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Abstract

Walnut shell suture strength directly impacts the ability to maintain shell integrity during har-

vest and processing, susceptibility to insect damage and other contamination, and the pro-

portion of kernel halves recovered during cracking. Suture strength is therefore an important

breeding objective. Here, two methods of phenotyping this trait were investigated: 1) tradi-

tional, qualitative and rather subjective scoring on an interval scale by human observers,

and; 2) quantitative and continuous measurements captured by a texturometer. The aim of

this work was to increase the accuracy of suture strength phenotyping and to then apply two

mapping approaches, quantitative trait loci (QTL) mapping and genome wide association

(GWAS) models, in order to dissect the genetic basis of the walnut suture trait. Using data

collected on trees within the UC Davis Walnut Improvement Program (n = 464), the genetic

correlation between the texturometer method and qualitatively scored method was high

(0.826). Narrow sense heritability calculated using quantitative measurements was 0.82. A

major QTL for suture strength was detected on LG05, explaining 34% of the phenotypic vari-

ation; additionally, two minor QTLs were identified on LG01 and LG11. All three QTLs were

confirmed with GWAS on corresponding chromosomes. The findings reported in this study

are relevant for application towards a molecular breeding program in walnut.

Introduction

English walnuts grown in the United States are sold in-shell, primarily for export at 234,000

tons per year, and shelled for domestic market at 452,000 tons per year totaling 686,000 tons

[1]. The term in-shell refers to uncracked nuts containing the kernels within intact shells.

Shelled walnuts undergo cracking and processing, during which the shell is cleaned and

removed, and kernels are sorted for size, color and quality. The value of intact kernel halves is

substantially greater than smaller kernel pieces. Botanically, walnuts are considered drupe-like,
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consisting of a fleshy mesocarp, or hull, that upon embryo maturity, dehisces, exposing a hard

shell enclosing an embryo which is the edible walnut kernel. The pericarp’s innermost wall,

known as the endocarp, contains cells that differentiate and lignify, giving rise to the shell

structure.

Shell suture strength is a key component of shell integrity, an important economic trait.

Walnut shells need to remain intact during harvest and storage (i.e., during tree shaking, trans-

portation, cleaning, and drying) to exclude dirt, insects, moisture, or other contaminates.

Weak sutures are often the major entry points and can allow nuts to crack open during harvest

or transport, resulting in crop loss. During walnut processing, nuts with weak sutures crack in

the wrong direction, reducing or eliminating recovery of kernel halves [2], which has been

shown to have increased incidence in microbes in almond [3] and pecan [4]. Suture strength is

influenced by tree age and environmental factors. Suture strength and shell thickness were

found to be significantly correlated with broken kernels and insect damage; kernel breakage

can result in increased microbial damage and decreased antioxidant capacity [5].

The English walnut improvement program (WIP) at the University of California, Davis was

initiated in 1949, has released over 20 cultivars, and is currently one of the most important wal-

nut breeding programs worldwide. Shell suture strength, an important breeding objective,

which has a strong genetic component, but also can vary with tree age. As a walnut tree

matures, shells thicken and sutures often improve [6]. Researchers in Iran, Turkey and China

have identified walnut, hazelnut, and macadamia nut suture strength [7–10] as an important

trait for their industries. Current suture strength phenotypic evaluation in the UC Davis WIP

is conducted manually by hand-cracking. Genotypes are evaluated on a 1–9 scale for ease of

splitting the two halves of the shell or tendency to crack along the suture rather than across the

cheek or the shell. Although this method is rapid, and has been utilized for decades to provide

useful basic information, it suffers from subjectivity and lacks sufficient repeatability and reli-

ability. Automated measurements using a machine has the potential to reduce error variance

and introduce more data points on a continuous scale, thus enabling improved detection for

marker trait associations.

Together quantitative trait locus (QTL) mapping and genome-wide association studies

(GWAS) can be successful in uncovering the genetic basis of complex traits [11]. GWAS is

especially useful in tree crops, where generation of bi-parental populations for QTL mapping

takes many years and involves high costs [12,13]. Advantages of QTL mapping include the

ability to obtain high statistical power in making genotype to phenotype associations without

confounding population structure, and evaluate low frequency alleles in a segregating popula-

tion. To date, many marker trait association studies have been performed in tree crops such as

pear [14], apple [15,16] and almond [17]. Specifically, in walnut, Famula et al. [18] applied

association mapping to identify the genetic basis of water use efficiency related traits, while

Marrano et al. 2019 [19] used both QTL mapping and GWAS to decipher the genetic control

of yield, phenology and pellicle color in the UC Davis WIP.

The objectives of this work were: 1) to develop a method for obtaining quantified measure-

ments of suture strength on a continuous scale by using a texturometer machine, developed

initially to characterize food texture [20], to streamline data acquisition and computer software

for processing and; 2) to use these measurements for QTL mapping and GWAS to identify

marker trait associations. Previous studies have utilized a texturometer in walnut solely for

measuring suture strength, however the data has not been applied in breeding populations for

estimation of marker-trait associations until now. We have demonstrated for the first time that

the use of a machine for measuring suture strength can increase precision in the detection of

loci under genetic control of this trait.
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Materials and methods

Mapping populations

A total of 736 walnut trees derived from 40 F1 families of the UC Davis WIP, with an average

of 15 trees per family, were evaluated (Table 1). The parental crosses were made between 2006

and 2013. Most male parents were used only once, a few males were used two to four times,

and one male, ‘Ivanhoe’ was used 13 times; two males were also used reciprocally as females

and vice versa. The largest family (n = 180) was a cross between ‘Chandler’, characterized by

strong suture lines, and ‘Idaho’, which has weak suture lines, and it was utilized for the QTL

mapping approach. All other families, 25 founder trees, and two cultivars ‘Robert Livermore’

and ‘Vina’, representing diverse germplasm from Afghanistan, China, Japan, and France, were

included in the GWAS analysis. The range of ages for trees was 4–14 years, with an average of

7.21 years. Founder trees were grafted on RX1, or VX211 rootstock, clonal Paradox, or Para-

dox seedling. ‘Chandler’ × ‘Idaho’ F1 trees consisted of a mixture of grafted and seedlings on

their own rootstock. The parental trees and seedlings utilized in this experiment were grown

in 12 blocks at the UC Davis orchards. The founder trees were spaced 30 feet apart, the ‘Chan-

dler’ × ‘Idaho’ trees were spaced 10 feet apart, while the seedling in all remaining blocks were

spaced six feet apart. All blocks were watered with micro-sprinklers.

Harvest and post-harvest storage conditions

Walnuts were hand harvested at maturity between August and October. The ‘Chandler’ ×
‘Idaho’ population was collected and phenotyped in 2016 and 2017, while the larger population

of trees (556) were collected and phenotyped in 2015 and 2016. Walnuts were considered

‘mature’ when the hull easily separated from the shell. Harvested walnuts were placed in

labeled mesh polypropylene bags, and air dried at 21˚C for two weeks. The walnuts harvested

in 2015 were stored in-shell in bins at -5˚C and 81.65% relative humidity for a period of five

months before evaluation. During the four months of evaluation, walnuts were stored in-shell

in bins at 0˚C and 87.90% relative humidity. The 2016 and 2017 harvested walnuts were placed

directly in storage at 0˚C and 87.90% relative humidity for a period of two months before eval-

uation and retained there for five months during evaluation.

Suture strength measurements

From each individual tree, 15 walnuts were measured with a texturometer. From the 524 trees

not in the ‘Chandler’ × ‘Idaho’ family, ten nuts per tree were cracked by hand with a hammer

and scored for ease of separating the shell along the suture line using an interval scale from 1

Table 1. Experimental design of seal strength data set.

No. of individuals No. of families No. of Blocks Ages of tree No. of years

Manual Evaluation 524 34 7 4–10 2015, 2016

Texturometer—QTL

mapping

180 1 1 10–14 2016, 2017

Texturometer—GWAS panel 556 39 12 5–9 2015, 2016

Total Texturometer 736 39 12 4–14 2015, 2016,

2017

Includes Number of individuals, families, blocks, year of harvest, and the range of ages of the trees. Trees that were

evaluated with manual evaluation were also evaluated by the texturometer, not all trees that were evaluated with the

texturometer were manually evaluated.

https://doi.org/10.1371/journal.pone.0231144.t001
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to 9, where 1 = open suture, 3 = very weak suture, 5 = moderately strong, and 9 = suture much

stronger than surrounding shell [21]. With the texturometer (model TA-XT2; Texture Tech-

nologies; Surry, England and Exponent 6.1.8.0 software (Stable Micro System; London, UK),

the application of force (kg) and time (seconds) to rupture the walnut suture was automatically

recorded with the input of a human user. The texturometer has three main components: a sta-

tionary cylindrical platform, a moving probe, and a driving unit. Each walnut was positioned

on the platform, suture side longitudinally to the moving probe, and subsequently pressed by

the probe to a depth of 4.0 mm (Fig 1). For an individual tree, walnut shells that were sizably

smaller than the others were discarded; in addition, dried, desiccated kernels were discarded

from the dataset (S1 Fig). The application of force and the time required to deform the walnut

shell were continuously recorded over a span of seconds. From these data points, using a cus-

tom macro, the integral of the force (total energy), the initial rupture, or first crack in the shell,

and the maximum force (i.e. the maximum amount of pressure the shell could withstand with-

out collapsing completely) were measured (Fig 1). Additionally, the texturometer was set as

follows: pre-test speed 1.0 mm/sec, test speed 2.00 mm/sec, post-test speed 10.0 mm/sec, trig-

ger force 0.005kg, return to start distance 4.0 mm, calibrated with 2.0 kg weight (S1 Table).

Basic statistics (means, standard deviations, variances), analysis of variance, and a simple linear

regression were performed in R using packages ‘car’, ‘lme4’, ‘agricolae’, ‘ggplot2’, ‘lsmeans’

and ‘lmertest’ to compare the texturometer method with current manual evaluation-method.

The Shapiro-Wilks normality test was performed to test normality of phenotypic data.

Variance component estimates

The ASReml-R 3 [22] software tool was used to estimate variance components from the phe-

notypic data of 736 trees and a pedigree that was reconstructed with SNP-based data [23]. The

Fig 1. Texturometer phenotyping and graphical output with Exponent software. A. position of walnut shell in the texturometer. B. Initial Rupture is defined as the

first crack in the shell, Maximum Force is the maximum pressure applied to the shell without destroying the kernel, and the shaded area under the curve is the Integral,
or total energy exerted during the cracking process.

https://doi.org/10.1371/journal.pone.0231144.g001
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linear mixed model utilized for both the texturometer and manual evaluation were as follows:

y ¼ mþ year þ aþ e

where y was the record of the individual tree, μ was the overall mean, a was the additive genetic

value, and e was the error term. Year was fit as the only significant fixed effect, while the addi-

tive genetic values were fit as the only random effect. When considering only the texturometer

methods, male parent, block, and year were added as fixed effects, and the additive genetic

value was set as random. A conditional Wald F-test was used to test the significance of fixed

effects in the model, and log-likelihood ratio test was used to choose the best model. A bivari-

ate model was used to estimate the covariance of texturometer trait measurements to both

manual evaluation and to Julian harvest date. A repeatability model was applied to assess the

repeated observations that were acquired in the two-year dataset with all the same factors (year

as fixed) as in the univariate and bivariate model. Narrow-sense heritability was calculated as

defined: h2 = Va/Vp, the additive genetic variance divided by the phenotypic variance.

For each individual tree, the mean of the texturometer data points was calculated on the 15

walnut measurements/tree. In order to obtain one value per individual for both years of data

collection, the adjusted means were determined using the R package ‘lsmeans’, with block and

year as fixed factors in the model. Phenotypic data was analyzed for each year separately and

the adjusted means were calculated for both years.

Genetic map construction

Using the custom Axiom J. regia 700K SNP Array [23], 339K polymorphic, high quality (Poly-

high resolution) SNPs were used for analysis. Segregating SNPs were then selected which fit

into a double pseudo-backcross type, with one parent being heterozygous and the other parent

being homozygous (AB x AA/BB and AA/BB x AB), and separated into two datasets.

Genetic maps were constructed in R package ASMap [24] utilizing MST (minimum span-

ning tree) mapping algorithm [25] to assign markers into linkage groups (LGs) and order

them. Distorted SNPs (p-value< 0.01) and markers with missing rate (> 0.10) were removed.

Co-mapping SNPs were removed, retaining only one marker per locus. Genetic distance was

estimated using the Kosambi mapping function.

Linkage groups were oriented and numbered according to the SNP physical locations onto

the new chromosome-level assembly of the J. regia ‘Chandler’ reference genome v.2.0 (avail-

able at https://www.hardwoodgenomics.org/Genome-assembly/2539069).

QTL mapping

QTL mapping was performed using the R package ‘R/qtl’ [26]. Simple interval mapping was

performed with a genome scan utilizing a single QTL model (scanone) with both maximum

likelihood and “Haley Knott” regression algorithms [27]. Bayes 0.95 credible interval was

implemented to locate confidence interval around the most significant SNP. Significance LOD

thresholds at ρ = 0.05 were determined by permutation tests with 1,000 permutations. Two-

dimensional, two QTL scans were performed with (scantwo) in order to assess interactions

and possible linkage of multiple QTLs. Interval mapping results were then compared with

multiple QTL (MQM) [28] mapping algorithm, which utilizes augmentation for missing data,

multiple regression, backward elimination, and selection of significant SNPs outside of interval

as a covariate. Composite interval mapping was then performed to compare results among

mapping methods; the marker closest to the marker with highest LOD score was added as a

covariate, and “Haley Knot” regression algorithm was run in the model [27]. To estimate the

phenotypic variance explained by each significant SNP, total variance in the model, and
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significant SNPs allelic effects, an ANOVA was fit with either a multiple QTL model, if there

were two QTLs, or a single QTL model with function fitqtl. To adjust QTL locations in a multi-

ple QTL model, the function refineqtl was utilized.

Data preparation for GWAS

Quality control of SNPs was performed prior to GWAS. Using PLINK 1.9 [29], only SNPs

with minor allele frequency (MAF) > 0.05, genotypic call error rate> 0.05, and which were in

Hardy Weinberg equilibrium (p-value <0.001) were retained. Additionally, individuals with

values of heterozygosity above or below the mean of all genotypes ± 3 standard deviations

were removed.

In order to evaluate the structure of the mapping population, principal component analysis

(PCA) was utilized. Different filtering parameters were applied from those described above:

Poly High Resolution SNPs generated with the Axiom J. regia 700K SNP Array [23] were dis-

carded if they had missing rate> 0.20 and MAF< 0.05; the remaining SNPs were then pruned

to be in linkage disequilibrium (LD) > 0.25) using the R package ‘SNPRelate’ [30]. A scree plot

was used to assess how many PCs to include as covariates in GWAS analysis.

GWAS analysis

The estimated breeding values that were generated from variance components calculations in

R-ASReml 3 [22] were used for GWAS. Genome-wide associations was conducted by using

the Fixed and Random Model Circulating Probability Unification (FarmCPU) algorithm [31]

and multi-locus mixed linear model (MLMM) algorithm [32] in R package GAPIT 2 [33]. The

MLMM is a multi-linear model (MLM) [34] where both Q (population structure) + K (kinship

matrix) are fitted to the model as random effects, reducing type I errors due to spurious associ-

ations from relatedness and population structure. A 5% Bonferroni threshold was used to

assess significance, and Q-Q plots and Manhattan plots were inspected for evidence of infla-

tion. A multiple corrections test was then utilized to assess SNPs at a less stringent threshold.

The number of PCs to add as covariates in the multivariate model was defined using the func-

tion model selection implemented in GAPIT, once the initial PCA and scree-plot was evalu-

ated for the maximum number of PCs to add. In particular, FarmCPU implements a

generalized linear model (GLM) where PC’s are added as covariates to first scan for single sig-

nificant markers. Subsequently, markers are in binned into pseudo quantitative trait nucleo-

tides (QTNs), log likelihood estimates are then derived from a random effect model, and best

QTNs are set as covariates for another genome scan where the process is repeated until the

same QTNs display significance. The GLM model was set to perform 10 iterations, with three

PC’s (fourth PC was not informative), a MAF threshold of 0.05, and the default parameters for

bin size.

Data visualization

Mapchart v2.32 was used for visualization of QTL maps [35]. R package MareyMap 1.3 [36]

was utilized to visually compare genetic map distance (cM) to physical distance. R package

‘genetics’ was used to format data and ‘LDheatmap’ [37] was used to visualize the LD between

significant SNPs.

Candidate gene analysis

Blocks of linkage disequilibrium around the most significant trait-associated loci were defined

with Haploview 4.2 using the default algorithm of [38], where LD blocks are grouped based on

PLOS ONE QTL mapping and genome-wide association for suture strength in walnut

PLOS ONE | https://doi.org/10.1371/journal.pone.0231144 April 9, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0231144


95% of SNP comparisons to be in strong LD (> 0.80). These LD blocks were used to search for

candidate genes using the NCBI RefSeq J. regia database mapped onto the new chromosome-

level assembly of the J. regia ‘Chandler’ reference genome v2.0.

Results and discussion

Analysis of variance for texturometer traits

For the two-year dataset (2015–2016) on the 526 individuals, the proportion of within family

variance for integral measurements was determined to be 22%, while the proportion of among

family variance was 77%. With inclusion of the ‘Chandler’ × ‘Idaho’ dataset, the proportion of

within family variance decreased to 19.21%, and the proportion of among family variance

increased to 80.64%. Suture strength phenotypic data collected in 2015, 2016 and 2017 were

found to be significantly different from each other (ANOVA, “Tukey” ρ< 0.001). The data

was not normally distributed, according to the Shapiro-Wilks normality test (ρ< 0.05), and

outliers were removed from further analysis. For the 24 families that contained more than 10

individuals, family 11–011 (95-026-16 × 03-001-3382) had the highest Least Square Mean

(LSM) score (38.697 ± 0.886; n = 11), while family 11–029 (03-001-665 × 01-007-2) had the

lowest LSM score (24.28 ± 0.886; n = 12). The ‘Chandler’ × ‘Idaho’ family walnut shells dis-

played a great amount of diversity in size and shape (S1 Fig). Age and block were not signifi-

cant factors in the linear model when estimating ANOVA, while year of harvest was a

significant factor.

Variance components, heritability estimates and correlation between traits

With the manual evaluation method, additive genetic variance was found to be lower than

environmental variance, which corresponded to its low narrow-sense heritability of 0.16

(Table 2). For texturometer-based methods, the additive genetic component for initial rup-

ture, integral and maximum force was much higher than environmental variance, and there-

fore high heritability was observed for all traits (0.82–0.84; Table 2). When considering block

as a random effect, the proportion of block variance was estimated to be 9.75%, and when esti-

mating family or male parent effects, the proportion of family variance was found to be 1.96%

while the proportion of male parent variance was 13.11%. For the manual evaluation, the pro-

portion of block variance was not significant (ρ> 0.05), and therefore it was not considered in

the model. The estimated breeding value coefficient of variation for texturometer was found to

be about ten times higher than that of the manual evaluation method (Table 2). When consid-

ering only ‘Chandler’ × ‘Idaho’ mapping population (n = 180) the environmental variance

increased to 33–40% for texturometer phenotypes and therefore narrow-sense heritability

estimates were lower than the individuals in the breeding program (S2 Table). For the

Table 2. Comparison of manual evaluation vs texturometer measurements.

N EBV μ EBV σ EBV CV VA VR h2 r

Manual Evaluation 464 4.86 0.11 2.32 0.02 (15.88%) 0.14 (84.12%) 0.16 0.09

Initial Rupture 464 23.58 6.50 27.58 74.49 (82.02%) 16.33 (17.98%) 0.82 0.76

Integral 464 29.60 6.01 20.32 60.41 (81.80%) 13.44 (18.20%) 0.82 0.76

Maximum Force 464 25.28 6.09 24.10 64.41 (83.77%) 12.48 (16.23%) 0.84 0.78

Measurements taken with harvested walnuts in 2015 and 2016. Summary statistics and variance components estimated: EBV μ = mean, EBV σ = standard deviation,

EBV CV = coefficient of variation, VA = additive genetic variance, VR = residual genetic variance, h2 = narrow-sense heritability, r = repeatability.

https://doi.org/10.1371/journal.pone.0231144.t002
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‘Chandler’ × ‘Idaho’ dataset, year and age of tree were significant factors in the model. When

performing the analysis on all individuals including the Chandler’ × ‘Idaho’, narrow-sense her-

itability for texturometer phenotypes (0.79–0.81) was higher than when only considering the

mapping population (S3 Table).

Estimated breeding values (EBVs) of top 20 individuals with highest integral values

(higher values indicate stronger suture) are displayed in (S4 Table); cultivars Chandler, Vina,

Hartley, Tulare, and S. Franquette had lower breeding values for the integral trait than for the

seedlings in the UC Davis WIP. Individuals from the families 11–011 (95-026-16 × 03-001-

3382), 10–016 (00-005-44 × 03-001-2357), 09–028 (95-027-38 × 95-007-13) and 11–030 (04-

003-107 × Ivanhoe) were found (S4 Table) among the top 20 individuals for suture strength.

Estimated breeding values based upon manual evaluation resulted in categorical data that was

restricted to scores between 4.3 and 5.3 (Fig 2), while for the texturometer phenotypes, the

EBVs were continuous and normally distributed on scale between 10–45 kg of force applied

(Fig 2).

Fig 2. Histogram of estimated breeding values of manual evaluation and texturometer phenotypes. A. Manual Evaluation based on a scale of 1–9, n = 494,

Texturometer phenotypes were measured as kilograms of force, n = 802 (736 with 66 parents). B. Integral, C. Initial Rupture, D. Maximum Force.

https://doi.org/10.1371/journal.pone.0231144.g002
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There was high correlation (r2
G > 0.60) between integral and manual evaluation initial rup-

ture and maximum force, while harvest date and integral were poorly correlated (r2
G = 0.07,

S5 Table).

Genetic map and QTL detection

The ‘Chandler’ genetic map was arranged on 16 linkage groups with a total of 1,165 markers, a

total length of 998.31 cM, and an average distance between markers of 0.9 cM (S1 Fig). The

‘Idaho’ genetic map consisted of 1,753 markers for a total length of 1,693.88 cM and an average

distance between markers of 0.70 cM (S1 Fig).

Genome-wide thresholds resulted from 1,000 permutation test were 3.08, 3.04 and 3.07

LOD for initial rupture, integral, and maximum force respectively. Using both simple interval

mapping (SIM) regression algorithm and MQM mapping, five QTLs in total were detected for

the three texturometer-based measures on LG05 and LG11 of ‘Chandler’, explaining 1.9–

25.8% of the phenotypic variation (Fig 3, Table 3). Five QTLs were also detected on LG1,

LG09 and LG11 of ‘Idaho’, explaining 3.86–17.12% of the phenotypic variation (Fig 4,

Table 3). In addition, the CIM algorithm detected the same QTLs in which the SIM and

MQM algorithm detected (S4 Fig, S5 Fig).

Principal component analysis

The total amount of SNPs utilized for PCA after filtering was 45,441. By looking at the entire data-

set of 730 individuals of the UC Davis WIP, PC1 accounted for 12.46% of the genetic variation

and PC2 for 9.10% of the variation. The ‘Chandler’ × ‘Idaho’ population is quite distinct from the

other individuals of the breeding program, and the founders are on the opposite side of each

other along the PC1. Parents of the other families are dispersed across the PCA plot (Fig 5).

Genome-wide association study

Sixteen significant genotype-to-phenotype associations were detected in total (Table 4). Two

significant associations were determined on Chr05 for the manual evaluation phenotype,

which were in moderate LD and 300 kb away from each other (r2 = 0.501, D’ = 1.0); the

MLMM detected association was in high LD with the locus associated with the integral pheno-

type 1.86 Mbp away, (r2 = 0.814, D’ = 0.973).

Utilizing the texturometer phenotypes, five significantly associated SNPs were identified on

Chr05 using the MLMM algorithm, and were consistent for all phenotypes and no other asso-

ciations were determined (Fig 6). The significant associations detected with FarmCPU algo-

rithm were consistent with associations detected with MLMM, with the addition of significant

loci at or near the threshold for the texturometer methods on Chrs 01, 02, 07, 08, 09, 11, 13.

For Chr05, measures of LD were found to be high between the texturometer methods as

they were in the same LD block of 436 kb (Fig 7). Both maximum force and initial rupture sig-

nificant loci were in LD with the two SNPs associated with integral phenotype (r2 = 0.991, D’ =

0.995), 179 Kb and 269 Kb away (same LD block of 436 Kb) and even at distances 1.39 Mbp

away (r2 = 0.982, D’ = 1.0) (Table 4, Fig 6). The SNP on Chr05 associated to the manual evalu-

ation trait was found to be in a distant LD block 1.45 Mbp apart from the texturometer LD

block (Fig 7). Most significant SNPs for both manual evaluation and texturometer phenotypes

had negative effects, for the alternative allele (Fig 8). Physical positions of the most significant

SNPs in GWAS are in overlapping chromosomal regions for QTLs on LG05 and LG11 in

‘Chandler’ (S3 Fig). The same was observed for ‘Idaho’ QTLs found on LG01 and LG11 (S3

Fig). Other co-located SNPs in GWAS and QTL mapping for ‘Idaho’ were on Chr09 and

LG09 for maximum force in an overlapping region of the QTL interval.
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Candidate gene analysis

Candidate genes were identified for texturometer phenotypes on Chr05. FAR1 was identified

for maximum force and integral. It plays a role in growth and development with light percep-

tion capture via phytochrome signaling [39]. Peptide-N(4)-(N-acetyl-beta-glucosaminyl)

asparagine amidase gene was also found for the maximum force SNP on Chr11 and aids in the

addition of glycans (saccharides) to proteins [40]. Also, on Chr01 the glycosyltransferase gene,

which codifies an enzyme critical in establishing structure with glycosidic linkages with sugar

transfer [41], was identified for the integral measurement. More specifically, a probable xylo-

glucan endotransglucosylase gene was found within the initial rupture QTL on Chr05 The

function of this protein is to cleave and relegate xyloglucan polymers which are primary con-

stituents in primary cell wall and cell wall growing tissues [42](S6 Table).

Suture strength in nuts is poorly understood because there has not been a universal method

of measurement. We describe a quantitative phenotyping method for measuring the strength

Fig 3. ‘Chandler’ QTL mapping for texturometer phenotypes. A1. ‘Chandler’ genome wide QTL (MQM) results for Initial Rupture, Integral and Maximum Force

phenotypes for the adjusted mean for 2016, 2017. A2. LG11 QTL with intervals for Integral and Maximum Force (2016, 2017). B1. LG05 major QTL with intervals and

LOD graph for Initial Rupture, Integral and Maximum Force (2016, 2017).

https://doi.org/10.1371/journal.pone.0231144.g003

Table 3. QTL mapping results for texturometer phenotypes in ‘Chandler’ and ‘Idaho’.

A. Initial Rupture

QTL Loc (cM) Physical pos (bp) Interval (cM) LOD R2 (%) Detected (Year)
‘CR’

Chr05 AX.171024351 29.77 12,558,173 27.99–37.52 17.9 25.78 16, 17, 16/17

‘ID’

Chr11 AX.170873965 26.26 7,954,664 13.39–38.88 3.27 8.631 16

B. Integral

QTL loc (cM) Physical pos (bp) Interval (cM) LOD R2 (%) Detected (Year)
‘CR’

Chr05 AX.171164993 27.99 10,015,707 27.99–37.52 17.55 34.20 16, 17, 16/17

Chr11 AX.171167592 24.54 22,728,255 0.0–27.52 5.09 8.29 16, 17, 16/17

Total 44.65

‘ID’

Chr01 AX.170557708 136.54 44,984,959 124.00–136.55 6.84 17.12 16, 17, 16/17

C. Maximum Force

QTL loc
(cM)

Physical pos (bp) Interval (cM) LOD R2 (%) Detected (Year)

‘CR’

Chr05 AX.170639921 29.77 10,937,209 27.99–37.52 18.07 35.17 16, 17, 16/17

Chr11 AX.171167592 24.54 22,728,255 0.0–25.14 4.59 7.57 17, 16/17

Total 45.13

‘ID’

Chr01 AX.170557708 136.54 44,984,959 124.00–136.55 4.59 3.86 17

Chr09 AX.170681493 23.82 13,943,092 7.14–37.51 3.42 6.64 16

Chr11 AX.171480798 22.05 4,967,174 13.39–38.88 3.38 8.94 16, 16/17

Total 18.27

Data collected in 2016, 2017 for 180 individuals in the ‘Chandler’ x ‘Idaho’ population. ‘CR’ = Chandler, ‘ID’ = Idaho, loc = location in cM, LOD = log of odds score,

Detected Year = 16/17 is the adjusted mean for both years. If detected in both years, LOD and R2 taken from the adjusted mean.

https://doi.org/10.1371/journal.pone.0231144.t003
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of walnut shell suture and demonstrate its usefulness in improving the ability to discriminate

between strong and weak sutured individuals by decreasing the variability inherent in subjec-

tive phenotyping.

In line with our texturometer findings, other studies have measured the suture strength of

walnut [7,8] and macadamia nut [9] with a universal testing machine, and also defined the

maximum force at the position perpendicular to the plane of the suture line, as requiring more

energy to rupture the suture, while the minimum force applied was found along the suture

line. However, the Turkish walnut cultivars tested by [7] had lower suture strengths than the

cultivars and seedlings from the UC Davis WIP(149N along suture, or 15.19 kg/f, and 224N or

22.84 kg/f respectively). The integral measurement accounts for the force and time required

for deformation of the shell, and is the total energy exerted or the area under the curve; a shell

with a high integral would be one that can withstand the greatest amount of pressure per unit

of time.

Narrow-sense heritability is a measure of how strongly the phenotype is correlated with

genotype [43]. In our study, the manual evaluation method yielded a low h2, while the textu-

rometer method gave a moderately high heritability, and thus more accurately predicts suture

strength. In comparing variance components, the texturometer method gave a lower residual

error than manual evaluation, indicating reduced phenotyping error. Progress in suture

strength over time in the UCD WIP is indicated by breeding values of seedling trees higher

than that of the founders.

Fig 4. ‘Idaho’ QTL mapping of texturometer phenotypes. A1. ‘Idaho’ genome wide QTL mapping for Maximum Force (2016, 2017) and Initial

Rupture (2016) on LG01, LG09, LG11. A2. ‘Idaho’ LG11 with Initial Rupture 2016 and Maximum Force intervals for 2016/2017. B1. ‘Idaho’ LG01

for Integral (2016, 2017) and Maximum Force (2017) phenotypes drawn with LOD scores.

https://doi.org/10.1371/journal.pone.0231144.g004

Fig 5. Principal component analysis with 730 individuals. Analysis performed in R-Package SNPrelate with 45,441 SNP markers representing 40 full-sib families.

‘Chandler’ × ‘Idaho’ mapping population highlighted. Each color/shape represent a different family, and the founders of the UC Davis WIP founders are displayed with

black circles.

https://doi.org/10.1371/journal.pone.0231144.g005
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Table 4. GWAS results with MLMM and FarmCPU models run with 528 individuals.

Trait Modela SNP Chr Position (bp) p value Allelic

Effect

R2b MAFc Allele Annotation

ME MLMM AX. 171135430 5 12647620 3.81−08 -0.01 0.09 0.26 A/G uncharacterized LOC109018872�

ME FCPU AX. 170748528 5 13023760 1.18−16 -0.08 0.01 0.15 A/G lamin-like protein�

IR MLMM AX. 171524856 5 14333096 1.52−19 +0.53 0.08 0.30 A/C protein FAR1-RELATED SEQUENCE 5-like

IR FCPU AX. 171577297 5 14602000 1.53−19 -3.91 0.08 0.29 A/G uncharacterized mitochondrial protein AtMg00310-like

IR FCPU AX. 170923201 1 42331578 1.40−08 -1.43 0.01 0.32 T/G probable WRKY transcription factor 21�

IR FCPU AX. 171511499 11 13714234 6.79−07 -2.05 0.003 0.36 C/G leucine-rich repeat receptor-like protein kinase PXL1

I MLMM AX. 171535400 5 14512735 6.66−18 +0.93 0.03 0.29 A/T uncharacterized mitochondrial protein AtMg00310-like

I FCPU AX. 171007298 5 12933466 5.72−21 -3.67 0.03 0.30 A/G uncharacterized LOC108997528

I FCPU AX. 170916442 1 41423083 4.12−12 -1.58 0.01 0.42 T/C N-alpha-acetyltransferase 35, NatC auxiliary subunit

I FCPU AX. 170916442 1 41423083 4.12−12 -1.58 0.01 0.42 T/C probable glycosyltransferase AT5g20620

I FCPU AX. 170721959 11 13213747 5.12−10 +3.21 0.01 0.10 A/G uncharacterized LOC109000358

MF MLMM AX. 171524856 5 14333096 2.12−20 +0.53 0.08 0.30 A/C protein FAR1-RELATED SEQUENCE 5-like

MF FCPU AX. 171577297 5 14602000 5.90−21 -3.71 0.08 0.29 A/G uncharacterized mitochondrial protein AtMg00310-like

MF FCPU AX. 170857218 1 37594096 6.38−06 +1.41 0.01 0.15 T/G uncharacterized LOC109010139

MF FCPU AX. 171101817 9 12818992 8.07−09 -1.27 0.01 0.36 A/G myb related protein Myb4-like�

MF FCPU AX. 171547773 11 10995387 1.25−09 -1.59 0.01 0.37 C/G peptide-N(4)-asparagine amidase

ME = Manual Evaluation, IR = Initial Rupture, I = Integral, MF = Maximum Force. Bold and italicized SNPs indicate same loci across phenotypes. Underlined allele is

the effect towards reference or alternate allele. Asterisk� denotes closest gene to physical SNP position.
a Model MLMM multi locus mixed model employed in GAPIT, FARMCPU fixed and random model circulating probability unification.
b R2 variance explained for each significant SNP.
c MAF minor allele frequency, threshold set at 0.05.

https://doi.org/10.1371/journal.pone.0231144.t004

Fig 6. GWAS results displaying Manhattan and Q-Q plots for walnut 16 chromosomes. A. FarmCPU model B. MLMM model C. Multiple Q-Q plots for GWAS

analysis of manual evaluation and texturometer traits with MLMM and FarmCPU models.

https://doi.org/10.1371/journal.pone.0231144.g006
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Our phenotyping method based on a texturometer indicated that the integral measurement

can most accurately account for total energy required to rupture the walnut shell suture

because it considers the total stress and strain placed upon the suture, rather than force alone.

A computerized penetrometer was used similarly in an apple breeding program to accurately

select top performing individuals [44], and a digital testing machine was used to phenotypi-

cally analyze fruit firmness QTLs for tomato [45]. We successfully demonstrated that the use

of a texturometer, for measuring walnut shell suture strength, is more sensitive to capturing

variation and therefore can increase the detection of additive genetic component for this trait.

We observed some degree of the Beavis effect [46] between explained phenotypic variance

detected for QTL mapping compared to GWAS. Depending upon the power of an experiment,

the estimated effects of declared QTL can have an upward bias; the magnitude of effects are

inflated for progeny size of 100, somewhat inflated for progeny size of 200, and close to actual

effect with progeny size of 1000 [46]. Xu et al. 2003 [47] found that if the sample size was 200

and the estimated effects are greater than 0.10 then the overestimated bias is about 7%. In our

QTL mapping study with a population size of about 200, only the QTLs detected on Chr05 had

an estimated effect over 10%, while other QTLs explained between 3–8% variation, and in

GWAS the average genetic effect was 1%. Therefore, the QTLs detected from QTL mapping

are likely to an overestimated bias. For testing and validation of markers for marker-assisted

selection, the QTLs with the largest effect should be selected.

Fig 7. Pairwise linkage disequilibrium plots along Chr05. A. Total physical distance shown is 2 Mbp. B. Highlighted LD block includes 1. Manual evaluation QTL

(AX.171135430) at 12,647,620 bp and 2. Maximum Force, Initial Rupture QTL (AX.171577297) at 14,602,000 bp. C. LD block (436 kb) with 3. Maximum Force and

Initial Rupture QTL (AX.171524856) at 14,333,096, bp 4. Integral (AX.171535400) at 14,512,735 bp 2. Maximum Force and Initial Rupture. Scale 0 is strong evidence

for recombination, and dark grey-black represents evidence for strong LD (R2).

https://doi.org/10.1371/journal.pone.0231144.g007
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Marker-trait associations enabled us to discover, for the first time, the relatively simple

control for the suture strength trait in walnut. We performed a combined approach of QTL

mapping and GWAS analysis in order to identify specific loci contributing to trait variation.

While we observed that the manual evaluation method was able to detect significant loci in

GWAS analysis, the significance was just at the threshold line and the SNP was further away

from the candidate gene detected with the texturometer methods. The texturometer methods

yielded a higher heritability and genetic positions that were in high LD with each other, con-

tributed to greater amount of variance, and were much more highly significant than the man-

ual evaluation.

Fig 8. Genotypic class plots for most significant SNPs of each measure. A. Manual Evaluation at 13 Mbp, B. Initial Rupture at 14.3 Mbp, C. Integral at 14.5 Mbp, D.

Maximum Force at 14.3Mbp.

https://doi.org/10.1371/journal.pone.0231144.g008
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Conclusions

These statistical associations are important for the development of molecular markers to be

tested and applied in breeding programs, use of which will aid in quick and accurate parental

and seedling selection of individuals with appropriate and moderate shell suture strength. The

use of machines for phenotyping to replace human measurements can increase the accuracy of

breeding in phenotypically based breeding programs. Here we have also shown that quantita-

tive phenotyping was necessary to detect precise marker trait associations. We utilized the

power of both QTL mapping and GWAS to determine causative loci for the suture strength

trait, which can now enable genomic predictions, and can contribute to marker-assisted

development.

Supporting information

S1 Fig. The diversity in walnut shells of ‘Chander’ × ‘Idaho’ cross. A. = 3 suture-lined, B. =
protrusion, C. = small, D. = dessicated, E. = “normal”.
(TIF)

S2 Fig. Linkage groups arranged on chromosomes. A. ‘Chandler’ genetic map with 1165

markers. B. ‘Idaho’ genetic map with 1753 markers.

(TIF)

S3 Fig. Genetic distance plotted against physical position. Positions highlighted red are sig-

nificant marker-trait associations. A. ‘Chandler’ Chr05. B. ‘Chandler’ Chr11. C. ‘Idaho’ Chr01.

D. ‘Idaho’ Chr11.

(TIF)

S4 Fig. Simple interval mapping compared with composite interval mapping in ‘Chandler’

population. Simple interval mapping displayed in blue, composite interval mapping displayed

in red, covariate displayed in green. A1. Initial rupture genome-wide scan, A2. Initial rupture

chromosomes 5 and 11, B1. Integral genome-wide scan, B2. Integral chromosomes 5 and 11,

C1. Maximum force genome-wide scan, C2. Maximum force chromosome 5 and 11.

(TIF)

S5 Fig. Simple interval mapping compared with composite interval mapping in ‘Idaho’

population. Simple interval mapping displayed in blue, composite interval mapping displayed

in red, covariate displayed in green. A1. Initial rupture genome-wide scan, A2. Initial rupture

chromosomes 1, 9, and 11, B1. Integral genome-wide scan, B2. Integral chromosomes 1, 9,

and 11, C1. Maximum force genome-wide scan, C2. Maximum force chromosome 1, 9, and

11.

(TIF)

S1 Table. TA-XT2 texturometer settings and macro commands developed in Exponent

(Texture Technologies Corp.) software. Pre-test speed is the speed of probe prior to test start,

Test-speed is the speed at which the probe moves for the duration of the test, Post-test is the

speed at which the probe returns to the start position, Trigger force is the resistance at which

the probe is sensitive to as it presses the walnut, Return to start distance is the amount of com-

pression of the probe to the walnut shell, Calibration was performed prior to each set of tests

with a 2 kg weight.

(XLSX)

S2 Table. Estimated Breeding Values summary statistics and variance components esti-

mates of ‘Chandler’ × ‘Idaho’ mapping population. Harvested data collected in 2016, 2017
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for 181 individuals. EBV μ mean, EBV σ standard deviation, EBV CV coefficient of variation,

VA additive genetic variance, VR residual genetic variance, h2 narrow-sense heritability, r repeat-
ability.

(XLSX)

S3 Table. Estimated Breeding Values summary statistics and variance components esti-

mates of GWAS panel of individuals and ‘Chandler’ × ‘Idaho’ mapping population. Har-

vested data collected in 2015, 2016, 2017 for 736 individuals. EBV μ mean, EBV σ standard
deviation, EBV CV coefficient of variation, VA additive genetic variance, VR residual genetic var-
iance, h2 narrow-sense heritability, r repeatability.

(XLSX)

S4 Table. Estimated breeding values for the individuals with highest integral values within

the WIP. The first 5 entrees are standard cultivars displayed for comparison.

(XLSX)

S5 Table. Estimates of genetic correlation between traits using a bivariate model. Covari-

ance components, COVA for each trait were calculated and rescaled to give genetic correla-

tions between traits r2
G .

(XLSX)

S6 Table. Gene Annotation products for each significant SNP with QTL mapping and

GWAS. FCPU is FarmCPU model. Trait abbreviations I = integral, ME = manual evaluation,

IR = initial rupture, MF = maximum force, ID = ‘Idaho’, CR = ‘Chandler’, 16 = 2016, 17 =

2017.

(XLSX)

S1 File. CRxID_QTL_phenotype. ‘Chandler’ × ‘Idaho’ phenotypic dataset utilized for QTL

mapping.

(XLSX)

S2 File. Suture_GWAS_phenotype. GWAS panel of individuals within the UC Davis WIP.

(XLSX)
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36. Rezvoy C, Charif D, Guéguen L, Marais GAB. MareyMap: an R-based tool with graphical interface for

estimating recombination rates. bioinformatics. 2007 Jun 22; 23(16):2188–9. https://doi.org/10.1093/

bioinformatics/btm315 PMID: 17586550

37. Shin J-H, Blay S, Graham J, McNeney B. LDheatmap: An RFunction for Graphical Display of Pairwise

Linkage Disequilibria Between Single Nucleotide Polymorphisms. J Stat Soft. 2006; 16(Code Snippet

3).

38. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The Structure of Haplotype

Blocks in the Human Genome. Science. 2002 Jun 21; 296(5576):2225. https://doi.org/10.1126/science.

1069424 PMID: 12029063

PLOS ONE QTL mapping and genome-wide association for suture strength in walnut

PLOS ONE | https://doi.org/10.1371/journal.pone.0231144 April 9, 2020 20 / 21

https://doi.org/10.1371/journal.pgen.1000212
http://www.ncbi.nlm.nih.gov/pubmed/18846212
https://doi.org/10.1093/bioinformatics/btg112
http://www.ncbi.nlm.nih.gov/pubmed/12724300
https://doi.org/10.1038/hdy.1992.131
http://www.ncbi.nlm.nih.gov/pubmed/16718932
https://doi.org/10.1093/bioinformatics/btq565
http://www.ncbi.nlm.nih.gov/pubmed/20966004
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1093/bioinformatics/bts606
http://www.ncbi.nlm.nih.gov/pubmed/23060615
https://doi.org/10.1371/journal.pgen.1005767
http://www.ncbi.nlm.nih.gov/pubmed/26828793
https://doi.org/10.1093/bioinformatics/btm315
https://doi.org/10.1093/bioinformatics/btm315
http://www.ncbi.nlm.nih.gov/pubmed/17586550
https://doi.org/10.1126/science.1069424
https://doi.org/10.1126/science.1069424
http://www.ncbi.nlm.nih.gov/pubmed/12029063
https://doi.org/10.1371/journal.pone.0231144


39. Ma L, Li G. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) Family Proteins

in Arabidopsis Growth and Development. Front Plant Sci. Frontiers Media S.A; 2018 Jun 7; 9:692–2.

https://doi.org/10.3389/fpls.2018.00692 PMID: 29930561

40. Lannoo N, Van Damme EJM, Albenne CC, Jamet E. Plant Glycobiologyâ€”a diverse world of lectins,
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