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Abstract By sequencing autozygous human populations, we identified a healthy adult woman

with lifelong complete knockout of HAO1 (expected ~1 in 30 million outbred people). HAO1

(glycolate oxidase) silencing is the mechanism of lumasiran, an investigational RNA interference

therapeutic for primary hyperoxaluria type 1. Her plasma glycolate levels were 12 times, and

urinary glycolate 6 times, the upper limit of normal observed in healthy reference individuals (n =

67). Plasma metabolomics and lipidomics (1871 biochemicals) revealed 18 markedly elevated

biochemicals (>5 sd outliers versus n = 25 controls) suggesting additional HAO1 effects.

Comparison with lumasiran preclinical and clinical trial data suggested she has <2% residual

glycolate oxidase activity. Cell line p.Leu333SerfsTer4 expression showed markedly reduced HAO1

protein levels and cellular protein mis-localisation. In this woman, lifelong HAO1 knockout is safe

and without clinical phenotype, de-risking a therapeutic approach and informing therapeutic

mechanisms. Unlocking evidence from the diversity of human genetic variation can facilitate drug

development.

Introduction
We exome sequenced two large population-based cohorts with substantial autozygosity (Born In

Bradford, Genes and Health [Narasimhan et al., 2016; Finer, 2018]). A healthy adult woman with
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complete lifelong germline knockout of HAO1 (hydroxyacid oxidase 1, encoding glycolate oxidase)

was identified. The frameshift variant, rs1186715161 (present on a single Ensembl 99 transcript

ENST00000378789.3:c.997delC, ENSP00000368066.3:p.Leu333SerfsTer4), for which the woman is

homozygous, is predicted to truncate the final 37 amino acids of the HAO1 protein. Inspection of

blood DNA exome sequencing read data confirmed the genotype (Figure 1A), as did Sanger

dideoxy sequencing in a further saliva DNA sample (Figure 1B). The volunteer was 7.4% autozygous

at the DNA level and the genotype was within a long (5.2 Mb) autozygous region. She was not

homozygous for any other rare (minor allele frequency <1%) predicted loss-of-function genotypes.

No complete knockout (homozygous predicted loss of function, pLOF) variants in HAO1 were

observed in the online gnomAD v2.1 database of 141,456 whole exome/genome sequenced individ-

uals (Karczewski, 2020; Minikel et al., 2019). The cumulative frequency of known pLOF variants in

HAO1 is low, in gnomAD v2.1 approximately 1 in 2700 individuals is heterozygous. Analysis of pLOF

constraint, to assess the degree of natural selection against loss of function, revealed 13 variants

observed out of 17.7 expected (obs/exp = 74%, 90% CI 48–117%), with a confidence interval span-

ning the range for recessive disease genes (mean obs/exp = 59%) and homozygous pLoF tolerant

genes (mean obs/exp = 92%) (Minikel et al., 2019). The lack of strong constraint makes the HAO1

gene unlikely to have a haploinsufficient phenotype, but does not rule out a deleterious health effect

in homozygotes or a mild phenotype in heterozygous carriers. However, since the expected homozy-

gote frequency in an outbred population would be only ~1 in 30 million individuals, assessing the

health effects of HAO1 loss to date has been challenging. Three children have previously been

reported with suspected glycolate oxidase deficiency, however all were ascertained to have compli-

cating factors such as multiple gene deletions or additional mutations associated with a severe

genetic disease, thus confounding clinical interpretation. Furthermore none had plasma biochemical

assays, and not all had HAO1 sequencing performed (Frishberg et al., 2014), (Clifford-

Mobley et al., 2017), (Craigen, 1996).

HAO1 inhibition is a potential chronic therapeutic approach for a devastating metabolic disease

(primary hyperoxaluria type 1, PH1). Thus, the phenotype of a HAO1 null individual could illuminate

the mechanism and safety profile of drugs targeting this enzyme (Nguyen et al., 2018). Her medical

history, and UK National Health Service (NHS) primary and secondary care health records were

reviewed. At the time of assessment, she was in her 5th decade and a mother with three healthy chil-

dren. She declared British-Pakistani ethnicity. Renal ultrasound, carried out as part of a gynaecology

assessment, was normal. She was overweight (BMI 30–35 kg/m2), and other than common non-seri-

ous short-term illnesses and pregnancy symptoms, otherwise healthy.

Standard clinical venous blood biochemistries including serum sodium, potassium, bicarbonate,

chloride, creatinine, transaminases, and bilirubin were repeatedly normal at recall and over the previ-

ous decade. At genotype directed recall, her serum anion gap was normal, and plasma and urinary

oxalate were both normal. However, confirming the loss of function predicted from the genetics, her

plasma glycolate and urinary glycolate levels were markedly elevated (Table 1), at, respectively, 12

times and six times the upper limit of normal in healthy reference individuals.

We analyzed 914 metabolites (736 known, 178 unknown, Metabolon HD4 Panel) and 957 lipids

(Metabolon TrueMass Complex Lipid Panel) from her blood plasma and from controls. Consistent

with the expectation that HAO1 plays a relatively limited metabolic role, the majority of her metabo-

lites were similar (+/- 3 sd) compared to those of 25 control individuals. Principal component analysis

of the metabolomics data showed her to be an outlier on PC2 (Figure 2), analysis of loadings sug-

gested the high glycolate level to be the major driver. We observed that 18 biochemicals (including

glycolate) were markedly elevated (extreme outliers at >5 sd compared to controls) in addition to

other more modestly elevated biochemicals (Supplementary file 1 and 2). Some of these may

reflect the known roles of glycolate in human metabolism, and be directly related to the very high

glycolate. The elevated cholic acid related compounds might be due to reduced local availability of

glycine (a product of the glycolate pathway) to conjugate cholic acid and its bile acid derivatives

(unconjugated bile acids are elevated; glycine and taurine conjugated bile acids are reduced). Six of

the significantly elevated metabolites have a structure compatible with being potential HAO1 sub-

strates, two further evidenced by reduced levels of their predicted metabolic products (annotated in

Supplementary file 1).

Whilst a liver biopsy with direct measurement of enzyme activity was not performed (because of

the risk), we estimated activity from the relationship of HAO1 silencing to substrate build up in vivo
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Figure 1. Integrative Genomics Viewer (IGV) image of sequencing alignments around the ENST00000378789.3:c.997delC HAO1 variant (rs1186715161,

GRCh37:20;7866212 AG/A). (A) Exome sequencing performed using Agilent in solution capture and Illumina short read sequencing using blood DNA.

Top half of image, individual with homozygous ENST00000378789.3:c.997delC genotype. Bottom half of image, a different individual with homozygous

reference sequence genotype. Neither sequencing assay (see also Figure 1B) in the different tissues suggested mosaicism however additional tissues

(e.g. skin) for more definitive exclusion could not be obtained. (B) Sanger sequencing around the ENST00000378789.3:c.997delC HAO1 (rs1186715161)

variant using saliva DNA taken at a different timepoint to the blood DNA in Figure 1A.
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(Liebow et al., 2017; Milliner Dawn, 2018) using data from healthy volunteers in a phase one trial

(32 individuals, https://clinicaltrials.gov/ct2/show/NCT02706886) with the investigational RNAi thera-

peutic lumasiran (Alnylam Pharmaceuticals) targeting HAO1. In healthy volunteers at the highest

dose tested (6 mg/Kg) maximal plasma glycolate and urinary glycolate concentrations were 3–5

times less than observed in the HAO1 knockout woman. This lumasiran dose would be expected to

silence the HAO1 mRNA at >95% based upon modeling from preclinical results in mice, rats, and

monkeys and from direct comparison to clinical data from RNAi therapeutics to other targets that

employ the same molecular design and have similar potency (Fitzgerald et al., 2017; Hill et al.,

2016). Consequently, we estimate that this woman likely retains <2% residual glycolate oxidase

activity.

HAO1 protein is normally found exclusively in hepatocyte peroxisomes and requires the C-termi-

nal tripeptide SKI for this targeting (Recalcati et al., 2001). Since this woman’s HAO1 protein is pre-

dicted to lack the entire C-terminus, we hypothesized an error in peroxisomal targeting might

contribute to loss of function. We therefore performed in vitro cell line assays, transfecting plasmids

with wild-type HAO1 or encoding p.Leu333SerfsTer4 HAO1 into cells (Figure 3). Results with p.

Leu333SerfsTer4 revealed markedly reduced HAO1 protein (mRNA levels were unaffected) with the

p.Leu333SerfsTer4 HAO1 protein also diffusely distributed (mis-localised) within cells.

PH1 is a rare autosomal recessive metabolic disorder of oxalate metabolism (Cochat and

Rumsby, 2013). Overproduction of oxalate occurs in the liver due to an inherited genetic defect of

the enzyme alanine-glyoxylate aminotransferase (encoded by AGXT). High concentrations of urinary

oxalate result in precipitation of insoluble calcium oxalate salts and may lead to paediatric end stage

kidney disease. Multi-organ damage can also occur from systemic oxalosis. Substantial unmet need

exists for therapies to treat PH1 without requiring dual liver-kidney transplantation.

Targeting HAO1 to reduce substrate for oxalate production in the liver is one potential therapeu-

tic approach. Glycolate oxidase is directly upstream of AGXT, reducing glycolate oxidase activity is

expected to decrease oxalate production and increase glycolate levels. Excess glycolate is expected

to be freely excreted by the kidneys and is highly soluble. However, suppression of HAO1 is a novel

therapeutic approach that poses unknown risks. For example, as well as its glycolate oxidase activity,

HAO1 can also metabolise 2-hydroxy fatty acids. Pre-clinical lumasiran studies in mice, rats, and

monkeys suggested no adverse signals from chronic HAO1 silencing of >95%, with the expected

substantial elevations in glycolate levels (Liebow et al., 2017; Martin-Higueras et al., 2016;

Dutta et al., 2016). Neither studies in non-human species nor relatively short-term therapeutic stud-

ies in people, fully inform the lifelong safety of glycolate oxidase targeting in humans, which remains

unknown.

Table 1. Blood and Urine biochemical measurements in a healthy woman with a p.Leu333SerfsTer4

HAO1 knockout.

Sample and assay Level Reference Range*

Venous blood

Plasma oxalate <1.0 mcmol/L <1.6

Plasma glycolate 171 nmol/mL �14

Plasma glycerate <1 nmol/mL �28

Urine (single void, same day as blood tests)

Urine oxalate 0.16 mmol/L Not applicable

Urine oxalate/creatinine ratio 20 mg/g �75

Urine glycolate/creatinine ratio 199 mg/g �50

24 hr urine (on a different day)

Urine oxalate (total/24 hr) 0.27 mmol/24 hr <0.46

Urine oxalate/creatinine ratio 23 mg/g �75

Urine glycolate/creatinine ratio 309 mg/g �50

*Reference ranges (mean+2sd) derived from studies of 67 healthy adults at the Mayo Clinic.
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Figure 2. Principal component analysis of the Metabolon metabolomics data. (A) Data is available in

Supplementary file 1. The first 10 principal components are plotted against each other, with %variance explained.

The two replicates of the HAO1 knockout volunteer are shown as red dots, control individuals as black dots. (B)

Principal component analysis of the Metabolon lipidomics data. Data is available in Supplementary file 2.
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A powerful approach to drug target de-risking is the identification of healthy people who natu-

rally lack activity for a given protein (human knockouts). PCSK9, LPA and APOC3 are classic exam-

ples (Zhao et al., 2006), (Lim et al., 2014), (Saleheen et al., 2017). Such reverse genetics -

identifying individuals with extreme genotypes and then investigating their biology, provides an effi-

cient alternative to the traditional approach of forward genetics - aggregating phenotypes and then

investigating their genetic basis. A major challenge is that individuals with homozygous or com-

pound heterozygous deficiency are expected to be extremely rare, made even more challenging to

ascertain when the interest is in clinically silent phenotypes (e.g. to de-risk therapeutic targets). How-

ever, in selected populations where consanguineous unions are more common, the odds of homozy-

gous mutations of all kinds increases profoundly due to autozygosity. Such naturally occurring

genetic variation in autozygous humans provides opportunities to study the mechanism and safety

of germline gene knockdown across the full life course of an individual - especially as studies are

now sequencing adult populations, rather than focussing on children with rare diseases

Figure 3. The HAO1 variant p.Leu333SerfsTer4 is expressed at significantly lower levels and mislocalised in cells. (A) Western blot showing glycolate

oxidase (GO, encoded by the HAO1 gene) protein for both tagged and untagged reference sequence HAO1 (wild type, WT) and p.Leu333SerfsTer4.

(B) Protein expression quantification of both tagged and untagged wild type and p.Leu333SerfsTer4. (C) mRNA expression quantification of both

tagged and untagged wild type and p.Leu333SerfsTer4. (D) Immunofluorescence shows lower expression levels and diffuse signal for p.Leu333SerfsTer4

relative to wild type. Cells imaged at 60X magnification. The right panel was adjusted to be 2.3-fold brighter than the left or middle panel in ImageJ

software in order show green fluorescence.
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(Narasimhan et al., 2016; Saleheen et al., 2017; Mullard, 2017). Our population genomic pro-

gram, combined with excellent NHS e-health records; and the ability to directly recall consented

subjects for further clinical research (Corbin et al., 2018) has allowed us to identify a clinically silent

(at least in her genetic background, note a possible limitation of this study is that the effect of the

knockout on other human genetic backgrounds could not be evaluated), but very informative, geno-

type leading to HAO1 deficiency (and previously PRDM9 deficiency in another individual

Narasimhan et al., 2016). The study of even a single human is equivalent to a typical knockout

mouse study, in that such mice are very highly inbred and near-identical, thus using multiple mice

only increases measurement precision not the assessment of multiple genetic backgrounds. We pro-

pose that an international collaborative database of human knockouts could increase understanding

of human physiology and accelerate development of therapies for a broad range of rare and com-

mon diseases. Such a database would not require a clinical phenotype for enrollment, and might

identify most homozygous pLOF variants that are compatible with life. Different genes would be

expected to yield different numbers of homozygous knockouts but even an n of 1, as reported here,

provides profound insights.

Most importantly, our data support the potential safety of HAO1 inhibition as a chronic therapy

for the devastating metabolic disease PH1. Furthermore, any potential other effects of HAO1 sup-

pression beyond glycolate oxidation did not lead to any apparent clinical phenotype. This case dem-

onstrates the value of studying the lifelong complete knockdown of a target protein in a living

human to aid development of a potential therapeutic, both in de-risking the approach and providing

in vivo mechanistic understanding to optimize its development. Furthermore, lifelong therapy for

PH1 is likely to be required. Our approach demonstrates the potential for improved drug discovery

through unlocking relevant evidence hiding in the diversity of human genetic variation.

The top two traces (forward sequencing, then below, reverse sequencing) are of the woman with

homozygous ENST00000378789.3:c.997delC genotype. Bottom two traces a different individual

with homozygous reference sequence genotype.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Chinese
Hamster Ovary)

CHO-K1 ATCC CCL-61 RRID:CVCL_0214

Commercial
assay or kit

Taqman Assay for
RT-qPCR HAO1 FAM

Thermofisher Assay Id
Hs00213909_m1

Commercial
assay or kit

Taqman Assay for
RT-qPCR GAPDH VIC

Thermofisher Assay Id
Cg04424038_gH

Ethics
The HAO1 knockout volunteer took part in both the Born In Bradford study and the Genes and

Health study. Volunteers providing control samples took part in the Genes and Health study. Ethical

approval was obtained from Bradford National Research Ethics Committee (06/Q1202/48) and the

South East London National Research Ethics Committee (14/LO/1240). Informed consent and con-

sent to publish was obtained. Information Sheets and Consent Forms are available on the study web-

site (http://www.genesandhealth.org/volunteer-information).

Exome sequencing
Exome sequencing was performed using Agilent in solution capture and Illumina short read sequenc-

ing as described in detail in Narasimhan et al. (2016). This experiment was performed once. Data

reported in the paper are available at the European Genotypephenome Archive (www.ebi.ac.uk/

ega) under accession numbers EGAS00001000462, EGAS00001000511, EGAS00001000567, EGA

S00001000717 and EGAS00001001301.
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Sanger sequencing
Sanger sequencing was performed as described in detail in Narasimhan et al. (2016). Samples were

amplified using M13 tagged primer pair below (PCR conditions: Initial denaturation: 10 min at 96˚C;

followed by 35 cycles of 15 s at 95˚C; 15 s at 55˚C; 30 s at 72˚C with a final extension at 72˚C for

5mins) before sending for PCR clean up and sequencing with M13F and M13R in-house primers at

Source Bioscience. Forward: 5’TGTAAAACGACGGCCAGTTCAAATTCACTTCTCTCCACCA,

Reverse: 5’CAGGAAACAGCTATGACCTGGGGCTTAGCTTTCCAGG. This experiment was per-

formed once, but replicated in forward versus reverse, and versus the exome sequencing and other

results..

Variant annotation
The HAO1 variant rs1186715161 is present on a single transcript in Ensembl 99 (which uses GEN-

ODE v33 BASIC); and on a single transcript in each of the GENCODE v32 comprehensive, NCBI

RefSeq, CCDS (consensus coding sequence) annotations in the USCS genome browser. Whilst addi-

tional transcripts are possibly suggested by more experimental tools such as vizER (using GTEx RNA-

seq data, snca.atica.um.es/browser) or older tools such as AceView (ncbi.nlm.nih.gov/IEB/Research/

Acembly/) our in vivo biological data in the human volunteer with this homozygous variant supports

complete functional knockout.

Plasma and urine collection
Non-fasting blood samples were collected from the HAO1 knockout individual and a control (control

data not shown) for the bespoke biochemical assays. Samples sent for testing at the Mayo Clinical

Laboratories were prepared as per specimen collection guidelines stipulated for each test by the

Mayo Clinical Laboratories. Specifically 4 � 6.0 ml Na Hep vacutainers were filled with blood fol-

lowed by inversion 10 times. Samples were centrifuged (1500xg, 10 min, slow deceleration) at 4˚C,

within 45 min of collection. 3 � 1.0 ml aliquots of plasma were prepared in 2.0 ml cryovials which

were frozen on dry ice before storing at �80˚C. A further 2.0 ml aliquot of plasma was aliquoted into

a 3.0 ml cryovial which was then acidified to 2.3 < pH < 3.5 using concentrated (12N) hydrochloric

acid, samples were then frozen on dry ice before storing at �80˚C.

Urine samples were collected either at the visit, or over a 24 hr period, in both cases, the total

volume was noted, collected sample was swirled to mix then 8–10 ml aliquots were prepared in 15

ml falcons. Samples were frozen on dry ice before storing at �80˚C.

For the bespoke assays at the Mayo, one control sample was sent along with the HAO1 knockout

woman, and Mayo Clinical Labs were blinded to sample identity. Control samples for reference

ranges at Mayo Clinical Labs were other samples being processed at Mayo at similar times. Assays

at the Mayo were performed once.

Metabolon assays were carried out on plasma obtained from the HAO1 knockout woman along

with 25 controls. Control samples were of adults of south Asian ethnicity and both genders from the

Genes and Health study. Demographics are provided in Supplementary file 1. For each person, a

6.0 ml EDTA vacutainer was filled with blood, vacutainers were then inverted five times before cen-

trifugation (2200xg, 15mins, slow deceleration) at room temperature. 0.25 ml plasma was aliquoted

into 2.0 ml pre-chilled cryovials, on ice, before immediate transfer to �80˚C freezer for storage until

samples were transferred to Metabolon on dry ice. Metabolon assays were performed in duplicate

(technical replicate) in the HAO1 knockout individual.

Bespoke biochemical assays
Mayo Clinical Labs were blinded to the identity of the HAO1 knockout individual, and a control indi-

vidual. Urine and plasma oxalate and glycolate quantification was performed at the Mayo Clinical

Labs with samples prepared as instructed for each test (see https://www.mayocliniclabs.com/test-

catalog). Urine oxalate (Test ID: ROXU) was measured using a modification of the oxalate oxidase

method as previously described (Wilson and Liedtke, 1991). Plasma oxalate (Test ID: POXA) con-

centrations were determined for an acidified sample (to minimize spontaneous conversion of ascor-

bate to oxalate) by ion-exchange chromatography using the Dionex ICS 2100 instrument. Urine

glycolate (Test ID: HYOX) was determined along with a panel of metabolites (4-hydroxy-2-oxogluta-

ric, HOG; oxalate, glyoxylate, and glycerate). Briefly, urine samples corresponding to 0.25 mg of
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creatinine (not to exceed 1 mL of urine) were oximated by reaction with methoxyamine hydrochlo-

ride to stabilize one of the target analytes (HOG). The urine was then acidified and extracted with

4:1 ethyl acetate:isopropanol. After evaporation, the dry residue was silylated with 80:20 BSTFA/1%

TMCS:pyridine and analyzed by capillary gas chromatography/mass spectrometry (GC/MS) for quan-

tification of each analyte. For plasma glycolate quantification (Test ID: HYOXP), non-acidified plasma

samples were spiked with a mixture of stable isotope internal standards and treated with pentafluor-

obenzyl hydroxylamine HCl to prepare PFB-oxime derivatives of any oxo-acids present. After oxima-

tion, available hydroxy groups (alcohols or carboxylic acids) were derivatized with a silylating

reagent (N,O-Bis(trimethylsilyl)trifluoroacetamide; BSTFA) to impart necessary volatility and stability

for analysis by capillary GC-MS in PCI SIM mode. Quantification was enabled by calibration with use

of internal standard, and one quantifier ion and one qualifier ion.

Metabolon metabolomics (UPLC-MS/MS), Metabolon HD4 panel
Following receipt by Metabolon, samples were inventoried and immediately stored at �80˚C. Each

sample received was accessioned into the Metabolon LIMS system and was assigned by the LIMS a

unique identifier that was associated with the original source identifier only. This identifier was used

to track all sample handling, tasks, results, etc. The samples (and all derived aliquots) were tracked

by the LIMS system. All portions of any sample were automatically assigned their own unique identi-

fiers by the LIMS when a new task was created; the relationship of these samples was also tracked.

All samples were maintained at �80˚C until processed.

Samples were prepared using the automated MicroLab STAR system from Hamilton Company.

Several recovery standards were added prior to the first step in the extraction process for QC pur-

poses. To remove protein, dissociate small molecules bound to protein or trapped in the precipi-

tated protein matrix, and to recover chemically diverse metabolites, proteins were precipitated with

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifuga-

tion. The resulting extract was divided into five fractions: two for analysis by two separate reverse

phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for anal-

ysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with

negative ion mode ESI, and one sample was reserved for backup. Samples were placed briefly on a

TurboVap (Zymark) to remove the organic solvent. The sample extracts were stored overnight under

nitrogen before preparation for analysis.

Several types of controls were analyzed in concert with the experimental samples: a pooled

matrix sample generated by taking a small volume of each experimental sample (or alternatively, use

of a pool of well-characterized human plasma) served as a technical replicate throughout the data

set; extracted water samples served as process blanks; and a cocktail of QC standards that were

carefully chosen not to interfere with the measurement of endogenous compounds were spiked into

every analyzed sample, allowed instrument performance monitoring and aided chromatographic

alignment. Instrument variability was determined by calculating the median relative standard devia-

tion (RSD) for the standards that were added to each sample prior to injection into the mass spec-

trometers. Overall process variability was determined by calculating the median RSD for all

endogenous metabolites (i.e. non-instrument standards) present in 100% of the pooled matrix sam-

ples. Experimental samples were randomized across the platform run with QC samples spaced

evenly among the injections.

The HD4 dataset comprises a total of 913 biochemicals, 735 compounds of known identity

(named biochemicals) and 178 compounds of unknown structural identity (unnamed biochemicals).

Analysis of glycolate (normally undetectable in this assay) was specifically added by Metabolon as an

extra measurement to the standard 913 panel.

We used the ScaledImpData results set provided by Metabolon. Here, each biochemical in the

OrigScale results set (values normalized in terms of raw area counts) is rescaled to set the median

equal to 1. Then, below detection limit (missing) values are imputed with the minimum.

Principal components analysis was performed for metabolomics (and lipidomics separately) using

the ‘PCAtools’ R package (version 1.2.0). We used the scaled data prepared by Mebabolon which

are available in the ScaledImpData worksheets of Supplementary file 1. Data were not further

scaled since the extreme values observed are expected to be driven by true biological signals.

Excellent correlation (r = 0.9976) between two duplicates of the HAO1 knockout samples were

observed. Therefore the mean of the two HAO1 knockout samples was compared to the mean of
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the 25 other controls, and extreme differences reported (full individual level data for all biochemicals

is provided in Supplementary file 1).

Metabolon lipidomics (infusion MS), Metabolon CLP panel
The extracts were dried under nitrogen and reconstituted in a dichloromethane:methanol solution

containing ammonium acetate. The extracts were transferred to vials for infusion-MS analysis, per-

formed on a Shimadzu LC with nano PEEK tubing and the Sciex SelexIon-5500 QTRAP. The samples

were analyzed via both positive and negative mode electrospray. The 5500 QTRAP was operated in

MRM mode with a total of more than 1100 MRMs. Individual lipid species were quantified by taking

the ratio of the signal intensity of each target compound to that of its assigned internal standard,

then multiplying by the concentration of internal standard added to the sample. Lipid class concen-

trations were calculated from the sum of all molecular species within a class, and fatty acid composi-

tions were determined by calculating the proportion of each class comprised by individual fatty

acids.

Lipids were extracted from the biofluid in the presence of deuterated internal standards using an

automated BUME extraction according to the method of Lofgren et al. (J Lipid Res 2012:53(8):1690–

700).

We used the ScaledImpData results set provided by Metabolon. Here, each biochemical in the

OrigScale results set (values normalized in terms of raw area counts) is rescaled to set the median

equal to 1. Then, below detection limit (missing) values are imputed with the minimum.

Principal components analysis was performed for lipidomics using the ‘PCAtools’ R package (ver-

sion 1.2.0). We used the scaled data prepared by Mebabolon which are available in the ScaledImp-

Data worksheets of Supplementary file 2. Data were not further scaled since the extreme values

observed are expected to be driven by true biological signals.

Excellent correlation (r = 0.9737) between two duplicates of the HAO1 knockout samples were

observed. Therefore, the mean of the two HAO1 knockout samples was compared to the mean of

the 25 other controls, and extreme differences reported (full individual level data for all biochemicals

is provided in Supplementary file 2).

Cell line expression assays
Plasmids: Plasmids were generated by GenScript and were verified using Sanger sequencing.

Cell culture and transfection: CHO-K1 (ATCC CCL-61) were cultured in F-12K Medium supple-

mented with 10% FBS. This cell line was authenticated (cytochrome C oxidase I gene (COI) analysis)

and confirmed mycoplasma free by the American Type Culture Collection (ATCC). Cells were grown

in tissue-culture treated plates. After 18 hr, half of the media was replaced with fresh media and the

cells were transiently transfected with plasmid using Lipofectamine 2000, following manufacturer’s

instructions.

Immunofluorescence microscopy: 24 hr after transfection, CHO-K1 cells were re-plated into cham-

ber slides. After 24 hr, cells were washed with PBS, fixed for 20 min with 4% paraformaldehyde, and

washed with PBS for 5 min. The cells were permeabilized and blocked in PBS containing 1%BSA/9%

normal goat serum/0.3M glycine/0.1% Tween for 1–3 hr. Cells were washed with PBS and coverslips

were mounted on the slides with Antifade Mounting Medium with DAPI (VECTASHIELD; Cat. No:

H-1200). Immunofluorescence was analyzed on Revolve microscope (ECHO) and images were proc-

essed using ImageJ software.

Protein Isolation: Cells were lysed in RIPA buffer (Thermo Scientific Catalog number: 89900) sup-

plemented with 1X protease inhibitor (Roche; Catalog number: 4693132001) at 4˚C for 15 min. After-

wards, the samples were centrifuged at 16,000 xg for 30 min at 4˚C and the supernatants were

collected for downstream processing.

Western Blot: Cell lysate samples were mixed in equal volume of Tris-Glycine SDS Sample Buffer

(2X) with 5% BME (Invitrogen Novex; Catalog number: LC2676). Samples were boiled at 100˚C for 5

min and cooled on ice. Protein ladder (Thermo Scientific; Catalog number: 26619) and samples were

loaded into 8% Tris-Glycine Mini Gels, (Invitrogen Novex; Catalog number: XP00085BOX) in Mini

Gel Tank (Life Technologies; Catalog number: A25977). Gel ran at 100V and was transferred to nitro-

cellulose membrane with iBlot 2 Dry Blotting System (Invitrogen; Catalog Number: IB21001), follow-

ing manufacturer’s protocol. The membrane was blocked for 30 min with 1X TBS blocking buffer
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(Thermo Scientific; Catalog number: 37537) and washed three times with 1X TBS Tween 20 Buffer

(Thermo Scientific; Catalog number: 28360). Membrane was incubated in primary Anti-GO antibody

(Abcam; ab93137) at 1:500 dilution and primary Anti-GAPDH antibody (Abcam; ab8245): at 1:2500

dilution overnight at 4˚C. Next day, membrane was washed three times and incubated at room tem-

perature in Goat anti-Rabbit IgG Secondary Antibody (Li-Cor; 926–32211) and Goat anti-Mouse IgG

Secondary Antibody (Li-Cor; 926–68070) both at 1:7500 dilution. Membrane was washed three times

and imaged using the Bio-Rad ChemiDoc MP Imaging System.

RNA isolation: RNA was extracted and DNase-treated using QIAgen RNeasy Mini Kit (Cat No./ID:

74104), following manufacturer’s instructions.

RT-qPCR: RNA was reverse transcribed into cDNA using High-Capacity cDNA Reverse Transcrip-

tion Kit (Applied Biosystems; PN 4375575), following manufacturer’s protocol. qPCR was performed

using Lightcycler 480 probe master mix (Cat # 04887301001) and probed with HAO1 FAM (Assay Id

Hs00213909_m1, https://www.thermofisher.com/taqman-gene-expression/product/Hs00213909_

m1?CID=&ICID=&subtype which spans exons 2 and 3) and control GAPDH VIC non-PL (Assay Id

Cg04424038_gH) at 95˚C for 10 min, amplified for 45 cycles at 95˚C for 10 s and 60˚C for 30 s and

72˚C for 1 s, and cooled at 40˚C for 30 s. Cell line assays were performed twice.
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