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A B S T R A C T

The Weather Research and Forecasting (WRF) model is one of the regional climate models for dynamically
downscaling climate variables at finer spatial and temporal scales. The objective of this study was to evaluate the
performance of WRF model for simulating temperature and rainfall over Lake Tana basin in Ethiopia. The WRF
model was configured for six experimental setups using three land surface models (LSMs): Noah, RUC and TD; and
two land use datasets: USGS and updated New Land Use (NLU). The performances of WRF configurations were
assessed by comparing simulated and observed data from March to August 2015. The result showed that tem-
perature and rainfall simulations were sensitive to LSM and land use data choice. The combination of NLU with
RUC and TD produced very small cold bias (0.27 �C) and warm bias (0.20 �C) for 2m maximum temperature
(Tmax) and 2m minimum temperature (Tmin), respectively. WRF model with RUC and NLU captured well the
observed spatial and temporal variability of Tmax, while TD and NLU for Tmin. Moreover, rainfall simulation was
better with NLU; especially NLU and Noah configuration produced the smallest mean bias (2.39 mm/day) and
root mean square error (6.6 mm/day). All the WRF experiments overestimated light and heavy rainfall events.
Overall, findings showed that the application of updated land use data substantially improved the WRF model
performance in simulating temperature and rainfall. The study would provide valuable support for identifying
suitable LSM and land use data that can accurately predict the climate variables in the Blue Nile basin.
1. Introduction

Rainfall and temperature affect various components of the hydro-
logical cycle including, river flow, evapotranspiration, groundwater
recharge and soil moisture. Reliable rainfall and temperature data at
reasonable spatial and temporal resolutions are essential for quantifying
the seasonal hydrological cycle (Dile et al., 2013; Tabari et al., 2016).
However, attaining good quality climate data is challenging in devel-
oping countries like Ethiopia. In such cases, numerical models can be
used to produce climate data at a fine resolution (Sisay et al., 2017). For
example, such data can be used to predict future climate that can inform
policy on climate change adaptation and mitigation (Gashaw et al.,
2014).

In this regard, Regional Climate Models (RCMs) could be useful tools
to downscale climate variables at a fine spatial and temporal resolutions
eklay).
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at a regional scale (Yhang et al., 2017). Moreover, RCMs realistically
simulate climate information by incorporating land surface properties
and detailed descriptions of physical processes (He et al., 2017).
Recently, Weather Research and Forecasting (WRF) model has been
applied as an RCM for research and operational purposes in many parts of
the world, for example in Africa (Diaz et al., 2015), Europe (Banks and
Baldasano, 2016), North America (Burakowski et al., 2016), and Asia
(Cannon et al., 2017). Previous studies showed that the performance of
WRF model is influenced by the selection of physical parameter schemes
including, microphysics (Gao et al., 2017), radiation (Mooney et al.,
2016), planetary boundary layer (Kim et al., 2015), cumulus (Mugume
et al., 2017), and land surface model (Jain et al., 2017). Other model
input such as initial boundary condition (Yang and Duan, 2016), land use
data (Cheng et al., 2013), and domain size and resolution (Zeyaeyan
et al., 2017) also affect the performance of WRF model.
ptember 2019
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Many studies in recent years have focused on the selection of suitable
Land Surface Models (LSMs) for climate simulation at the mesoscale
level. For example, Zu-heng et al. (2014) evaluated Noah, Pleim-Xiu, and
Noah-MP LSMs for simulating extreme rainfall events over Southwest
China. They found that WRF simulations with Noah-MP reproduced well
the spatial and temporal variations of rainfall. Lee et al. (2016) reported
that Noah LSM resulted in better simulations of observed climate vari-
ables compared to Thermal Diffusion (TD), Rapid Update Cycle (RUC)
and Pleim-Xiu LSMs in a case study in South Korea. On the other hand,
the Pleim-Xiu LSM simulated better temperature and wind speed over
Delhi-Mumbai Industrial Corridor region in India (Jain et al., 2017),
while RUC LSM was better for rainfall simulation in the Western Dis-
turbances of India (Thomas et al., 2014). This discrepancy of LSM
recommendation in the above studies indicates that the performance of
LSM is highly dependent on the simulation region, studied climate var-
iable, seasonality and considerations of other physical parameters.
Therefore, site-specific studies are important to identify suitable LSM to
simulate climate variables accurately.

Besides, the accuracy of the land surface datasets significantly affects
the performance of WRF model (G€ond€ocs et al., 2015). The advancement
of Remote Sensing (RS) and Geographic Information System (GIS) enable
land surface datasets for WRF model at finer spatial and temporal reso-
lutions (Cannon et al., 2017; Cao et al., 2017), which help to improve
WRF simulations. However, the WRF model takes most land surface
properties from the default 1993 U.S. Geological Survey (USGS) land use
data (Yang and Duan, 2016). This dataset has a certain degree of land use
misrepresentations (Cheng et al., 2013; Puliafito et al., 2015). To
circumvent this problem, updated and fine resolution land use data has
been employed in the WRF model (Cao et al., 2015; He et al., 2017)
which improve regional climate simulations. For example, the applica-
tion of CORINE land use improved the WRF model performance
compared to the USGS dataset (De Meij and Vinuesa, 2014). Also, Lai
et al. (2016) showed that Global Land Cover 2009 data performed better
than the default 1993 USGS dataset. The above reviews demonstrate that
there have been numerous individual studies on the sensitivity of the
WRF model to either LSM or land use data. However, few studies have
focused on the influence of LSM and land use data combination on
mesoscale climate simulations. This study contributes to filling this gap.

Although the climate of Lake Tana basin has a strong association with
the topography and land use dynamics, most of the previous studies have
applied statistical downscaling method (Ayele et al., 2016; Roth et al.,
2018); which overlooked the local landscape conditions mainly complex
topography and accelerated land use change. Besides, RCM has rarely
studied in this region, and suitable LSM and land use data configuration
were not identified yet. Therefore, a focused study comparing climate
variables on different LSMs along with and without updated land use
information promises to provide valuable insight for WRF modelers and
regional climate simulation.

In this study, six WRF experiments using three LSMs (Noah, RUC and
TD) and two land use data (USGS and NLU) were considered to investi-
gate the sensitivity of the WRF model to updated land use and identify
the best performing LSM. This study is novel in the sense of that it
evaluate the combined effect of LSMs and land use data on WRF model
simulation performance. The WRF model was configured at fine grid
spacing in order to include the complex topography and land use change
dynamics. The fine grid spacing (<6 km) is adequate to depict mesoscale
topography (Goswami et al., 2012), which resolve areas of high and low
elevation. The result will provides useful insights into the advantages of
using updated land use information in the WRF regional climate
modeling applications. Moreover, the study will provide valuable infor-
mation about the relative performance of land use data and LSMs for the
regional climate simulation and inputs for WRF model improvement
program. This study tested the hypotheses that updated land use improve
the RCM at basin scale that strong spatial and temporal climate hetero-
geneity. Besides, the study addressed two major research questions: a) is
there any difference among the land surface models for climate
2

simulation at finer spatial resolution? and b) does the choice of land use
data result in substantial biases in rainfall and temperature? Model pre-
diction performances were verified using observed rainfall and temper-
ature data using different statistical and categorical verification
methodologies. Thus, a thorough evaluation of the model performance
and the best-identified parameters contributing to mesoscale climate
simulation in this particular area results of general relevance.

2. Materials and methods

2.1. Study area

Lake Tana basin is located in Amhara region in Ethiopia and covers a
catchment area of ~15,140 km2. The Lake Tana, which accounts for 20%
of the basin area, is the largest freshwater body in Ethiopia and consid-
ered as the source of the Upper Blue Nile River. The basin is located at
10.95�N to 12.78�N and 36.89�E to 38.25�E (Fig. 1), and its elevation
ranges from 1786 to 4109 meter above sea level.

The majority of the basin (75%) is located in temperate to cool semi-
humid zone and the remaining 25% is found in cool to cold humid zone.
In general, the climate in the basin is divided into rainy and dry seasons.
The rainy season mainly spans from June to September (Tigabu et al.,
2018), which account for 70–90% of the rainfall amount (Enyew et al.,
2014). The dry season occurs from October to April (Tigabu et al., 2018)
and characterized by no rainfall events. However, in the southern parts of
the basin, less intense sporadic rainfall occurs in April and May.

There is high temporal and spatial rainfall variability in the Lake Tana
basin because of extreme topographic variation and the presence of Lake
water body (Haile et al., 2009). Themean annual rainfall within the basin
varies from 964 mm to 2000 mm. The temperature is warmer around the
Lake Tana and becomes cooler moving away from the Lake Tana. The
mean annual maximum and minimum temperature of the basin is esti-
mated at 27 �C and 15 �C, respectively.

2.2. WRF model configuration

In this study, Weather Research and Forecasting (WRF)model version
3.8 was used for climate simulation. The WRF model is developed by the
National Center for Atmospheric Research (NCAR). This model is flexible
and state-of-the-art atmospheric numerical simulation which is imple-
mentable parallel computing platforms (Skamarock et al., 2008) to pre-
dict weather on a mesoscale level for operational and research needs. The
model was configured for a fine spatial resolution with three domains
(Fig. 1a). The outer domain (D1) covers a total distance of 2775 km in the
East and 1998 km in the North direction at 36 km grid spacing. This
domain size was chosen to cover the Indian Ocean, red sea and East
Africa region which influence rainfall patterns in Ethiopia (Conway,
2000). The intermediate domain (D2) covers a distance of 1225 km in the
East and 1332 km in the North direction at 12 km resolution. The inner
domain (D3) centered at Lake Tana and covers an area of 280 km in the
East and 333 km in the North directions. This domain has 4 km resolu-
tion. This fine grid spacing was selected to resolve the mesoscale forcing
associated with complex topography, lake and vegetation characteristics
that influence local climate (Goswami et al., 2012). The three domains
were run in one-way nesting mode with 35 vertical layers from near the
surface to the model top at 50 hPa.

The WRF physical parameterizations were selected based on pre-
liminary test and previous findings for the Africa region (e.g., Pohl et al.,
2011; Abdallah et al., 2015; Kerandi et al., 2017; Mugume et al., 2017).
The parameterization schemes used include Thompson microphysics
(Thompson et al., 2008), Rapid Radiative Transfer Model (RRTMG) for
long-wave and shortwave radiation (Hagos et al., 2014), revised MM5
Monin-Obukhov surface layer (Jim�enez et al., 2012), Yonsei University
planetary boundary layer (Diaz et al., 2015), and Kain-Fritsch cumulus
(Berg et al., 2013). However, the Kain-Fritsch cumulus scheme was not
activated for the inner domain because cumulus parameterizations are



Fig. 1. Study area; a) three nested domains: the
black rectangle represents the outer domain (D1)
representing Eastern Africa, South Asia, and the
Indian Ocean part, the purple rectangle shows the
intermediate domain (D2) covering a large part of
Ethiopia, and the red rectangle is the inner
domain (D1) covering north western Amhara
Region where the Lake Tana basin is located. b)
Topographic features of the inner domain with
the Lake Tana basin border (black dashed), Lake
Tana, and meteorological stations that were used
for model evaluation.
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valid for coarse grid sizes, which is greater than 10 km (Skamarock et al.,
2008).

The WRF model was initialized using boundary conditions obtained
from the National Centers for Environmental Prediction (NCEP) global
FiNaL (FNL) analysis dataset. These datasets are available at a coarse
resolution of 1� � 1� and 6 h intervals. The lateral boundary conditions in
theWRFmodel were updated at 6 h intervals. TheWRFmodel was forced
to read-in the time-varying data and to update the sea surface tempera-
ture (SST) field. Due to the shortage of computational resource, the
simulation period was six months (March–August 2015). These months
Fig. 2. Land use coverage for the inner domain; a) U.S. Geolo
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were selected purposively to represent the dry and wet season in the Lake
Tana basin. The WRF simulation period was split into 6 days with 1 day
of overlap between consecutive runs to allow for spin-up time. These
short-run were considered to minimize the accumulation of errors as the
forecast day's increases (Skamarock et al., 2008).
2.3. Experimental setup

Six WRF model experiments were configured using a factorial com-
bination of two land use data and three LSMs. All the experimental
gical Survey (USGS) land use, and b) new land use (NLU).



Table 2
The WRF experimental configurations based on land surface models (LSMs) and
land use data.

Simulation number Land surface model Land use data WRF experiment

1 Noah USGS Noah-U
2 Noah NLU Noah-N
3 RUC USGS RUC-U
4 RUC NLU RUC-N
5 TD USGS TD-U
6 TD NLU TD-N
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configurations used the same physical parameters except LSM and land
use data. The effect of updated land use information on the performance
of WRF model was studied using the U.S. Geological Survey (USGS) land
use and new land use (hereafter NLU) data. The USGS land use data was
generated in 1993 from Advanced Very High-Resolution Radiometer
(AVHRR) data (Eidenshink and Faydeen, 1994). This data has 24 land
use classes at ~900m resolution. The inner domain USGS land use data is
presented in Fig. 2a, where the larger part is covered by savanna and
which failed to capture cropland expansion in 2015 (Teklay et al., 2018).
Moreover, the USGS land use data did not show Alemsaga and Tara
Gedam forest coverage in the Lake Tana basin, which covers ~19 km2.
The NLU data was obtained from the Regional Centre for Mapping of
Resources for Development (RCMRD) (http://geoportal.rcmrd.org). This
data was produced from 30 m Landsat thematic mapper using supervised
classification method for 2016 Ethiopia land cover scheme II. The clas-
sification was satisfactory with an overall accuracy of 87.9% and a Kappa
coefficient of 0.79 (Kindu et al., 2013). The NLU data represented well
land use categories compared to USGS data. For example, the NLU
captured cropland expansion and notable land use features such as
Alemsaga and Tara Gedam forest coverage (Fig. 2b).

Major differences in land use distributions between USGS and NLU
data were reflected in the forestland, cropland, grassland, and savanna
(Table 1). The USGS data underestimated cropland coverage compared to
previous research findings in the Ethiopian highlands (e.g., Teferi et al.,
2010; Biru et al., 2015), while the NLU data was consistent with previous
studies in capturing the urban, forest and cropland coverage.

Three land surface models (LSMs) namely; Noah, RUC and TD were
also considered in the WRF experiments. The Noah LSM uses soil tem-
perature and moisture at four layers with a total depth of 2 m. This
scheme calculates the soil temperature, water-equivalent snow depth,
soil ice and soil and canopy moisture (Skamarock et al., 2008). The RUC
LSM estimates heat and moisture transfer for the nine layers from 0 to 3
m, and the model realistically represents soil moisture, soil temperature
and snow (Smirnova et al., 2016). The RUC scheme accounts for the
different phases of soil surface water, vegetation effects and canopy
water. The RUC LSM has a thin layer feature that covers the ground
surface including half of the first atmospheric layer and half of the topsoil
layer to properly solve the energy budgets. The model accounts vegeta-
tion impact on evaporation capturing the role of canopymoisture and soil
texture. The TD LSM calculates the energy budget from a 1-D equation
assuming a linear temperature profile across 5 layers of soil. The TD LSM
does not predict soil moisture (Skamarock et al., 2008). In TD model,
initial soil moisture is fixed with the land use type and a
season-dependent constant value. The bottom layer can be at a deep of 16
cm, where the average temperature is applied. The TD LSM does not
explicitly account vegetation processes. Table 2 presents WRF experi-
mental setup that combines LSMs and land use data.
2.4. Observation data

Observed climate data were used to validate the performance of WRF
model. The observed daily temperature and rainfall data in the Lake Tana
basin and nearby weather stations were obtained from the National
Table 1
Summary of land use coverage for USGS and NLU data in the inner domain.

Land use type USGS (%) NLU (%)

Barren or Sparsely Vegetated 0.03 0
Cropland/Woodland Mosaic 7.99 0.03
Dryland Cropland and Pasture 20.97 65.65
Deciduous Broadleaf Forest 0.09 14.00
Grassland 3.35 14.71
Savannas 63.13 0
Shrubland 0.51 2.02
Urban and Built-up Land 0 0.02
Water Bodies 3.93 3.57
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Meteorological Agency of Ethiopia. Meteorological stations that have
data more than 95% of the period from March to August 2015 were
considered for model evaluation. Based on the availability and quality of
the data, temperature and rainfall data were collected from 22 (red and
purple circle, Fig. 1b) and 24 (red and blue circle, Fig. 1b) gauge stations,
respectively.

2.5. Model evaluation

The WRF model performance was evaluated by examining the
temporal and spatial agreement between simulated and observed
values. The evaluation was done using the correlation coefficient (r),
mean bias (MB) and root mean square error (RMSE). Correlation coef-
ficient is widely used to quantify the linear relation between simulated
and observed values (Eq. (1)). The r values near one indicate a strong
positive correlation while values near zero indicate no correlation. The
MB is a measure of the difference between simulated and observed
mean (Eq. (2)); a positive value of MB indicates an overestimation and a
negative value indicates an underestimation. The RMSE describes the
amount of error in terms of the difference between simulated and
observed values (Eq. (3)), the lower the RMSE values the smaller the
errors. A Student's t-test was applied to assess the significance of the
difference between simulated and observed values. The two-tail test was
computed based on the two-sample assuming equal variance method at
95% confidence level.

r¼
Pn
i¼1

ðSi � SÞðOi � OÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðSi � SÞ2 Pn
i¼1

ðOi � OÞ2
r (1)

MB¼ 1
n

Xn

i¼1

ðSi �OiÞ (2)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðSi � OiÞ2
s

(3)

Where, Si is the simulated climate variable, Oi is the observed climate
variable, S is the mean of simulated climate variable, O is the mean of
observed climate variable, and n is the total number of climate data.

Categorical statistics, which comprise Bias Score (BS), Probability of
Detection (POD), False Alarm Ratio (FAR) and Critical Success Index
(CSI), were also used to verify the WRF model's performance in simu-
lating rain/no rain events at different thresholds. In this study, rainfall
amount below 0.2 mm was considered as no rain (Schirmer and Jamie-
son, 2015). The simulated and observed pairs of a given threshold were
classified into four categories and assigned in a 2 � 2 contingency table
(Table 3).

The BS is a ratio between the frequency of simulated to the frequency
of observed event (Eq. (4)). BS provides an evaluation of the model's
tendency to overestimates (BS > 1) or underestimates (BS < 1) observed
events. A BS value of one indicates that the number of simulated events is
the same as the observed events.

http://geoportal.rcmrd.org


Table 3
Contingency table between observed and simulated rainfall events for a given
threshold level.

Observed

Yes No Total

Simulated Yes a b a þ b
No c d c þ d
Total a þ c b þ d n ¼ a þ b þ c þ d

Note a: hits, if both simulated and observed values are above threshold; b: false
alarms, if simulated value is above threshold and observed value is below
threshold; c: misses, if simulated value is below threshold and observed value is
above threshold; d: correct non-events, if both simulated and observed values are
below threshold, and n: total number of events.
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BS¼ aþ b
aþ c

(4)
Where a is hits, b is false alarm and c is misses.
The POD estimates the proportion of rainfall events successfully

simulated by the model (Eq. (5)). A POD value of one means a perfect
rainfall event simulation.
Fig. 3. The six WRF experimental simulation and observation; a) 2 m maximum temp
stations average over the Lake Tana basin for the period March 2015 to August 201

5

POD¼ a
aþ c

(5)
The FAR measures the number of simulated rainfall events when in
fact there were no observed rainfall events (Eq. (6)). The best FAR score
corresponds to zero.

FAR¼ b
aþ b

(6)

The CSI is the fraction of observed rainfall that was correctly detected
by the model (Eq. (7)).

CSI¼ a
aþ bþ c

(7)

Monthly and seasonal simulation performance of WRF model was
evaluated by aggregating daily rainfall values. The model results were
interpolated bi-linearly to the station location. The spatial patterns of
WRF model simulation were also assessed through comparison of the
observed and simulated map and Taylor diagram (Taylor, 2001). The
station average temperature and rainfall values were interpolated to 4 km
spatial resolution using the Kriging method. This method was selected
erature (Tmax), and b) 2 m minimum temperature (Tmin), and c) rainfall based
5.
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because of its simplicity and reliability for spatial evaluation purposes
(e.g., Pennelly et al., 2014; Zeyaeyan et al., 2017).

3. Results

3.1. WRF model evaluation

The WRF model was used to simulate temperature and rainfall at
daily time steps spatially across the Lake Tana basin. The temporal and
spatial simulation performance of the model was evaluated using the
observed temperature and rainfall data.

3.1.1. Daily temperature
Temporal variation of daily 2 m maximum temperature (Tmax)

averaged for all meteorological observations andWRF simulations for the
period March to August 2015 is shown in Fig. 3a. The comparison result
indicated that Tmax simulation using RUC-U and RUC-N experiments
showed generally good reproduction of the observed temporal variation
in the Lake Tana basin. However, in some points, Tmax simulating value
was not still high accurate (Fig. 3a). Both Noah and TD LSMs tended to
underestimate the Tmax events from March to mid-May. During this
period, Noah-N and Noah-U experiments slightly underestimated,
whereas TD-U and TD-N experiment severely underestimated all the
Tmax values. The comparison indicates that TD-N and TD-U simulated 2
mminimum temperature (Tmin) fairly well in general; the simulated and
the observed values were coincident in most time profile. However, Tmin
simulated by TD experiments slightly underestimated during the initial
simulation periods and overestimated in sometimes profile in August.
Both Noah and RUC LSMs experiments well captured the Tmin temporal
fluctuation but had an extreme overestimation tendency in most time
profile (Fig. 3b). Overall, the TD-N and TD-U experiments agreed well
with the observed magnitude in most events in Tmin.

Comparisons between observed and simulated 2 m maximum and
minimum temperature from six WRF experiments are presented in
Table 4. The correlation coefficient values in Tmax were exceptionally
high for all Noah and RUC experiments with values in the range from
0.91 to 0.94. The highest correlation was found at RUC-N and Noah-U
experiments, and the lowest at RUC-U experiment. The LSM compari-
son showed that RUC experiments slightly underestimated the average
observed Tmax, while Noah and TD simulations were considerably
higher than the observed Tmax. The MB value for Tmax from RUC-N and
RUC-U experiments were significantly different from other experiments
(p< 0.05). The RUC-N experiment resulted in the smallest cold bias (0.27
�C) for Tmax. On the other hand, considerable cold biases in Tmax were
observed from the Noah and TD simulations with the worst performance
from the Noah-U (MB¼ 1.78 �C) experiment. The root mean square error
(RMSE) values for Tmax ranged from 1.21 to 2.48 �C, with the lowest
value occurring from RUC-N and the highest value from TD-U experi-
ment. This result showed that the observed Tmax was slightly closer to
the simulated Tmax in RUC-N experiment. Although the difference be-
tween USGS and NLU data for Tmax simulations were insignificant (p >

0.05), the NLU data along with Noah and RUC slightly improved the
Table 4
Performance of WRF experiments for simulating daily 2 m maximum tempera-
ture (Tmax) and 2 m minimum temperature (Tmin) for the period March to
August 2015 from 22 station average.

WRF
experiment

Tmax Tmin

r MB
(�C)

RMSE
(�C)

r MB
(�C)

RMSE
(�C)

Noah-U 0.94 -1.78 1.96 0.85 1.21 1.58
Noah-N 0.93 -1.76 1.94 0.85 1.02 1.39
RUC-U 0.91 -0.28 1.23 0.76 1.35 1.49
RUC-N 0.94 -0.27 1.21 0.75 1.07 1.22
TD-U 0.61 -1.42 2.42 0.63 0.46 0.84
TD-N 0.57 -1.47 2.48 0.65 0.20 0.77
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Tmax simulation. In RUC LSM, replacing USGS through NLU data
reduced Tmax RMSE value by 0.02 �C and slightly improved the WRF
model performance. Overall, RUC-N experiment was the best in simu-
lating Tmax compared to the other five experiments.

LSM selection had greater influence in simulating Tmin when
compared to land use data selection (Table 4). The correlation co-
efficients for Tmin were good but slightly lower than Tmax except for TD
experiments. The highest agreement was found from the Noah-N and
Noah-U experiments, and the lowest from the TD-U experiment. In
general, all the WRF experiments overestimated Tmin with a range from
0.20 to 1.35 �C. Although the warm biases were high in most experi-
ments, TD-N simulation was very close to the observed Tmin (MB ¼ 0.20
�C). Tmin RMSE values in NLU experiments were considerably lower
than USGS. Similar to the Tmax simulation, updated land use information
improved Tmin simulation and TD-N being the most consistent experi-
ment to replicate the observed Tmin.

3.1.2. Daily rainfall
Amongst all the experiments, relatively Noah-N and Noah-U experi-

ments had the best performance in simulating rainfall (Fig. 3c). Overall,
the Noah and RUC experiments reasonably captured the temporal fluc-
tuations of low and moderate rainfall events. All the WRF experiments
consistently overestimated the observed rainfall amounts in most time
profiles, especially from June to August. However, TD-N and TD-U ex-
periments severely overestimated the rainfall amount during the simu-
lation period. From these, TD-N experiment simulated considerable
rainfall amount as high as 42.4 mm and 42.2 mm on June 21 and August
24, respectively.

Comparisons between observed and simulated rainfall from the six
WRF experiments are presented in Table 5. All the WRF experiments
overestimated the average daily rainfall with a range of 2.39–4.53 mm/
day. The lowest overestimation was found in Noah-N experiment and the
highest in TD-U experiment. The impact of LSM and land use data on
average daily rainfall was statistically significant. However, the LSM ef-
fect was much higher than the land use data. For example, Noah (Noah-U
and Noah-N average value) LSM produced 1.91 mm/day lower rainfall
than TD (TD-U and TD-N average value), whereas the NLU (Noah-N,
RUC-N and TD-N average value) slightly reduced model bias by 0.31
mm/day compared to USGS (Noah-U, RUC-U and TD-U average value).
The MB values in Noah-N and Noah-U experiments were significantly
lower than other experiments. Also, Noah-N and Noah-U experiments
produced significantly lower RMSE values than TD-U and TD-U. These
results demonstrate that Noah rainfall simulations resulted in better
RMSE values than and TD. The application of NLU data instead of USGS
improved the WRF model performance by reducing the RMSE by 0.33,
0.59, 0.09 mm/day in Noah, RUC, and TD LSM, respectively. The cor-
relation coefficients between simulated and observed rainfall were sig-
nificant (p < 0.05). Amongst all the LSM, Noah yielded very small mean
bias and model error. Overall, the combination of Noah and NLU rela-
tively captured well the observed rainfall amount compared to other
experiments.

The high values of BS, POD, and CSI showed that the WRF experi-
mental simulations could correctly detect and distinguish many more
Table 5
Performance of WRF experiments for simulating daily rainfall for the period
March to August 2015 from 24 station average.

WRF
experiment

r MB
(mm/
day

RMSE
(mm/day)

BS POD FAR CSI

Noah-U 0.77 2.44 6.88 0.92 0.86 0.07 0.81
Noah-N 0.77 2.39 6.55 0.97 0.88 0.09 0.81
RUC-U 0.80 4.18 7.98 1.03 0.91 0.11 0.82
RUC-N 0.79 3.71 7.39 1.02 0.92 0.10 0.83
TD-U 0.76 4.53 8.24 1.01 0.91 0.10 0.83
TD-N 0.75 4.12 8.15 1.01 0.90 0.10 0.82
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rainfall events (Table 5). Amongst all the experiments, Noah-N and Noah-
U slightly underestimated the frequency of observed rainfall events, but
the other experiments slightly overestimated. As can be seen, the WRF
model detectedmost rainfall events as high as 0.92 in RUC-N experiment.
Also, all the WRF experiments had very high CSI value ranging from 0.81
to 0.83, indicating more than 81% of the observed events are properly
detected by theWRFmodel. However, theWRF experimental simulations
missed some rain events or reported false events. Form these; RUC-U
experiment missed 11% of the rainfall events.

The WRF model performance for simulating different rainfall
threshold values was assessed using four skill scores (Fig. 4). Amongst all
the experiments, Noah slightly overestimated the frequency of light
rainfall events (<5 mm/day), while RUC and TD slightly underestimated
it (Fig. 4a). However, almost all the WRF experiments substantially
underestimated and overestimated the frequency of moderate (5–15
mm/day) and high (>20 mm/day) rainfall events, respectively. For the
rainfall threshold up to 15 mm/day, Noah-N experiment displayed the
highest skill scores with BS close to one. The POD in the Noah-N
experiment was appreciably high, especially for the low and moderate
events (Fig. 4b). This experiment detected more than 22% of rain oc-
currences at a threshold of 10 mm/day, but it was incapable of detecting
high threshold values. The POD values generally decreased in a wave
pattern with as the rainfall threshold increased. This result demonstrated
that detecting heavy rainfall events are more difficult than light rainfall
events. Unlike to POD, FAR was increased with the increasing of
threshold values. The WRF experiments had different FAR values in 10
and 15 mm/day threshold values (Fig. 4c). Both Noah-U and Noah-N
experiments produced small FAR in moderate rainfall events. The CSI
values were so high for low threshold and extremely low for medium and
high threshold (Fig. 4d), which indicate that WRF experiments correctly
estimated low threshold events than medium and high threshold events.

3.2. Monthly and seasonal WRF simulation

3.2.1. Monthly and seasonal temperature
Fig. 5 shows a comparison betweenWRF experimental simulation and

observation average monthly temperature and rainfall. The RUC (RUC-U
and RUC-N) average monthly Tmax was very close to the observed Tmax
in most of the months (Fig. 5a), which caused lower model biases.
Contrarily Noah and TD simulation was considerably lower than the
observed Tmax, especially in March and April. During the simulation
Fig. 4. Skill scores as a function of rainfall threshold for six WRF experiments for
detection (POD), c) false alarm ratio (FAR), and d) critical success index (CSI).
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periods, most of the WRF experiments underestimated the observed
Tmax with a range of 0.1 �C–4.4 �C. As can be seen in Fig. 5b, Noah-U and
Noah-N experiment produced the highest (16.5 �C) and lowest (12 �C)
average monthly Tmin in April and August, respectively. In general,
Noah-N produced the lowest overestimation (0.2 �C) in July, while Noah-
U produced the highest overestimation (2.1 �C) in April.

The rainy season in the study area occurs from June to September
(Enyew et al., 2014; Tigabu et al., 2018). Thus, the months from June to
August were considered as the wet season, and due to low rainfall
amount, the months of March to May were considered as the dry season.
Table 6 presents the comparison between simulated and observed Tmax
on a monthly and seasonal basis. The correlation between simulated and
observed average monthly Tmax was very strong for the RUC-N experi-
ment. From the seasonal comparison, RUC-N and Noah-N experiment
had very strong correlation during the dry and wet season, respectively.
All the six experiments reasonably underestimated both dry and wet
season Tmax except TD in the wet season. During the dry season,
considerably high and low cold biases in Tmax occurred in the TD-N and
RUC-N experiments, respectively. Overall, TD-N experiment well
captured wet season Tmax. These results showed that dry season biases
were significantly higher than the respective wet season biases except for
RUC-N experiment. Based on RMSE values, RUC-N and TD-N experiment
provided a better outcome during the dry season wet season, respec-
tively. This result showed that the application of NLU data captured well
the seasonal cycle in the study area. Overall, better monthly and dry
season WRF simulation performance was obtained from the RUC-N
experiment.

During monthly time steps, most of the experimental simulations had
the best agreement with the observed Tmin (Table 7). However, the MB
and RMSE in TD-N experiment were significantly different from others.
This result showed that TD-N experiment resulted in the best WRF model
configuration to simulate monthly Tmin. The seasonal comparison of
Tmin showed that wet season RMSE values were lower than dry season
RMSE. This result revealed that the WRF model had a better capability in
simulating wet season Tmin compared to the dry season. Amongst all the
experiments, TD-N produced significantly lower RMSE in both dry and
wet season. The correlations between observation and WRF simulations
were very strong in both seasons, but the dry season r values were slightly
higher compared to wet season simulation (Table 7). Overall, TD-N
experiment adequately captured the monthly and seasonal Tmin cycle.
the periods March 2015 to August 2015; a) bias score (BS), b) probability of



Fig. 5. Average monthly 2m maximum temperature (a), 2m minimum temperature (b), and rainfall (c) for the simulation period March–August 2015 over Lake
Tana basin.

Table 6
Performance of WRF experiments for simulating monthly and seasonal 2 m maximum temperature (Tmax) for the period March to August 2015.

WRF experiment Monthly Dry season Wet season

r MB (�C) RMSE (�C) r MB (�C) RMSE (�C) r MB (�C) RMSE (�C)

Noah-U 0.81 -1.78 2.76 0.73 -2.12 3.04 0.70 -1.42 2.45
Noah-N 0.81 -1.77 2.76 0.73 -2.11 3.03 0.71 -1.41 2.44
RUC-U 0.82 -0.28 2.14 0.74 -0.36 2.14 0.69 -0.20 2.14
RUC-N 0.83 -0.27 2.10 0.75 -0.19 2.09 0.69 -0.34 2.12
TD-U 0.64 -1.42 3.09 0.64 -3.01 3.85 0.68 0.17 2.07
TD-N 0.65 -1.47 3.11 0.63 -3.06 3.91 0.70 0.12 2.01
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3.2.2. Monthly and seasonal rainfall
Observed and simulated average monthly rainfall for the period from

March to August 2015 is shown in Fig. 5c. Amongst all the WRF exper-
iments, RUC-U and Noah-U simulated the largest (22.4 mm/day) and the
smallest (0.6 mm/day) average monthly rainfall in August and March,
respectively. From March to July, the rainfall in the Noah (Noah-U and
Noah-N) experiments was slightly lower than the other experiments. In
August, RUC-N experiment produced the lowest rainfall compared to
8

others. The average monthly rainfall was remarkably overestimated,
primarily in July and August, and, to a lesser extent in March and April.
The lowest overestimation (0.1 mm/day) occurred in March and April in
Noah-U experiment, while the highest overestimation (11 mm/day) in
August in RUC-U.

The analysis at a monthly level showed that the correlation coefficient
values were between 0.71 and 0.79 (Table 8). The monthly MB and
RMSE value in the Noah-N experiment was significantly lower than



Table 7
Performance of WRF experiments for simulating monthly and seasonal 2 m minimum temperature (Tmin) for the period March to August 2015.

WRF experiment Monthly Dry season Wet season

r MB (�C) RMSE (�C) r MB (�C) RMSE (�C) r MB (�C) RMSE (�C)

Noah-U 0.83 1.21 2.09 0.88 1.96 2.80 0.84 0.46 1.77
Noah-N 0.83 1.02 2.00 0.88 1.70 2.65 0.84 0.35 1.74
RUC-U 0.87 1.35 2.05 0.86 1.45 2.56 0.87 1.23 2.01
RUC-N 0.88 1.07 1.84 0.88 1.05 2.22 0.87 1.06 1.90
TD-U 0.88 0.46 1.73 0.89 0.21 2.04 0.85 0.70 1.83
TD-N 0.88 0.20 1.66 0.89 -0.08 1.99 0.86 0.46 1.73

A. Teklay et al. Heliyon 5 (2019) e02469
others. This result indicated that the Noah-N experiment captured well
the monthly rainfall cycle. Similar to temperature simulations, the use of
NLU data produced better rainfall simulation compared to USGS data.
Overall, the Noah-N experiment provided the best performance, while
TD-U was the worst.

The wet season r values were slightly lower than the dry season
values, indicating difficulties of the WRF model to reproduce the wet
season rainfall. All the WRF experiments considerably overestimated the
wet season rainfall with MB values between 153.8 to 215.1 mm/month.
However, in the dry season, the Noah experiments slightly under-
estimated the observed rainfall. In the wet season, the MB values in the
NLU experiment were significantly different from the MB values in the
USGS. The NLU data produced so low MB values with the lowest value in
the Noah-N experiment. In all the WRF experiments, the wet season
RMSE values were considerably larger than the respective dry season
values, which caused by the higher rainfall magnitude in the wet season.
This result agreed with Jain et al. (2017) study in the Delhi-Mumbai
Industrial Corridor. They found that the WRF model error was
increased with rainfall amount increased. In the Noah simulations, the
application of NLU data instead of USGS improved the WRF model per-
formance by reducing the RMSE by 0.6 and 9.9mm/month in the dry and
wet season, respectively. However, during the dry season, the updated
land use information with the TD LSM did not showmodel improvement.
As can be seen, Noah and RUC LSM have better skill in responding to the
updated land use information. Overall, the Noah-N experiment was the
most accurate in replicating the monthly and seasonal temporal patterns
(Table 8).

3.3. Spatial pattern

3.3.1. Temperature
RUC-N experiment resulted in the highest spatial correlation pattern

(r ¼ 0.85) for Tmax (Fig. 6a), while Noah-N experiment produced the
highest r (0.96) for Tmin (Fig. 6b). Moreover, RUC-N and Noah-N pro-
vided much lower RMSE values in Tmax and Tmin simulation, respec-
tively. From the six experiments, TD-N and TD-U standard deviations
were slightly smaller than the observed Tmax standard deviation. In
contrast, all the six WRF experiment standard deviations were consid-
erably lower than the observed Tmin standard deviation. Overall, RUC-N
experiment replicated well the observed Tmax spatial patterns with a
higher spatial correlation and a lower RMSE value, whereas Noah-N
experiment consistently simulated the observed Tmin spatial pattern.
On the other hand, TD simulations poorly replicated both Tmax and Tmin
Table 8
Performance of WRF experiments for simulating monthly and seasonal rainfall (mm/

WRF experiment Monthly Dry seas

r MB RMSE r

Noah-U 0.77 74.1 178.8 0.79
Noah-N 0.77 72.7 171.5 0.79
RUC-U 0.79 127.9 206.8 0.77
RUC-N 0.76 113.8 192.7 0.75
TD-U 0.75 138.6 217.3 0.61
TD-N 0.71 125.8 210.3 0.60
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spatial patterns with lower correlation and higher RMSE value.
Tmax spatial pattern over Lake Tana basin is shown in Fig. 7, where

Figs. 7a and b are averages for the simulation period from observation
and WRF experimental simulations, respectively. Fig. 7c shows the dif-
ference between WRF experimental simulation (Fig. 7b) and observation
(Fig. 7a). The observed Tmax magnitude and spatial pattern were rep-
resented well by RUC-N and RUC-U experiments compared to others.
During the simulation period, the highest Tmax was found over the
eastern part of the Lake Tana border with an average daily Tmax above
29 �C in the RUC-N and RUC-U experiments; while the lowest Tmax was
observed in the northern and eastern mountainous part of the basin with
an average daily Tmax below 22 �C in the Noah-N and Noah-U experi-
ments. All the WRF experiments substantially underestimated Tmax over
the entire basin with cold bias as high as 4 �C in Noah and TD experi-
ments over the northern and southern mountainous part of the basin.
From the six experiments, RUC-N produced considerable small cold
biases (>- 3 �C) and warm biases (<1 �C) over the basin, which indicates
that the combination of RUC with NLU data replicated well Tmax spatial
patterns in the Lake Tana basin. In general, the comparison between NLU
and USGS simulation showed that the consideration of real-time land use
data slightly enhanced the spatial representation performance of the
WRF model. This result agreed with the study conducted by Sertel et al.
(2009) in the Marmara Region in Turkey. They found that the updated
land cover data improved the WRF model performance in temperature
simulations. In the central part (Bahir Dar) of the basin, the NLU data
produced higher Tmax than USGS land use data. This variation may have
been related to the urban and cropland representation of the area by NLU
and USGS data, respectively. Higher temperature simulation was
commonly observed in urban land use coverage (Li et al., 2018).

All the WRF experiments showed similar spatial patterns with the
observed Tmin, especially the Noah-U experiment replicated well the
higher Tmin and experiments with RUC and TD LSM captured well the
lower Tmin (Fig. 8). Overall, the six WRF experiments produced
reasonable cold biases of Tmin over the northern parts of the Lake Tana
basin. The Noah and RUC experiments produced strong warm biases up
to 3 �C in the southern part, while TD-N and TD-U experiments yielded
strong cold biases as high as 4 �C in the northern part. In most parts of the
basin, TD-N experiment produced slight warm biases. Overall, Tmin
simulation with TD-N experiment was the best to replicate the spatial
distribution of the observed data.

3.3.2. Rainfall
The spatial rainfall pattern was extremely sensitive to LSM selection
month) for the period March to August 2015.

on Wet season

MB RMSE r MB RMSE

-11.6 61.1 0.58 161.0 229.3
-7.3 60.5 0.58 153.8 219.4
42.2 84.3 0.60 214.8 262.1
46.3 81.2 0.55 182.2 241.3
63.3 101.6 0.59 215.1 269.8
61.9 102.3 0.50 190.6 259.5



Fig. 6. Taylor diagram showing a statistical comparison of six WRF experimental simulations; a) 2 m maximum temperature (Tmax), and b) 2 m minimum tem-
perature (Tmin) for the period from March 2015 to August 2015.

Fig. 7. Spatial distribution of average 2 m maximum temperature (Tmax) across the Lake Tana basin; a) Observed average, b) Simulated average from WRF
experiment, and c) Mean bias, which is simulated minus observed.
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compared to land use data (Fig. 9). The standard deviations in Noah and
RUC experiments were slightly lower than the observed standard devi-
ation (1.8 mm/day). The simulated pattern of average rainfall using NLU
data agreed well with the observed rainfall compared to USGS data;
especially the Noah-N experiment provided the best spatial agreement
with observations. The worst performance of spatial rainfall distribution
was found from TD-U experiment.

As can be seen in Fig. 10, the spatial pattern showed large discrep-
ancies between observed and simulated rainfall in some parts of the
basin. This may be due to the insufficient number of rainfall stations
(Osuri et al., 2015). Simulated spatial rainfall in the Noah-N and Noah-U
experiments represented the spatial patterns and magnitude well,
perhaps more strongly in the mountainous parts of the Lake Tana basin.
However, there were pockets of large overestimations by the Noah
experiment over the central and southwestern part of the basin. This
result demonstrated that Noah-N and Noah-U experiment was the best in
capturing the spatial rainfall distribution with slight underestimation in
the northern and eastern part and slight overestimation in the southern
part of the basin. However, TD and RUC LSM considerably overestimated
10
the average rainfall in most parts of the basin. Overall, the Noah-N
experiment was the most accurate configuration to reproduce the
spatial pattern over the basin except around Lake Tana.

A summary of the spatial correlation coefficients between observation
and simulation for the dry and wet season is given in Table 9. All spatial
correlations were significant (p < 0.05) except rainfall in the dry season.
All the WRF experiments replicate both the dry and wet seasons Tmax
spatial distribution very well with correlation as high as 0.74 to 0.87.
Similarly, Tmin spatial correlation coefficients were extremely high in
both dry and wet seasons. In the wet season, rainfall and Tmin spatial
correlation from Noah-U and Noah-N were much higher than other ex-
periments. On the other hand, RUC-N was consistent in representing the
dry and wet season Tmax distribution. In general, coefficients from the
dry season rainfall using TD were negative, indicating that TD LSM
simulated high rainfall during the dry season. At the same season, Noah
and RUC coefficients were generally smaller and positive. These results
demonstrate that the WRF model had a better capability for simulating
temperature compared to rainfall. Overall, six WRF experiments showed
significant limitations in representing the dry season rainfall distribution



Fig. 8. Spatial distribution of average 2 m minimum temperature (Tmin) across the Lake Tana basin; a) Observed average, b) Simulated average from WRF
experiment, and c) Mean bias, which is simulated minus observed.

Fig. 9. Taylor diagram showing a statistical comparison of rainfall from six WRF
experimental simulations for the period from March 2015 to August 2015.
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over the study area.

4. Discussion

Although WRF is a widely used RCM, the choice of parameterization
schemes is site-specific (Mooney et al., 2016; Jain et al., 2017; Mugume
et al., 2017). The LSMs and land use data have been a substantial influ-
ence on local climate simulations, especially in areas where land surface
characteristics dynamically changed (Deng et al., 2013). Because of this,
the sensitivity of LSMs and land use data on WRF simulation over Lake
Tana basin was demonstrated. In general, WRF rainfall and temperature
simulation were sensitive to the choice of LSM and land use data. The
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NLU with Noah and RUC simulated higher Tmax than USGS land use
since the NLU includes more cropland area than the USGS data (Table 1
and Fig. 2) and therefore increase the temperature probably due to a
lower vegetation greenness that reduces evapotranspiration. This is in
agreement with the findings of Muller et al. (2014). The comparison
results demonstrated that there was no single best WRF model configu-
ration exists for simulations of dry and wet season climate in Lake Tana
basin. The combination of updated NLUwith RUC and TD well reproduce
Tmax and Tmin, respectively. This performance variation of LSM may
arise from the consideration of soil layers and land use information,
which was consistent with the previous finding (Chen et al., 2014; Bur-
akowski et al., 2016). The RUC LSM has a better capability in resolving
the soil moisture and temperature at tiny layers (Smirnova et al., 2016),
which result in lower model biases in Tmax simulation. As a result of fine
spatial resolution and the real-time representation of land use categories,
the NLU data provided reasonably better simulation than USGS. TheWRF
improvements resulted from updated land use data agree with Cheng
et al. (2013), Cao et al. (2015) and He et al. (2017). However, during
Tmax simulation, the combination of TD and NLU had slightly lower
performance than TD and USGS combination. This may be related to the
application of fixed soil moisture with land use type in TD LSM (Lee et al.,
2016).

The rainfall simulated in the WRF experiments was much higher than
the observed, which may have been caused by the excessive convection
in the Indian Ocean (Diaz et al., 2015) and Kain-Fritsch cumulus scheme
application (Ramarohetra et al., 2015; Chawla et al., 2018). Moreover,
the presence of Lake Tana water body may influence the rainfall simu-
lation in the WRF model (Haile et al., 2009). Although the WRF experi-
ments poorly captured the average rainfall magnitude, the relative
performance of Noah LSM and NLU data were significantly higher
compared to others. The high performance of Noah LSM and NLU is
consistent with Ramarohetra et al. (2015) and G€ond€ocs et al. (2015). In
general, the deficiency of rainfall simulation using RCM is a common
phenomenon (Chotamonsak et al., 2012; Chawla et al., 2018), which
result from the incapability of the models to handle complex biogeo-
chemical and biogeophysical processes (Pongratz et al., 2010), and the
nonlinear interactivity of model parameters including microphysics,
cumulus, and planetary boundary layer.



Fig. 10. Spatial distribution of average rainfall across the Lake Tana basin; a) Observed average, b) Simulated average from WRF experiment, and c) Mean bias, which
is simulated minus observed rainfall.

Table 9
Spatial correlation coefficients between observation and WRF experimental
simulations for the dry (March to May) and wet (June to August) season Tmax,
Tmin, and rainfall over Lake Tana basin.

WRF
experiment

Tmax Tmin Rainfall

Dry
season

Wet
season

Dry
season

Wet
season

Dry
season

Wet
season

Noah-U 0.86 0.75 0.92 0.93 0.15ns 0.62
Noah-N 0.86 0.75 0.92 0.93 0.13ns 0.62
RUC-U 0.87 0.74 0.90 0.92 0.09ns 0.57
RUC-N 0.87 0.75 0.91 0.92 0.03ns 0.38
TD-U 0.87 0.73 0.94 0.90 -0.21ns 0.56
TD-N 0.87 0.74 0.93 0.90 -0.22ns 0.38

Note: ns represent spatial correlation is non-significant at 95% confidence level.
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Although the hypotheses were supported statistically, the WRFmodel
had considerable limitation to reproduces the temporal and spatial var-
iations of rainfall over Lake Tana basin. Future research should, there-
fore, include other physical parameterization such as microphysics,
cumulus, and pantry boundary layers to evaluate in greater detail
whether the rainfall magnitude and spatial coverage improved in the
WRF model.

5. Conclusions

This study evaluated the Weather Research and Forecasting (WRF)
model for regional climate simulations in the Lake Tana basin in
Ethiopia. Six WRF experiments were configured to assess the perfor-
mance of three LSM (Noah, RUC and TD) and two land uses (USGS and
NLU) to simulate temperature and rainfall. The new land use data
captured well the land use dynamics in the basin such as cropland and
urban expansions, and reduction of Lake Tana water body. However, the
USGS land use data extremely underestimated the cropland and forest
coverage in the basin.

The temporal and spatial comparison showed that the impact of LSM
choice was slightly higher than land use data. Differences in land use data
provide a slight difference for both temperature and rainfall simulations
12
across space. On the other hand, the simulated average temperature and
rainfall by the different LSMs were substantially different. The RUC-N
and TD-N simulations yielded small cold bias for Tmax (0.27 �C) and
small warm bias (0.20 �C) for Tmin, respectively. For rainfall simulations,
the Noah-N and Noah-U experiment provided similar results; with
slightly better spatial and temporal representation in favor of Noah-N. On
average, TD produced 1.91 mm/day more rainfall when compared to
Noah. The application of updated and accurate land use information
improved the spatial and temporal representation of the WRF model in
simulating temperature and rainfall. During rainfall simulation, updated
land use improved model performance by reducing the RMSE by 0.34
mm/day when compared to USGS data. However, the effect of land use
data on rainfall magnitude and distribution are complex due to the
presence of Lake Tana water and the extreme topographic variability in
the Lake Tana basin.

This study was able to show modeling approaches that can provide
temperature and rainfall data in data-scarce environments and would
provide valuable supports in identifying the suitable land use data and
LSM on climate and hydrological process modeling. The findings sug-
gested that the combination of new land use data with RUC, TD, and
Noah LSM in the WRF model can be used to simulate Tmax, Tmin, and
rainfall, respectively. Such data will be vital for climate change impact
research for sustainable water resources management in the Lake Tana
basin.
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