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Magnetocaloric materials with 
ultra-small magnetic nanoparticles 
working at room temperature
M. R. Dudek1*, K. K. Dudek1, W. Wolak1, K. W. Wojciechowski2 & J. N. Grima3,4

Through the use of the Monte Carlo simulations utilising the mean-field approach, we show that a dense 
assembly of separated ultra-small magnetic nanoparticles embedded into a non-magnetic deformable 
matrix can be characterized by a large isothermal magnetic entropy change even upon applying a 
weak magnetic field with values much smaller than one Tesla. We also show that such entropy change 
may be very significant in the vicinity of the room temperature which effect normally requires an 
application of a strong external magnetic field. The deformable matrix chosen in this work as a host for 
magnetic nanoparticles adopts a thin film form with a large surface area to volume ratio. This in turn in 
combination with a strong magneto-volume coupling exhibited by this material allows us to show its 
suitability to be used in the case of a variety of applications utilising local cooling/heating such as future 
magnetic refrigerants.

In the last decade, it is possible to note a rapidly growing interest of the scientific community in the research 
related to applications involving the use of magnetic nanoparticles1–18. Among these studies, a particular attention 
has been devoted to the magnetocaloric property of the ultra-small nanoparticles (smaller than 50 nm) used for 
cooling purposes as discussed in the literature2–6,9,11–13,15,17,19,20.

Even though every magnetic material may exhibit a magnetocaloric effect (MCE), this effect is normally 
very weak at room temperature. Some exceptions include materials based on Gd, that has a critical temperature 
Tc = 294 K, several compounds based on manganites and rare earth metals21. It seems that a significant progress 
in this field originates from the discovery of a giant MCE in Gd5(Si2Ge2) by Pecharsky and Gschneidner22. Upon 
being inspired by this work, in the following years, many researchers made an attempt to identify other ferromag-
netic materials that are capable of exhibiting a large MCE at room temperature. Such studies were focused pri-
marily on adjusting the thermodynamic parameters of tested materials in a way so that the critical temperature Tc 
at which the ferromagnet-paramagnet phase transition takes place would be within the room temperature range. 
The example can be La0.7Ca0.3−xBaxMnO3 compounds suggested for magnetic refrigeration technology near and 
above room temperature23 where the increase of Tc depends on the addition of the barium. Another example can 
be La0.7Ca0.3−xSrxMnO3 magnetocaloric material24. The approach associated with the ferromagnet-paramagnet 
phase transition within the room temperature range ensures a large change in the value of the isothermal mag-
netic entropy ΔS at room temperature (MCE usually is described either by the isothermal entropy change ΔS 
or the adiabatic temperature change ΔT). Similar studies were also carried out for MCE materials with different 
types of magnetic phase transitions25–30.

Despite a possibility of observing a strong MCE effect at room temperature, for most materials it is necessary 
to apply a large magnetic field of a few Teslas to induce such effect which significantly limits its applicability. 
However, it does not have to be the case should one use materials based on systems composed of a sufficiently 
large number of magnetic nanoparticles as reported in experimental studies2,4,20,31,32. Furthermore, in the recent 
theoretical paper33, it was suggested that magnetic systems may exhibit a large magnetocaloric effect even without 
the presence of the external magnetic field. In this work, it was discussed that such effect can be achieved in the 
case of a deformable non-magnetic matrix having magnetic moments represented by Ising spins embedded into 
it. This means that the magnetocaloric effect can be controlled solely via the extent of an axial deformation of the 
matrix which process affects the interaction between magnetic inclusions. As suggested in33, in order to design 
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such deformable matrix one can use mechanical metamaterials which are a class of materials that can exhibit 
unusual mechanical behaviour such as the negative Poisson’s ratio34 based on the way how they are designed. It 
should be also noted that the interest of the scientific community in these systems has grown rapidly in recent 
years due to various mechanical applications ranging from macroscale to nanoscale devices35–39. It is also worth 
to emphasise the fact that such materials offer the geometry-dependent strain-driven factor that can be utilised in 
an attempt of designing new types of magnetocaloric materials.

In the modern society, the control over the temperature of a specific object plays an important role in various 
aspects of our lives. Because of that, scientists devoted a lot of attention to studies related to the possibility of 
inducing the magnetocaloric effect in a specific small region where it could be used for local cooling with some 
examples of this approach being NEMS and MEMS devices2 and various biomedical applications1. In view of this, 
in this work, we consider a particular example of the thin magneto-auxetic film which we investigate from the 
point of view of its potential to induce the magnetocaloric effect. We also analyse its capability to exhibit this effect 
without the presence of a strong external magnetic field in order to assess its suitability to be used in the case of 
applications requiring local magnetic cooling.

Model
In order to analyse the possibility of inducing a strong MCE in a magnetic nanoparticle system, we consider a 
model that was inspired by the recent work by the authors33. More specifically, we consider a thin deformable 
matrix consisting of non-magnetic rotating square-like units with magnetic inclusions located at the centre of 
each of them. In terms of the geometry of the non-magnetic matrix, the angle of aperture α between the struc-
tural units of the matrix determines a degree of its porosity and it may change upon stretching or compressing the 
system. Furthermore, magnetic inclusions considered in this work are assumed to be ultra-small single-domain 
magnetic nanoparticles having a uniaxial magnetic anisotropy where the way how they were incorporated into 
the non-magnetic matrix is shown schematically in Fig. 1. In all of the considered cases, magnetic inclusions 
were assumed to be Fe3O4 nanoparticles but it should be noted that the model used to generate the results, which 
is described in more detail in the following part of this work, is very general and it may also be used with other 
types of nanoparticles. Furthermore, it is assumed that each nanoparticle acts as a single superspin interacting 
with other superspins through dipolar interactions. Here it should be emphasised that the concept of the super-
spin representing a magnetic moment of single-domain magnetic nanoparticles is well-known in the literature 
and is usually used when describing superparamagnetism40. It should also be noted that in the case of dense 
arrangements of magnetic nanoparticles, as is the case in this work, magnetic nanoparticles can show a collective 
behaviour that is typical for spin glasses or superferromagnetic systems40–45. Furthermore, it should be empha-
sised that in this work, for the sake of simplicity, easy magnetization axes for all nanoparticles within the system 
are assumed to be oriented along the z axis.

In the considered model (see Fig. 1), the non-magnetic matrix is represented by a set of perfectly rigid rotating 
square-like units connected at their vertices by means of hinges that allow the system to deform. As shown in 
Fig. 1(b,c), each of the square-like units has a linear dimension of a and the out-of-plane thickness of the investi-
gated material is denoted as b. Furthermore, as indicated in Fig. 1(a), each nanoparticle is represented by a vector 
with three components (Mx, My, Mz) = (Mmx, Mmy, Mmz) where M is the magnetic moment of a nanoparticle and 
mx = sinθcosφ, my = sinθsinφ, mz = cosθ. The remaining symbols defined in Fig. 1, i.e. d, a, θ, φ and α, denote the 
distance between neighbouring nanoparticles, side length of a structural unit, polar angle defining the orientation 
of the magnetic moment in the xy plane, azimuthal angle describing the orientation of the magnetic moment with 
respect to the z axis and the angle of aperture between the neighbouring structural units of the non-magnetic 
matrix respectively. In view of this, the volume of a fragment of the analysed system containing L × L nanoparti-
cles can be described as follows Vs = b(Ld)2.

There are several examples14,37,39,46–48 of metamaterials that may be considered as candidates to be used 
as a non-magnetic matrix similar to the one in Fig. 1 that can operate at room temperature. Moreover, some 
systems which could very well mimic the behaviour of the considered model having a fixed value of α were 
recently reported in experimental studies incorporating magnetic inclusions in the form of Gd2O3

5 and Fe3O4
49 

Figure 1.  Panels show (a) a graphical representation of an example of the magnetic moment M associated with 
each of the nanoparticles within the system, (b) a projection of the surface of the non-magnetic deformable 
matrix composed of L × L = 3 × 3 structural units with the linear dimension defined as a where crosses 
indicate positions of embedded nanoparticles and (c) projection of the 3D layer of the auxetic material having a 
thickness denoted as b where red spheres represent magnetic nanoparticles.
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nanoparticles that were embedded in silica matrix. Various magnetocaloric materials in a form of nanoscale thin 
films as well as engineering techniques used to prepare them can be found in the review article by Miller, Baley 
and Kirby50. Other examples of materials that are expected to have a potential to lead to a similar behaviour to the 
one discussed in this work can be Co/Au nanoparticle systems17, UV-cured magnetic polymer nanocomposities51 
and magnetic nanoparticle superlattices52.

In the case of this work, the evolution of the nanoparticle-based system is analysed through the mean-field 
approximation (mfa) as in papers53,54 however in our case, the mean-field parameter is space-dependent instead 
of being uniform. An example of the quantum version of the mfa approach can also be found in55. Furthermore, it 
should be noted that in this work, the mfa Hamiltonian is applied to the system composed of N (N = L2) magnetic 
nanoparticles arranged on a square lattice (see Fig. 1) and is defined as follows:
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= →M Mmi i). We assume that M does not depend on temperature. The other of the used variables, i.e. Ka and V, 
are a uniaxial magnetic anisotropy energy constant and the volume respectively with both of these variables 
assuming a constant value for all nanoparticles. Furthermore, symbol B denotes an external magnetic field and Kij 
represents magnetic interaction between nanoparticles located at the lattice site i and its nearest or the next near-
est neighbour site j. The value of Kij is chosen to be the mean dipolar energy μ0M2/(4πdij
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a = 2Rg + a0 and a0 is the spacing between the neighbouring nanoparticles in a densely packed system (α = 0° or 
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To calculate mj〈→〉 that appears in Eq. (1), we use the space-dependent mean-field Monte Carlo method which 
was initially proposed by Dudek et al.56 for one-body Hamiltonians. According to this method, one can assume 
that a given number Ls of independent copies of the system consisting of N magnetic moments 
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where k denotes consecutive copies of the system. The evolution of the system towards thermodynamic equilib-
rium is based on the standard procedure incorporating the use of the Metropolis Monte Carlo algorithm and is 
described in the Methods section.

To determine the extent of the MCE for the considered system, it is necessary to calculate the change in 
its entropy. Fortunately, in the case of the mfa, correlations between neighbouring magnetic moments can be 
neglected and the Shannon entropy can be used. As a result, for each nanoparticle at site i, the magnetic entropy 
reads as follows:

S k d d p p/ sin( ) ( , )log ( , ), (3)i B i i0

2

0∫ ∫ϕ θ θ θ ϕ θ ϕ=
π π

where kB represents the Boltzmann constant. Furthermore, the factor sin(θ) in Eq. (3) is the Jacobian of the trans-
formation from the Cartesian to the spherical coordinate system and pi(θ, φ) is the probability density describing 
the rotation of the magnetic moment 
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Mi  by an angle θ relative to the z-axis and angle φ with respect to the x-axis 

(see Fig. 1). Here, the expression describing pi(θ, φ) may be written down in the following manner:
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where β = 1/kBT.
It should be emphasised that in the case of this work, the difficulty corresponding to the calculation of inte-

grals in Eqs. (3) and (4) is overcome by choosing the Monte Carlo integration scheme (see Methods section). 
Furthermore, the total magnetic entropy per nanoparticle is defined as follows:
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Before analysing the extent of the change in the magnetic entropy of the investigated system, which process 
would allow to assess its suitability to be used in the case of magnetocaloric applications, it is important to first 
determine the maximum value of this quantity that can be assumed by the considered system. This stems from 
the fact that in the further part of this work, i.e. in the Results and Discussion section, the observed change in the 
entropy will be analysed through the comparison with such maximum value.

In the case of the considered system, the maximum value of the total magnetic entropy per nanoparticle (see 
Eq. (5)) is considerably large and can be estimated to be equal to Smax = kBlog(4π) ≈ 2.5310 kB. This result can also 
be expressed in terms of the molar entropy as Smax

(u) = Rulog(4π) ≈ 21 J mol−1 K−1 with Ru being the universal 
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gas constant (Ru = 8.3144621 J/mol K). It is also worth to note that some of the scientists focusing on studies 
related to the possibility of inducing the magnetocaloric effect quantify the extent of the change in entropy in 
terms of another unit, i.e. J kg−1 K−1. It should also be noted that in order to express the value of Smax in terms 
of this unit it is first necessary to define a particular representation of the general model shown in Fig. 1. To do 
such estimation, we assume that our system can be represented by a thin layer of silica having the out-of-plane 
thickness of b = 20 nm (see Fig. 1(c)) where magnetic nanoparticles inserted into such layer are Fe3O4 nanopar-
ticles with a radius Rg = 3 nm. For such model, in the case of the particular configuration assumed by the system 
corresponding to the angle of aperture α = 0° (the separation distance between nanoparticles d is at its mini-
mum), Fe3O4 nanoparticles constitute 0.13 mole fraction of the entire system. Furthermore, upon taking all of 
this information into consideration, it can be calculated that the maximum magnetic entropy of the considered 
system Smax

m = Rlog(4π) ≈ 0.44 J kg−1 K−1 where R = Ru/M and M stands for the molar mass associated with all 
constituents of the considered system. This number originates from a large molar mass of magnetic nanoparti-
cles which is approximately 353.82 kg/mol and it represents about 1528 formula units per nanoparticle. For the 
sake of a comparison, it can be mentioned that for the same system corresponding to a very different geometric 
configuration where α = 90°, the maximum entropy increases up to Smax

m ≈ 0.89 J kg−1 K−1. This means that the 
maximum entropy change can be estimated to be equal to ΔSmax = 0.45 J kg−1 K−1. At this point, it is important to 
emphasise the fact that these values are consistent in terms of the order of magnitude with experimental studies 
with some examples being the PNMA polymer film acting as a non-magnetic host for magnetic Fe3O4 nanopar-
ticles which was suggested for local cooling/heating of NEMS and MEMS devices2 and ferrite nanoparticles used 
for similar purposes3.

At this point, it should be mentioned, that the model investigated in this work is not a purely hypothetical 
theoretical concept and that similar materials can be prepared in reality and tested through the use of the exper-
iment. More specifically, as already discussed in more detail in this section, the model considered in this work 
consists of a mechanical lattice resembling the rotating squares system with structural units having magnetic 
nanoparticles embedded on them. Such mechanical lattice is used to change the distance between interacting 
magnetic nanoparticles. Thus, for magnetic interactions between nanoparticles not to be negligible, the structural 
elements of the lattice itself have to be appropriately small. This, in turn, may prove to be challenging from the 
practical point of view. However, in the literature, there are already known examples of very similar deformable 
lattices having their structural elements constructed in a way so that their dimensions are at the nano-scale. 
There are even examples of a nano-scale matrix in a form of the isotropic rotating squares system48 that exhibit 
the negative Poisson’s ratio equal to −1 irrespective of the stage of the mechanical deformation. This, in turn, 
describes the same deformation mechanism as the model discussed in this study. In the aforementioned work 
by Suzuki et al.48, the lattice was constructed through the use of mutants of the C4-symmetric protein RhuA that 
were intertwined together to form a crystalline array. Furthermore, the elasticity of the lattice allowing for the 
isotropic auxetic deformation was attributed to hinges utilising single-disulfide interactions. In view of this, the 
only challenge remaining to potentially construct the material resembling the theoretical model described in this 
work corresponds to the inclusion of magnetic nanoparticles on the lattice similar to the one proposed by Suzuki 
et al. It seems that this could be achieved in a number of ways with the most promising approach being a synthesis 
of nanoparticles directly on the surface of structural units of the lattice.

In addition to the fact that the considered model can be constructed in real life, which as already discussed 
stems amongst others from the fact that nonmagnetic matrices similar to the one discussed in this work were 
already reported in experimental studies, it is also worth to consider the effect that the presence of some of the 
factors appearing in real life while conducting experiments could have on magnetocaloric properties of the sys-
tem. As the matter of fact, one of the most important of such factors is the demagnetization field. In one of the 
recent studies, Normile et al.43 indicated the need to take into account the effect of demagnetization in dense 
magnetic nanoparticle systems due to a sample shape. To this aim, they considered a densely packed powder of 
spherical γ-Fe2O3 magnetic nanoparticles in a form of a thin film with the thickness of around 2 mm and 20 μm. 
The measured in-plane demagnetizing field factors were estimated to be even as large as 0.223 and 0.168 for 
the thick and thin nanoparticle assembly respectively. However, it should be also noted that the impact of the 
demagnetizing field on properties of the system can be decreased upon applying the external magnetic field along 
the magnetic easy axis direction18,50. A general discussion on dipolar interaction and the sample demagnetizing 
factors can be found in paper57. In the case of our model, the assembly of magnetic nanoparticles corresponds to 
nanoparticles that are not touching each other and magnetic easy direction is oriented in the orthogonal direction 
to the plane formed by the considered thin film which as mentioned above leads to a significant decrease of the 
effect that the demagnetization field has on properties of the system. In addition to that, the packing fraction Φ of 
the nanoparticles has a range from Φ = 0.067(α = 90°) to Φ = 0.13(α = 0°) depending on the aperture angle. It is 
also important to remember that the film shape does not change with the value of α.

Results and Discussion
In this work, we analyse the capability of the considered system to induce a strong magnetocaloric effect through 
the use of the model described in the Model section. In particular, we investigate the effect that different fac-
tors such as the change in the geometric configuration assumed by the considered system and the variation in 
the external magnetic field has on the extent of the MCE which in this case corresponds to the variation in the 
isothermal magnetic entropy ΔS (see Fig. 2). As shown in Fig. 2(a), in all of the considered cases, the change 
in the external magnetic field results in a change in the entropy of the system as should be expected since it is a 
characteristic feature of all magnetic materials. However, it is interesting to note that for the same change in the 
external magnetic field (e.g. from 0 T to 0.1 T) the extent of the change in the entropy is different depending on 
the configuration assumed by the system. This stems from the fact that for different values of α the separation 
distance between interacting nanoparticles d changes as it was discussed in the Model section. Furthermore, 

https://doi.org/10.1038/s41598-019-53617-0


5Scientific Reports |         (2019) 9:17607  | https://doi.org/10.1038/s41598-019-53617-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

upon comparing results corresponding to systems characterised by a different value of α, one can note that the 
maximum of −ΔS/Smax tends to shift towards low temperatures as the separation distance between nanoparticles 
increases. It should also be emphasised that based on the results presented in Fig. 2(a) it can be concluded that 
even small values of the magnetic field are sufficient for a very large change in the magnetic entropy, which is also 
the case in the vicinity of the room temperature.

In addition to the variation in the external magnetic field investigated for systems corresponding to specific 
values of α, it is very interesting to analyse the effect that the mechanical deformation corresponding to a change 
in the separation distance d has on the extent of the MCE. Similar concept was recently studied by Elouafi et al.13 
where the effect of the change in the interparticle distance on the value of −ΔS was discussed. In this work, as 
shown in Fig. 2(b), the change in the entropy of the considered system can be induced solely by means of the 
mechanical deformation where in this case such deformation corresponds to the transition of the system from 
the configuration characterised by α = 90° (d is at its maximum) to the configuration where α = 0° (d assumes the 
minimum value). It is important to emphasise the fact that such effect can be induced even without the presence 
of the external magnetic field. However, the application of a change in the external magnetic field can further 
enhance the extent of −ΔS.

Another interesting aspect related to the considered model corresponds to the effect that a size of magnetic 
nanoparticles has on the extent of the MCE. It is particularly interesting to analyse this effect in the vicinity of 
the room temperature. As shown in Fig. 2(c), it can be noted that depending on the size of nanoparticles embed-
ded into a nonmagnetic matrix, −ΔS/Smax changes in a different manner with temperature. Furthermore, one 
can realise that in the vicinity of the room temperature, there is a specific size of magnetic nanoparticles, i.e. 
Rg = 3 nm, in which case the maximum value of −ΔS/Smax can be observed. This means that should one consider 
the use of smaller or larger particles then the extent of the change in entropy would be smaller at such tempera-
ture. These results are consistent with a number of publications, e.g.6,9,10 which show that reducing the size of nan-
oparticles leads to a shift of the paramagnetic to ferromagnetic phase transition towards lower temperatures and, 
as a consequence, the maximum of ΔS is also moved towards lower temperatures. It should be also emphasised 
that the reduction of the dimensionality of the bulk magnetocaloric material to a nanoscale film form can signifi-
cantly change the magnetic properties of these materials and, consequently, their magnetocaloric properties. The 
example can be the recent paper by Giri et al.58 where the strain induced magnetocaloric effect in La0.67Sr0.33MnO3 

Figure 2.  Graphs show isothermal change in magnetic entropy ΔS vs. temperature. In particular, the respective 
panels show (a) the variation in the extent of MCE for three systems of nanoparticles embedded on a non-
magnetic matrix characterised by different values of α, i.e. α = 90°, 45° and 0°, that are subjected to a change 
in the external magnetic field of 0.1T and 0.5T, (b) the variation in the change of the entropy for systems 
subjected to the mechanical deformation corresponding to the change in α with the simultaneous application 
of the external magnetic field and (c) variation in the change of the entropy for systems having particles of 
different sizes embedded into a non-magnetic matrix. Parameters defined in the Model section that were used 
to generate the above results were set to be the following: Kij(α = 90°)/kB = 35.11 K, Kij(α = 45°)/kB = 44.53 K, 
Kij(α = 0°)/kB = 99.32 K, Rg = 3 nm, a0 = 0.5 nm.

https://doi.org/10.1038/s41598-019-53617-0


6Scientific Reports |         (2019) 9:17607  | https://doi.org/10.1038/s41598-019-53617-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

thin film is discussed. Another example is the effect of the reduction in the dimensionality of the bulk polycrys-
talline form of La0.7Ca0.3MnO3 to a thin film and nanocrystalline form reported by Lampen et al.9. Such change in 
the dimensionality was shown to lead to the change in the type of a phase transition which a given material can 
undergo. Lampen et al. managed to show that the first order phase transition observed in bulk La0.48Ca0.52MnO3 
can be weakened in the case of a thin film with the nanocrystallines and it can be converted into the second order 
phase transition. In turn, in paper59, it was shown that antiferromagnetic bulk La0.48Ca0.52MnO3 compound can be 
converted into ferromagnetic material by reducing the particle size in nanometer scale. In this work, an increase 
in the magnetic entropy change following the reduction of the nanoparticle size was also observed.

It should be noted that in none of the considered cases the entropy change −ΔS did not reach the value of 
−ΔSmax. This stems from the fact that for realistic systems −ΔS can never reach the value of −ΔSmax as it would 
require for one of the values in the entropy difference to be equal to zero. This, in turn, is not realistic as in order 
for the system to be maximally disordered the temperature would have to approach infinity.

At this point, one can note that all of the above results describing the variation in the magnetic entropy −ΔS 
upon changing the temperature vary from each other depending on the type of the transition which the system is 
subjected to. In addition to that, in the case of each of the transitions, there is a peak associated with the maximum 
value of −ΔS for a given process that originates from a difference between the entropy of two different thermody-
namic states assumed by the system before and after a specific transition. In the case of this work, such transitions 
correspond to the change in parameters α, B and Rg that affect the interaction between magnetic nanoparticles. 
The first of these parameters, i.e. angle α which may assume any value at the range between 0° to 180°, affects 
the distance between nanoparticles, i.e. d. This means that upon altering the value of α the separation distance 
between nanoparticles is also being changed. More specifically, upon approaching the value of α = 90° (either by 
increasing α at the interval [0°, 90°] or decreasing it at the interval [90°, 180°]), the value of d is increasing which 
stems from the fact that d assumes the maximum value for α = 90°. Conversely, the larger the difference between 
the value of α and 90°, the smaller the value of d. Furthermore, it should be noted that during the transition from 
the system with maximally separated nanoparticles (α = 90°) to the system with densely packed nanoparticles 
(α = 0° or α = 180°), the peaks which are shown on graphs of −ΔS/Smax plotted against temperature tend to shift 
towards higher temperatures. A similar observation can also be made for the system subjected to the variation in 
another parameter, i.e. B. More specifically, the transition of the system from the thermodynamic state without 
magnetic field (B = 0T) to the state with a non-zero value of B increases the height of peaks observed in the case 
of graphs showing the dependence of −ΔS/Smax on temperature. This, in turn, is caused by the effect of magnetic 
ordering occurring at the presence of the non-zero external magnetic field. Finally, it should be also noted that 
the last of the aforementioned parameters, i.e. Rg, also affects the way how peaks appearing on graphs of −ΔS/Smax 
versus temperature behave. In this case, the interaction energy between single-domain magnetic nanoparticles is 
proportional to M2 which leads to the shift of the peaks on −ΔS versus temperature plots. More specifically, the 
higher the value of Rg, the stronger the magnetic ordering between interacting nanoparticles which results in the 
greater shift of the aforementioned peaks towards high temperatures.

In addition to the change in the external magnetic field, size of nanoparticles and the variation in the separa-
tion distance between interacting magnetic nanoparticles, another factor that can contribute to the MCE in the 
considered system is a change in magnetic domains structure. As discussed in the literature41, separated mag-
netic nanoparticles incorporated into a non-magnetic matrix often form a domain-like structure where magnetic 
nanoparticles are correlated into ferromagnetic areas. As shown in Fig. 3(b), the formation of such domains is 
also evident in the case of computer simulations conducted in this work that showcase magnetic ordering in the 
system with 200 × 200 lattice sites. Based on the information obtained from simulations, it is possible to prepare 
histograms that show a distribution of the angle θ (see Fig. 1(a)) between the site-dependent mean-field magnetic 
moment and the z-axis in the case of a zero magnetic field. As shown in Fig. 3(a), the observed distribution is 
bimodal at temperatures below the critical temperature and gaussian above it. It is also worth to emphasise the 
fact that such network of competing areas of ferromagnetically ordered magnetic nanoparticles undergoes fast 
magnetic ordering even at the presence of a weak magnetic field. Furthermore, the effect that the magnetic field 
has on the extent of MCE for the considered nanoparticle-based material is shown in Fig. 3(c). Based on provided 
results, it is clear that MCE assumes larger values for weaker magnetic ordering. More specifically, the value of 
−ΔS calculated after 20 Monte Carlo steps (MCS) is much larger than after 200 MCS. For comparison, results 
generated after 200 MCS in the case of a uniform mfa are also provided. At this point, it should also be mentioned 
that some preliminary studies of the magnetic domain evolution in magneto-mechanical metamaterials subjected 
to a deformation were already conducted in60. The main finding of that work was related to the fact that magnetic 
domains in systems with a non-magnetic matrix deformed at a fast rate grow to a smaller extent than in the case 
of systems deformed slowly which is in agreement with results in presented in this work (see Fig. 3). It also implies 
the importance of the dynamic behaviour of magneto-mechanical structures and the potential of such systems to 
be used in the design of new refrigeration devices.

All of this is very important as in this work, it is shown that the considered system has a potential to be used 
in order to design materials capable of exhibiting a strong MCE without a need of a strong magnetic field even 
at room temperature. More specifically, it was shown that a dense assembly of appropriately arranged magnetic 
nanoparticles can manifest a strong magnetocaloric effect upon being subjected to a relatively weak change in 
the external magnetic field. Furthermore, it was discussed that a process of the mechanical deformation corre-
sponding to the change in the distance between interacting nanoparticles can also induce the MCE which effect 
is possible even without the presence of the external magnetic field. However the additional implementation of 
the external magnetic field can further enhance the magnitude of the induced MCE. In addition to that, it was 
shown the the selection of nanoparticles having an appropriate size plays an important role in the process of the 
optimisation of the extent of the change in the entropy manifested by the system. All of these results indicate that 
the use of deformable dense assemblies of magnetic nanoparticles may potentially lead to the design of efficient 
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magnetic refrigerators/heaters that are significantly more environmentally friendly than conventional cooling 
devices. Furthermore, the use of the concept discussed in this work can also prove to be useful in the case of 
applications requiring the local change in the temperature.

Conclusions
The results of this work suggest that thin layers of magnetic metamaterials composed of ultra-small nanoparti-
cles can manifest a strong local MCE at room temperature even for a weak external magnetic field which is not 
the case for known bulk materials. In addition to that, it was discussed that the extent of the observed change in 
the magnetic entropy can be controlled depending on a number of different parameters such as a range of the 
mechanical deformation, extent of a change of the external magnetic field or the variation in the size of magnetic 
nanoparticles. It was also observed that ferromagnetic-like domains, that form in the considered system com-
posed of densely-packed nanoparticles, significantly increase the MCE. Finally, it was discussed that the concept 
of deformable magneto-mechanical metamaterials is promising from the point of view of future applications such 
as magnetic refrigeration.

Methods
Mean-field metropolis monte carlo algorithm.  Ls copies of a magnetic system with the one-body 
Hamiltonian, described by means of Eq. (1) are defined on a square L × L lattice, where each copy is composed of 
N magnetic nanoparticles (N = L2) with a magnetic moment →mi (i = 1, …, N). Each magnetic moment can interact 
only with the mean fields → = 〈→〉H K mj ij j  at the neighbouring lattice sites and these fields are the same for each copy. 
Before commencing the Metropolis scheme, initially, all magnetic moments ←mi (mx = sinθcosφ, my = sinθsinφ, 
mz = cosθ) within the system are randomly oriented, where θ ∈ [0, π] and φ ∈ [0, 2π]. The main objective of this 
method is to determine 〈→〉mi  (i = 1, …, N). To do that, the following procedure is conducted LsN times for each 
Monte Carlo step:

•	 one magnetic nanoparticle should be chosen at random from the set of Ls copies,

Figure 3.  Panels show (a) histograms of the values of cos(θ) calculated for the angle θ between the space-
dependent mean-field magnetic moments and the z-axis in a system composed of L × L magnetic nanoparticles 
(L = 200,α = 0°) with Rg = 3 nm after 200 Monte Carlo steps performed at zero magnetic field in the case of three 
different temperatures, (b) graphs corresponding to temperatures specified on panel (a) that show differences 
between the mfa domains in terms of cos(θ) at these temperatures and (c) the graph showing the dependence 
of −ΔS/Smax vs. temperature upon applying the external magnetic field of 0.1 T to the system (L = 30, α = 0°) 
with the the magnetic domains developed at zero magnetic field after 20 MCS and 200 MCS. In the case of panel 
(c), the results for the uniform mean-field order parameter (no domains) are added for the sake of a comparison 
with other results.
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•	 an attempt should be made to rotate its magnetic moment from → =m m m m( , , )x y z  to → = ′ ′ ′
′m m m m( , , )x y z  

with the probability min(1, exp(−βΔE)), where ΔE = E(mx
', my

', mz
') − E(mx, my, mz) denotes the energy 

change due to such rotation and β = 1/kBT,
•	 if the rotation described in point (ii) actually occurs, then the value of mi〈→〉 in Eq. (2) in the main text should 

be updated.

Monte carlo integration algorithm.  The integrals in Eqs. (3) and (4) are calculated with the help of the 
Monte Carlo integration scheme. It is a numerical integration method which uses random numbers to calculate 
approximate value of the integral under consideration. The standard deviation in this approximation is equal to 

n1/σ ~  for a given number n of random numbers. In our case, the random numbers are represented by a 
sequence of n random values of θ and φ. Furthermore, the algorithm used in this work in Eq. (4) in the main text 
to calculate entropy Si at the lattice site i is the following:

•	 one should generate a sequence of n random values of θ and φ: {(θ1, φ1), (θ2, φ2), …, (θn, φn)},
•	 the probability sequence {p1, p2, …, pn} should be calculated with

∑π θ= β θ ϕ β θ ϕ−

=

−p
n

e / 2 sin( )e ,
(6)k

H

l

n

l
H( , )

2

1

( , )fa
i

k k fa
i

l lm
( )

m
( )

where k = 1, 2, …, n and sin(θl) is the Jacobian of the transformation from Cartesian to spherical coordinates 
(see Eq. (3)),

•	 entropy at the lattice site i should be determined as follows:

∑π θ= −
=

S k
n

p p/ 2 sin( ) log ,
(7)i B

k

n

k k k

2

1

where sin(θk) is the Jacobian of the transformation from Cartesian to spherical coordinates (see Eq. (4))
It should be noted that the larger value of n the more accurate the value of Si.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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