mediates important physiological func-
tions in the central nervous system, including blood flow
regulation and processes attributed to learning and memory
[12]. The antiapoptotic role of Ang IV has also been
reported in an experimental study [13]. In addition, chronic
Ang IV infusion improves endothelial function in early and
advanced atheroma [14]. A medium dose of Ang IV reduces
the inflammatory response, providing a novel approach for
the treatment of abdominal aortic aneurysm [15]. However,
the exact role and underlying mechanism of Ang IV in AMI
remain unclear.

Therefore, in the present study, we aimed to investigate
the role and underlying mechanism of Ang IV in AMI and
cardiac remodeling by ligating the left anterior descending
coronary artery (LAD) in mice and culturing neonatal rat
ventricular myocytes (NRVCs) under hypoxic conditions.
We aimed to identify a novel target for the treatment of
AMI.

2. Materials and Methods

2.1. Animals. The animal experiments were approved by the
Animal Care and Use Committee of Shandong University

(Jinan, Shandong, China). C57 male mice (10 weeks old;
Charles Rivers, Beijing, China) were housed in a pathogen-
free animal care facility on a 12h light/dark cycle and
allowed full access to standard mouse chow and water.

The C57 mice were randomly divided into four groups:
sham group, sham+Ang IV group, MI group, and MI+Ang
IV group. MI was established by ligation of LAD, while sur-
gery was performed without LAD ligation in the sham
group. The sham+Ang IV and MI+Ang IV groups received
continuous subcutaneous infusion of Ang IV (1.44mg/kg/
day) via an osmotic pump (model 2004; ALZET, CA,
USA) 3 d before AMI.

The in vivo study was divided into two parts. In the first
part, 20 mice underwent surgery and were raised for 30 d
postoperatively. On the 30th postoperative day, the survival
rate was assessed and echocardiography was performed. At
the end of the experiment, all mice were sacrificed under
anesthesia by an intraperitoneal injection of 0.8% pentobar-
bital sodium (60mg/kg).

In the other part, at day 7 after surgery, 10 mice in each
group were sacrificed with intraperitoneal injection of 0.8%
pentobarbital sodium (60mg/kg) and mouse hearts were
removed for further analysis.

2.2. MI Model. LAD was ligated to induce MI in mice as pre-
viously described [16]. Briefly, all the operations were car-
ried out under isoflurane (RWD Life Science, Shenzhen,
China, 2%), and mice were ventilated with a small animal
ventilator (Harvard Apparatus, MA, USA). Anesthesia was
considered adequate when the pedal withdrawal reflex was
negative. Then, the mouse hearts were exposed through the
left lateral thoracotomy and MI was induced by permanent
ligation of the LAD with a 7-0 suture line. Sham-operated
mice underwent the same surgical procedure without LAD
ligation. A warming blanket was used throughout the
surgery.

2.3. Echocardiography. Transthoracic echocardiography was
performed in mice before surgery and on day 30 after sur-
gery on a Vevo 770 High-Resolution Imaging System
(Visual Sonics, Canada) with a 35MHz ultrasound probe
as previously described [17]. Mice were anesthetized with
isoflurane (2%). Left ventricular end-diastolic internal diam-
eter (LVEDd), left ventricular end-systolic internal diameter
(LVEDs), left ventricular fractional shortening (LVFS), and
left ventricular ejection fraction (LVEF) were measured by
the same observer.

2.4. Serum Biochemistry Assay. All mice were starved over-
night, and blood samples were collected from the heart after
sacrifice. Serum levels of total cholesterol (TC), triglycerides
(TGs), low-density lipoprotein (LDL) cholesterol, and high-
density lipoprotein (HDL) cholesterol were determined
using an enzymatic assay with a biochemistry automatic
analyzer (HITACHI 7170A, Hitachi, Tokyo, Japan).

2.5. Histology and Morphology. Euthanized mice were per-
fused with saline to eliminate blood in the lumen, and the
hearts were removed and fixed in 4% paraformaldehyde
(Beyotime, Nantong, China). Mouse hearts were embedded
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in an optimal cutting temperature (OCT) compound, and
serial sections (5μm) were cut for hematoxylin and eosin
(H&E) and Masson staining. Corresponding sections on
separate slides were visualized under a microscope for mor-
phological assessment.

2.6. Terminal Deoxyribonucleotidyl Transferase- (TDT-)
Mediated dUTP Nick-End Labeling (TUNEL). Apoptosis of
mouse heart tissue was detected using the ApopTag Plus
Peroxidase In Situ Apoptosis Detection Kit (Millipore, MA,
USA) as previously described [18]. The apoptosis of neona-
tal rat ventricular myocytes (NRVCs) was determined using
the in situ cell death detection kit (Roche, CA, USA). The
number of TUNEL-positive cardiomyocyte nuclei and total
number of cardiomyocyte nuclei in each site were counted.
The ratio of apoptotic cardiomyocytes was calculated by
dividing the number of TUNEL-positive cardiomyocyte
nuclei by the total number of cardiomyocyte nuclei.

2.7. Transmission Electron Microscopy. Transmission elec-
tron microscopy was performed as described previously
[19]. Briefly, the left ventricular tissues were sliced into ultra-
thin sections. These sections were fixed with 4% paraformal-
dehyde and 1% glutaraldehyde in phosphate-buffered saline
(PBS) at 4°C overnight. The preparations were washed and
dehydrated with increasing concentrations of ethanol,
followed by embedding and sectioning. The cardiac slices
were examined by microscopy under an H7650 transmission
electron microscope (Hitachi, Tokyo, Japan).

2.8. Cell Culture and Stimulation. Primary ventricular car-
diomyocytes were isolated from 1- to 2-day-old neonatal
rat hearts [20]. NRVCs were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM; ScienCell, CA, USA) supple-
mented with 10% fetal bovine serum, 100U/ml penicillin,
and 100μg/ml streptomycin at 37°C for 24 h. Cells were
divided into four groups: the control group, hypoxia group,
Ang IV group, and hypoxia+Ang IV group. The cells were
exposed to hypoxic stimulation in a Whitley H35 hypoxysta-
tion (Don Whitley Scientific, London, England) under an
atmosphere of 1% oxygen (O2), 5% carbon dioxide (CO2),
and 94% nitrogen (N2) for 24h [21]. The Ang IV and hyp-
oxia+Ang IV groups were stimulated with Ang IV (1μM)
for 24h before hypoxia, while the control group was simu-
lated with saline.

2.9. Real-Time Quantitative Polymerase Chain Reaction
(PCR). Total RNA was extracted from mouse hearts using
the TRIzol reagent (Invitrogen, CA, USA). The mRNA
expression levels of monocyte chemotactic protein 1
(MCP-1), intercellular adhesion molecule 1 (ICAM-1), and
inducible nitric oxide synthase (iNOS) were determined
using SYBR Green technology (Bio-Rad, CA, USA) with
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as
an internal control. Quantitative values were obtained from
the threshold cycle value (Ct), and the 2-△△Ct method was
used to determine the relative gene expression levels. The
primers were as follows: MCP-1, forward, 5′-TCTGGG
CCTGCTGTTCACA-3′, reverse, 5′-GGATCATCTTGCTG

GTGAATGA-3′; ICAM-1, forward, 5′-GCCTTGGTAGA
GGTGACTGAG-3′, reverse, 5′-GACCGGAGCTGAAAAG
TTGTA-3′; iNOS, forward, 5′-GTTCTCAGCCCAACAA
TACAAGA-3′, reverse, 5′-GTGGACGGGTCGATGTCA
C-3′; and GAPDH, forward, 5′-AGGTCGGTGTGAACGG
ATTTG-3′, reverse, 5′-TGTAGACCATGTAGTTGAGGT
CA-3′.

2.10. Western Blotting Analysis. Extracted proteins were
quantified using a BCA Protein Assay Kit (Beyotime, Nan-
tong, China). The protein extracts (50μg) were fractionated
by sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) and transferred to nitrocellulose mem-
branes. After blocking with silk milk for 2 h at room
temperature, the proteins were probed with primary anti-
bodies and specific conjugated peroxidase-labeled secondary
antibodies. The immunoreactive bands were visualized using
a luminescent image analyzer (Amersham Imager 600; GE,
MA, USA). Protein expression levels were determined by
densitometry. All experiments were performed in triplicate.
The primary antibodies used were as follows: rabbit anti-
MCP-1 antibody (Cell Signaling Technology, MA, USA),
rat ICAM-1 antibody (1 : 500; R&D Systems, MN, USA),
rabbit anti-iNOS antibody (1 : 1000; Cell Signaling Technol-
ogy), rabbit anti-LC3 antibody (1 : 1000; Cell Signaling Tech-
nology), rabbit anti-P62 antibody (1 : 1000; Cell Signaling
Technology), and rabbit anti-GAPDH antibody (1 : 1000;
Cell Signaling Technology).

2.11. Measurements of Reactive Oxygen Species (ROS). ROS
levels in NRVCs were determined using DHE (Beyotime,
Nantong, China). NRVCs were plated in 96-well plates and
treated with vehicle or Ang IV (1μM) before hypoxia. After
the treatment, DHE was added and incubated for 30min at
37°C and washed twice with warm PBS, and the fluorescence
intensity was measured with a fluorescence confocal micro-
scope (LSM 710; Carl Zeiss, Germany).

2.12. Comet Assay. The DNA damage of NRVCs was
assessed using a comet assay kit (Trevigen, MD, USA), as
previously described [22].

2.13. ELISA. Conditioned medium (CM) from cultured
cells was collected and filtered to remove the cell debris.
Cytokine (tumor necrosis factor- (TNF-) α and interleukin-
(IL-) 1β) secretion in CM was assayed using an ELISA kit
(RayBiotech, GA, USA), according to the manufacturer’s
instructions.

2.14. Statistical Analysis. Statistical analysis involved the use
of SPSS v.16.0 software (SPSS Inc, Chicago, IL). Data are
shown as the mean ± standard deviation (SD). Statistical
evaluation was carried out by Student’s t -test between two
groups and by one-way analysis of variance (ANOVA)
followed by post hoc analysis within multiple groups. Statis-
tical significance was set at P < 0:05.
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3. Results

3.1. Ang IV Improved the Survival Rate Post-MI. To examine
the possible involvement of Ang IV in MI, we first compared
the survival rates at day 30 after sham and MI operations. All
mice in the sham and sham+Ang IV groups survived over
the course of the 30-day study (Figure 1(a)). The incidence
of mortality was remarkably lower in the MI+Ang IV group
than in the MI group. The results indicated that Ang IV
infusion played a protective role in MI. The plasma levels
of TC, TGs, LDLs, and HDLs were analyzed. There was no
significant difference among the four groups (Figure 1(b)),
which suggested that the protective role of Ang IV was not
associated with lipid levels.

3.2. Ang IV Infusion Reduced the Inflammatory Response
after MI. The inflammatory response is a major contributor
to ischemic cardiac injury, resulting from its significant
impact on triggering myocardial apoptosis [23]. Inflamma-
tory cytokines were measured in infarcted hearts 7 d after
MI. The mRNA and protein expression levels of MCP-1,
ICAM-1, and iNOS were consistently and markedly elevated
in the MI hearts compared with the sham group (Figure 2)
but significantly attenuated in the heart tissue of the MI
+Ang IV group. These results suggest that Ang IV exerts
an anti-inflammatory effect after MI.

3.3. Ang IV Infusion Reduced Apoptosis and Autophagosomes
after MI. We then examined whether there was any differ-
ence in cardiomyocyte apoptosis in the border zone. TUNEL

assay results showed that in the border zone, there was no
cardiomyocyte apoptosis in the sham and Ang IV groups;
however, MI significantly induced cardiomyocyte apoptosis
and Ang IV infusion markedly reduced the percentage of
TUNEL-positive cells in the MI+Ang IV group (Figures 3(a)
and 3(b)). Transmission electron microscopy showed that
compared with MI mice, Ang IV reduced autophagosomes
in cardiomyocytes and improved mitochondrial swelling and
disarrangement (Figure 3(c)).

3.4. Ang IV Infusion Improved Cardiac Remodeling after MI.
The ratio of heart weight to body weight was measured in the
following experiments. As shown in Figure 4(a), 30d after MI,
the ratio was higher in the MI group than in the sham group,
while Ang IV infusion reduced the ratio in the MI+Ang IV
group. In addition, there was no difference in baseline cardiac
function and geometry among the four groups of mice (data
not shown). However, at day 30 after MI, a greater deteriora-
tion in LV function was observed in the MI group, while Ang
IV improved post-MI cardiac dysfunction, including LVEDs,
LVEDd, FS, and EF (Figures 4(b)–4(d)). The results indicated
that Ang IV treatment improved heart remodeling after MI.

3.5. Ang IV Infusion Reduced Infarct Size and Fibrosis after
MI. In the following experiment, cardiac remodeling was
analyzed 30 d after MI. H&E staining revealed that there
were similar morphologies in the mice of the sham and
sham+Ang IV groups, whereas MI mice demonstrated heart
expansion and myocardial infarction with a large area, while
Ang IV infusion significantly reduced the infarct area and
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Figure 1: Ang IV increased survive rate after MI without any effect on lipid levels. (a) MI induced high mortality in mice, while Ang IV
increased the survive rate after MI. (b) There was no significant differences in lipid levels in 4 groups of mice. D: days; TC: total
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Figure 2: Ang IV reduced MI-induced inflammatory response in mice. (a–c) Ang IV reduced MI-induced mRNA expression of
inflammatory cytokines, including MCP-1, ICAM-1, and iNOS. (d–g) Ang IV reduced MI-induced protein expression of inflammatory
cytokines. MCP-1: monocyte chemotactic protein 1; ICAM-1: intercellular adhesion molecule 1; iNOS: inducible nitric oxide synthase;
Ang: angiotensin; MI: myocardial infarction. ∗P < 0:05 vs. the sham group; #P < 0:05 vs. the MI group.
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heart expansion (Figures 5(a) and 5(c)). Moreover, Masson
staining showed that MI induced fibrosis in the infarcted
hearts, while Ang IV reduced fibrosis in the MI+Ang IV
mice (Figures 5(b) and 5(d)).

3.6. Ang IV Reduced Hypoxia-Induced Oxidative Stress and
DNA Damage In Vitro. NRVCs were first stimulated by
Ang IV before hypoxia, and oxidative stress was analyzed
by DHE staining. Compared with the control, hypoxia sig-
nificantly induced oxidative stress in NRVCs, while Ang
IV markedly reduced it (Figures 6(a) and 6(b)). Moreover,
comet assay showed that there was little DNA in the nuclear
tail, whereas hypoxia increased the DNA content in the tail,
and pretreatment with Ang IV dramatically reduced it
(Figures 6(c) and 6(d)). The levels of TNF-α and IL-1β in
the supernatant were analyzed by ELISA. Hypoxia stimula-
tion increased the secretion of TNF-α and IL-1β, while pre-
treatment with Ang IV reduced it (Figures 6(e) and 6(f)).

3.7. Ang IV Reduced Cardiomyocyte Apoptosis and
Autophagy Induced by Hypoxia In Vitro. Apoptosis of car-
diomyocytes was analyzed by TUNEL assay. Immunofluo-
rescence showed that there was little cell apoptosis in the
control and Ang IV groups, and hypoxia significantly
increased the number of apoptotic cardiomyocytes, whereas
pretreatment with Ang IV reduced apoptosis (Figures 7(a)
and 7(b)). To further investigate the probable mechanism,

we evaluated the protein levels of LC3 and p62, which
are indicators of autophagy. Western blotting analysis
revealed that the expression of p62 was reduced in hyp-
oxic cells, while Ang IV increased the expression of p62.
Moreover, compared with the hypoxia group, Ang IV
reduced the transformation of LC3-I to LC3-II. Taken
together, our study showed that Ang IV protected against
hypoxia-induced apoptosis by inhibiting autophagy
in vitro.

4. Discussion

AMI remains a major cause of morbidity and mortality
worldwide [24]. With the development in medicine, espe-
cially percutaneous coronary intervention (PCI), the mortal-
ity of AMI has dramatically decreased [25]. However, heart
failure and remodeling after AMI are serious issues that sig-
nificantly reduce the quality of life [26]. Thus, the develop-
ment of novel and effective pharmacological treatments is
urgently needed. This study characterized Ang IV as a novel
treatment for MI. Continuous infusion of Ang IV can reduce
inflammation, apoptosis, and fibrosis, resulting in reduced
infarct size, improved cardiac function, and survival
in vivo. Furthermore, Ang IV reduced hypoxia-induced oxi-
dative stress and DNA damage in vitro. Ang IV reduces apo-
ptosis by inhibiting autophagy. To the best of our
knowledge, these results provide the first direct evidence that
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Figure 3: Ang IV reduced apoptosis and autophagosomes in MI mice heart. (a, b) TUNEL staining showed that Ang IV reduced MI-
induced cardiomyocyte apoptosis. Bar = 20μm. (c) Transmission electron microscopy showed that MI induced autophagosomes and
mitochondrial swelling and disarrangement, while Ang IV infusion could improve it. Bar = 0:5 μm. Ang: angiotensin; MI: myocardial
infarction. ∗P < 0:05 vs. the sham group; #P < 0:05 vs. the MI group. Arrow, autophagosomes; cross, mitochondrial.
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Ang IV preserves cardiac dysfunction after MI and has
important clinical implications for the treatment of ischemic
cardiac injury.

Angiotensin [3–8] (Ang) IV, a hexapeptide fragment of
Ang II formed from Ang III via the action of aminopepti-
dase N, binds with high affinity to the designated AT4 recep-
tor (AT4R) [27]. Chronic Ang IV treatment reverses
endothelial dysfunction in apolipoprotein E- (ApoE-) defi-
cient mice [14]. In addition, Ang IV has a cardioprotective
effect against ischemia-reperfusion (I/R) injury by inhibiting
apoptosis via the AT4R and the phosphoinositide 3-kinase/
serine-threonine kinase/mammalian target of rapamycin
(PI3K/Akt/mTOR) pathway [28]. However, angiotensin
peptides have a very short half-life [15]. Thus, only a con-
stant infusion of Ang IV can maintain a high serum Ang
IV concentration and exhibit some effects. In a previous
study, Ang IV was continuously infused by a minipump,
which was also used in our experiment [15]. We found that

continuous infusion of Ang IV increased survival after MI,
and the therapeutic effect of Ang IV was independent of
lipid profiles.

Although postinfarction inflammation is important for
the removal of necrotic cardiomyocytes and extracellular
matrix debris [29], prolonged inflammation directly pro-
motes myocardial apoptosis and exerts a detrimental effect
on the pathological process of MI [30]. Kong et al. found
that Ang IV treatment markedly reduced macrophage infil-
tration and proinflammatory cytokines [15], suggesting its
anti-inflammatory effect. In our study, MI increased the
expression levels of inflammatory cytokines, including
MCP-1, ICAM-1, and iNOS; however, continuous infusion
of Ang IV reduced the mRNA and protein expression levels
of these inflammatory cytokines. In vitro, hypoxia induced
ROS production and DNA damage, which could be allevi-
ated by Ang IV. Moreover, pretreatment with Ang IV signif-
icantly reduced the secretion of TNF-α and IL-1β. The
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Figure 4: Ang IV improved cardiac function after MI in mice. (a) MI increased the HW and the ratio of HW/BW, while infusion of Ang IV
reduced them. (b–d) Echocardiography showed that Ang IV improved cardiac function after MI, including EF, FS, LVEDs, and LVEDd.
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in vivo and in vitro results demonstrated that Ang IV had an
anti-inflammatory effect. However, further experiments are
required to elucidate the cell signal transduction
mechanisms.

Apart from inflammation in MI, cardiac fibrosis is also
an important pathological process that contributes to the
pathogenesis of cardiac remodeling after MI, which is a tran-
sition from an early inflammatory phase to fibrotic granula-
tion and the maturation stage of cardiac remodeling [16].
Myocardial fibrosis is the end point of cell differentiation
and the activation and proliferation of cardiac fibroblasts
[31, 32]. Inhibition of fibrosis is a promising therapy for car-
diac remodeling after MI. The angiotensin receptor neprily-
sin inhibitor, LCZ696, attenuates cardiac remodeling and
dysfunction after MI by reducing cardiac fibrosis and hyper-
trophy [33]. Our study is the first to demonstrate that con-
tinuous infusion of Ang IV can alleviate fibrosis in the
infarct area after MI.

As the regenerative ability of the myocardium is very
limited, apoptosis essentially contributes to cardiomyocyte
loss after MI, which is directly responsible for increased
infarct size in ischemic heart and the subsequent cardiac
dysfunction or even heart failure [34]. Thus, effective atten-
uation of apoptosis can reduce the infarct size after MI [35].
It is also the reason we assessed the effect of Ang IV on car-
diomyocyte apoptosis in our study. Ang IV was found to

play a previously unrecognized role in the protection against
myocardial apoptosis, with a reduced number of apoptotic
cardiomyocytes in the mouse heart and cardiomyocytes. In
fact, apoptosis-induced cardiomyocyte loss is a common
pathological process shared by many cardiomyopathy-
related disorders [36]. Thus, our study may provide clues
regarding the role of Ang IV in other types of apoptosis-
related cardiomyopathies, such as dilated cardiomyopathy
and peripartum cardiomyopathy. The interruption of
homeostasis between pro- and antiapoptotic proteins is the
underlying cause of myocardial apoptosis after MI [37]. In
this study, we investigated the probable mechanism for this.
Cardiomyocyte apoptosis and autophagy are fundamental
for cardiac homeostasis, repair, and remodeling [38].
Autophagy is induced by various stressors and maintains
an optimal cellular environment by removing protein aggre-
gates and damaged organelles [39]. Autophagy is a complex
process that involves multiple factors. In mammals, LC3B-I
is conjugated with phosphatidylethanolamine to form
LC3B-II, resulting in the maturation of autophagosomes
[40]. Dysregulation of autophagy is associated with a num-
ber of cardiac diseases, including cardiomyopathy [41],
ischemic heart disease [42], and heart failure [43]. There
are some controversial studies regarding the role of autoph-
agy and the effect of the interaction between autophagy and
apoptosis in cell survival during MI [39]. In our experiment,
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autophagy was overactivated by MI, but Ang IV inhibited it
both in vivo and in vitro. Mitochondrial dysfunction plays
a critical role in heart failure after MI [44], which was also
investigated in the present study. We found that MI
induced the swelling and disarrangement of mitochondria
in cardiomyocytes, whereas Ang IV infusion improved this
abnormality.

There were some limitations to this experiment. First, it
was very difficult to obtain human tissue to carry out human
tests; second, the precise mechanism or signaling pathway
involved could not be clearly identified, which needs to be
further explored in future experiments.

In conclusion, these data suggest that long-term infu-
sion of Ang IV before and after MI improves the progno-
sis and attenuates chronic post-MI cardiac remodeling by
inhibiting the inflammatory response and reducing apo-
ptosis via the inhibition of autophagy. Therefore, Ang IV
may be a promising treatment for improving the prognosis
of post-MI cardiac remodeling in patients with reduced
LVEF after AMI.
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