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Abstract

Motivation: Loops are often vital for protein function, however, their irregular structures make

them difficult to model accurately. Current loop modelling algorithms can mostly be divided

into two categories: knowledge-based, where databases of fragments are searched to find suitable

conformations and ab initio, where conformations are generated computationally. Existing

knowledge-based methods only use fragments that are the same length as the target, even though

loops of slightly different lengths may adopt similar conformations. Here, we present a novel

method, Sphinx, which combines ab initio techniques with the potential extra structural informa-

tion contained within loops of a different length to improve structure prediction.

Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets en-

riched with near-native loop conformations, performing better than the ab initio algorithm on

which it is based. In addition, it is able to provide predictions for every target, unlike some

knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody

H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods,

both in accuracy and speed.

Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Loops, the irregular regions of a protein that connect secondary

structure elements, often play a vital functional role. Structural in-

formation is critical to fully understanding a protein’s properties –

however, obtaining structures experimentally is time-consuming and

difficult, especially for loop regions, which can be missing from ex-

perimentally solved structures (Petoukhov et al., 2002). Due to the

variability of loop structures and sequences between homologues,

predicting loop conformations remains challenging – loops are usu-

ally the least accurate regions of a protein model (Baker and Sali,

2001; Gront et al., 2012).

Traditionally, methods for predicting protein loop structures

are divided into two categories, knowledge-based or ab initio, de-

pending on how they generate possible conformations (decoys).

Knowledge-based methods rely upon databases of previously

observed protein structure fragments. Loop structures are selected

according to certain criteria such as fragment length (i.e. they must

be the same length as the target loop), fragment-target sequence

similarity and how closely the anchor geometry of the fragment

matches that of the target loop. Methods of this type are extremely

fast and can be very accurate when the structure of the target loop is

similar to one previously observed. However, there is not currently
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enough structural data to cover the conformational space, especially

for long loops (Fernandez-Fuentes and Fiser, 2006). When a similar

loop structure has not been observed previously, knowledge-based

methods either give poor predictions or fail to return a prediction at

all. Examples of this type of algorithm include FREAD (Choi and

Deane, 2010; Deane and Blundell, 2001), SuperLooper (Hildebrand

et al., 2009), LoopWeaver (Holtby et al., 2013), LIP (Michalsky

et al., 2003) and LoopIng (Messih et al., 2015).

Ab initio methods do not rely on previously observed structures;

instead, decoys are produced computationally. Ab initio methods

work by exploring the possible conformational space, for example

by randomly sampling the / and w dihedral angles of the loop.

Depending on how the loops are built, the continuity of the protein

backbone may need to be enforced through the implementation of

a closure algorithm, such as cyclic coordinate descent (CCD)

(Canutescu and Dunbrack, 2003), random tweak (Shenkin et al.,

1987) or KIC (Mandell et al., 2009). Like knowledge-based meth-

ods, ab initio algorithms also have their limitations: they are compu-

tationally expensive, since many decoys must be generated to

sample the conformational space sufficiently; and their prediction

accuracy decreases with loop length (as the number of degrees of

freedom increases). Ab initio methods include PLOP (Jacobson

et al., 2004), MODELLER (Fiser et al., 2000), Loopy (Xiang et al.,

2002), LoopBuilder (Soto et al., 2007), LEAP (Liang et al.,

2014), and the loop modelling routine within Rosetta (Stein and

Kortemme, 2013).

The idea of a hybrid loop modelling algorithm, combining

knowledge-based and ab initio approaches, has been explored be-

fore. CODA (Deane and Blundell, 2001) generates decoys using a

knowledge-based method and an ab initio method separately, then

combines the two decoy sets and makes a consensus prediction.

Fasnacht et al. (2014), Martin et al. (1989), and Whitelegg and Rees

(2000)) have used similar approaches and applied it to modelling

the complementarity determining regions (CDRs) of antibodies –

initial conformations are selected from a database of structures, and

the middle section is then remodelled using ab initio techniques. In

all of these examples, however, the ab initio and knowledge-based

sections of the algorithms are kept distinct from one another.

An alternative approach using Rosetta is described by Rohl et al.,

2004 – this used a Monte Carlo-based fragment assembly method,

in conjunction with a minimization protocol. The fragments used by

this algorithm are very short (three residues for loops under 15 resi-

dues in length) and therefore any structural similarity is only con-

sidered for short segments of the target loop, not all of it.

Recent research into the canonical conformations of antibody

CDRs has shown that loops of different lengths can adopt similar

structures (Nowak et al., 2016), indicating that loops with a differ-

ent number of residues could still provide useful information when

modelling a particular target loop. However, no existing methods

are able to use this knowledge, since they either do not use previ-

ously known structures, must only use length-matched fragments, or

build conformations by assembling very short fragments. Some algo-

rithms, such as Frag’r’us (Bonet et al., 2014), allow the user to

remodel loop structures using fragments of a different length to the

original loop, however, the fragment must still be of the same length

as the desired target loop. Here, we introduce a new loop modelling

method, Sphinx, that can use this extra source of structural informa-

tion, by integrating aspects of both knowledge-based and ab initio

approaches in a novel way. Sphinx begins the loop modelling pro-

cess by identifying potential fragments that are slightly shorter than

the loop to be predicted. By combining the structural information

from such fragments with ab initio techniques, the length is adjusted

and decoys of the correct length are generated. In this way, we are

able to use the additional information present in different length

loops. Sphinx is not limited to predicting what has already been

observed, like a traditional knowledge-based method, nor does it ig-

nore the available structural information, as would be the case using

a purely ab initio approach. Our algorithm gives a prediction in

every case (unlike some knowledge-based methods) and generates

decoy sets that are enriched with near-native conformations. This

leads to high-accuracy predictions, demonstrated by its ability to

outperform existing software in the challenging problem of in anti-

body CDR H3 prediction.

2 Methods

The Sphinx algorithm is a combination of FREAD (Choi and Deane,

2010; Deane and Blundell, 2001), a knowledge-based method and

our own ab initio algorithm. The inputs to Sphinx are a protein

structure or model (in PDB format) and the location and sequence of

the loop to be modelled. The algorithm includes four main steps:

database search, loop building, loop closure and decoy selection. A

flowchart of the algorithm is given in Figure 1.

2.1 Database search
The first step of the Sphinx algorithm is the search of a fragment

database, for fragments that are a different length to the target, but

that may share the same conformation. To create this database, the

loop structures of all PDB entries with non-identical sequences [ac-

cording to PISCES (Wang and Dunbrack, 2003), using the structure

with the best resolution for each sequence], plus three residues on

each side, were extracted and split into all possible fragments of 3–

30 residues in length. Loop regions were located using DSSP

(Joosten et al., 2011) and were defined as regions connecting sec-

ondary structures of at least three residues in length. This led to a

database containing the loop structures of 65 108 protein chains

(created October 2015).

Fragments from the database are selected as potential starting

points for prediction depending on three criteria:

1. length – the fragment must be shorter than the target loop, since

preliminary tests indicated that fragments longer than the target

were not able to produce decoys of the same quality. This may

be because shorter loops are represented more in the database.

2. the anchor geometry of the fragment (the two residues on each

side of the loop) must match that of the target. As is the case in

the FREAD algorithm (Choi and Deane, 2010; Deane and

Blundell, 2001), the distances between the Ca atoms of the an-

chor residues (the two residues on each side of the loop) are used

to select fragments with similar anchor geometry.

3. sequence similarity – the sequences of fragments that meet the

first two criteria are aligned to the target sequence using the

Needleman–Wunsch algorithm (Needleman and Wunsch,

1970). These alignments are scored using an environment-

specific substitution (ESS) score (a score which takes into ac-

count the dihedral angles of the fragment residues) (Deane and

Blundell, 2001; Hill et al., 2011), as implemented in FREAD.

The best fragments according to their ESS scores are then passed to

the loop building stage of the algorithm, where their length (n) will

be adjusted using ab initio techniques. Based on exploratory testing

of Sphinx (using the general loop set described in Section 2.6), the
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number and length of fragments to be used depend on the following

rules:

minimum target length ¼
n� 3 if n � 12

n� 4 if n > 12

(

number of fragments ¼
12:5ðn� 2Þ if n is even

12:5ðn� 1Þ if n is odd

(

Throughout this work, we ignore fragments that come from

sequence-identical chains to the target protein, as in a real modelling

situation these structures would not be available.

2.2 Loop building
The structure and sequence alignment information of each selected

fragment is then used to build a set of 100 complete loop decoys of

the correct length. Each decoy is built, one residue at a time, onto

one of the anchor residues, using the algorithm described by Parsons

et al., 2005.

For target residues that are paired with a fragment residue in the

sequence alignment, the structural data (bond lengths, bond angles

and dihedral angles) used to build the residue are calculated from

the corresponding fragment residue. For target residues that are not

aligned to a fragment residue, the structural data are randomly se-

lected from a set of purpose-built distributions. Bond lengths and

angles are drawn at random from the Gaussian distributions (par-

ameters given by Engh and Huber, 1991), and dihedral (//w) angles

are selected from a set of residue-specific Ramachandran distribu-

tions, built using the same set of loop structures that were used to

create the fragment database (see previous section).

2.3 Loop closure
Since the termini of the loop must be connected to the anchor resi-

dues to form a continuous backbone, the structure generated must

be ‘closed’; for example, if the loop was built from the N-anchor

(the anchor nearest to the N terminus of the protein), then the struc-

ture must be altered so that the other end of the loop attaches to the

C-anchor. The loop closure method used by Sphinx is CCD

(Canutescu and Dunbrack, 2003), which works by iteratively chang-

ing the //w angles of the loop, gradually minimizing the distance be-

tween the free end of the loop and the anchor.

For Sphinx, we have written a modified version of the CCD algo-

rithm (as suggested by Canutescu and Dunbrack, 2003), where con-

straints are put on the angle changes so that only the allowed

regions of the Ramachandran plot are occupied (see Supplementary

Information for details). Thus, all decoys generated by Sphinx will

be physically feasible.

It may be preferential for a loop to be built from one particular

anchor residue instead of the other. Therefore, if loop closure fails,

or the resulting loop structure causes clashes between atoms in the

structure, then the loop decoy is discarded and the next loop decoy

is built from the alternate anchor residue. This approach, known as

‘switching’ (Chys and Chacon, 2013) allows the preferred direction

of loop building to dominate.

Once 100 decoys have been made from a fragment (or the num-

ber of failures reaches a cut-off value of 3000), the algorithm moves

onto the next fragment until all selected fragments have been used.

2.4 Decoy selection
Once a complete set of decoys has been generated (100 per frag-

ment), the number is reduced to 500 using our own loop-specific,

knowledge-based energy function. This function is based on the

RAPDF (Samudrala and Moult, 1998) and compares the distances

between atoms of real structures to those in a decoy. Our version

considers only backbone and Cb atoms, meaning that the time-

consuming process of side-chain addition does not have to be carried

out. The data for this function were calculated from a non-

redundant set of structures (with a maximum sequence identity of

40% and a resolution cut-off of 2 Å), considering only those pair-

wise distances involving loop atoms. The function uses six bins for

the data (one bin for distances between 0 and 3 Å, followed by five

1 Å bins up to a maximum of 8 Å).

Once the top 500 decoys have been selected, side-chains are added

using SCWRL4 (Krivov et al., 2009), they are minimized using

the loop refinement protocol within Rosetta (see Supplementary

Information) and subsequently ranked using the SOAP-Loop potential

Fig. 1. Flowchart describing the Sphinx algorithm. As input, the algorithm re-

quires the protein structure on which the loop is to be modelled, and the loop

sequence and location. The algorithm begins by searching through a data-

base of loop fragments. Suitable fragments, that are shorter than the target

loop, are used to help build a set of 100 decoys. The number of fragments

used depends on the length (n) of the target – 12:5ðn � 2Þ for even lengths

and 12:5ðn � 1Þ for odd lengths. For any residues aligned between the target

and the fragment, structural information is copied across. Any residues not

aligned to fragment residues are built ab initio. Each loop structure under-

goes a closure step and a clash check – if closure fails or there are clashes,

the next decoy is built from the alternate anchor residue (‘switching’). Once

all decoys have been generated, a loop-specific energy function is used to se-

lect the top 500 decoys, which subsequently undergo minimization (using

Rosetta) and final ranking (with SOAP-Loop). A larger, colour version of this

figure is provided in the Supplementary Information
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in MODELLER (Dong et al., 2013), a statistical potential developed

specifically for loop modelling. SOAP-Loop is fast and gave the best

results when tested against other ranking methods (see Supplementary

Information).

2.5 Sphinx-H3
The H3-specific version of Sphinx is different to the general version

in three ways; the database of fragments searched, the dihedral data

used and the number of fragments from the database to be used in

loop building.

The H3-specific database was created by extracting the struc-

tures of all the H3 loops that were present in the Structural

Antibody Database (SAbDab) (Dunbar et al., 2014), which were

then split into all their possible fragments (in the same way as the

general fragment database). We define the H3 loop region according

to Chothia and Lesk (1987). In the Chothia numbering scheme, the

H3 is found on the heavy chain between residues 95 and 102 inclu-

sive. At the time, the database was made (April 2015), this led to a

database containing all possible fragments of 3043 H3 structures,

from 1848 different PDB entries.

As there are currently not enough H3 structures available to pro-

duce residue-specific Ramachandran distributions, we constructed

the distributions using a novel resampling method that combines

general protein loop and H3 data (see Supplementary Information

for details). The resampling method makes the Ramachandran dis-

tributions less sparsely populated while maintaining the unique na-

ture of the H3 data.

To verify the ability of Sphinx to predict H3 loop structures, we

first ran it on a target set of H3 loops (see Supplementary

Information for details). Following this test, we allowed Sphinx to

use twice as many fragments in loop building than were used in the

case of general protein loops.

2.6 Datasets
Three datasets are used in this paper: a general protein loop set and

two sets of antibody H3 loops. From the general protein loops that

were extracted to make the fragment database, a series of loops

were selected with no more than 40% sequence identity, resolution

below 2 Å, no B-factor above 30, and no hydrogen bonds to the sur-

rounding crystal. From these loops, a dataset of 36 targets was se-

lected, with lengths ranging from 6 to 18 residues. The first set of

antibody H3 targets was taken from Sivasubramanian et al. (2009).

The target 2ai0 was removed from the original set since the structure

is incomplete and was previously incorrectly designated as a 6-resi-

due loop. Loops that interact with other proteins in the crystal were

also removed, leading to a set of 39 targets which range in length

from 4 to 22 residues. The second set of H3 targets are the ten tar-

gets from the second round of the Antibody Modelling Assessment

II. Complete lists of targets are given in the Supporting Information.

3 Results

Sphinx begins its prediction by searching for fragments of a slightly

different length but possibly a similar conformation to the target

loop, as indicated by sequence similarity and anchor geometry. By

using this knowledge-based approach in tandem with ab initio tech-

niques, these fragments can be adjusted to be the correct length. In

all cases, fragments from protein chains that are identical in se-

quence to the target chain, and fragments of the same length as the

target that could be found using a normal knowledge-based method,

are ignored. All RMSDs are calculated after first superimposing the

rest of the protein structure, or in the case of the antibody models,

the framework residues of the heavy chain [as defined in the second

Antibody Modelling Assessment (Teplyakov et al., 2014)]. All re-

ported RMSDs use all backbone atoms of the loop, except for

the Anitbody Modelling Assessment II target set, which uses only

the carbonyl carbon and oxygen atoms of residues 95–100x (using

the Chothia numbering scheme).

3.1 Comparison to knowledge-based and ab initio

methods
Figure 2 shows the accuracy of the methods on general loops. The

methods shown are Sphinx and the algorithms on which it is based:

the knowledge-based method FREAD (Choi and Deane, 2010;

Deane and Blundell, 2001) and our own ab initio method. FREAD

is a knowledge-based method, which searches a database for suit-

able fragments of the same length as the target. We ran FREAD

using the same fragment database as used by Sphinx (Section 2),

which on average returned seven decoys per target. The ab initio

method can be thought of as running Sphinx without any fragment

information – i.e. all bond lengths, angles and dihedral angles are

chosen randomly from the relevant distributions. To ensure a fair

comparison, the ab initio method was run so as to generate the same

number of decoys for each target as Sphinx (around 11 000 on

Fig. 2. Performance of Sphinx compared to its constituent knowledge-based

and ab initio parts, for general protein loop types. Targets are listed in order

of increasing length. ‘Best’ refers to the decoy in the set that is closest to the

native structure, when considering the 500 decoys returned by the loop-spe-

cific energy function (for Sphinx and the ab initio method) or all the returned

decoys (for FREAD). ‘Top’ means the decoy that is predicted to be the best,

and ‘Top 5’ denotes the RMSD of the best decoy amongst the five top-ranked.

A colour version of this figure can be found in the Supplementary

Information
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average), and its decoys were ranked in the same way. The results in

Figure 2 consider only the 500 decoys selected by our loop specific

energy function and the top decoys are selected with SOAP-Loop, ei-

ther before or after minimization with Rosetta.

The effect of the Rosetta minimization protocol on decoy RMSD

is shown in Figure 3. It can be seen that the refinement procedure

does not consistently move the decoy structures closer to the native

conformation. Overall, 59.1% of decoys have lower RMSDs after

minimization, with an average improvement of 0.97 Å. Decoys that

before minimization had a high RMSD are more likely to be im-

proved by the minimization protocol; 60% of decoys that begin

with an RMSD of over 1.5 Å are improved (with an average reduc-

tion in RMSD of 1.12 Å), while 55% of those with RMSDs below

1.5 Å are moved closer to the native structure (with an average

RMSD improvement of 0.31 Å).

However, even though the minimization does not reliably im-

prove RMSDs, overall the results are improved by its inclusion

(Fig. 2). This appears to be due to SOAP-Loop’s enhanced ability to

select near-native decoys – the mean RMSD of the top-ranked decoy

is reduced from 2.56 to 1.50 Å, and the mean RMSD of the best

decoy in the top five decreased from 1.78to 1.08 Å. In addition, the

number of sub-angstrom top-ranked predictions is increased from

18 to 24.

Figure 2 shows that FREAD is more accurate than Sphinx on

average, but there are some targets (9) for which FREAD failed to

find suitable fragments in the database. Sphinx, on the other hand,

returned a prediction in every case. In addition, for 20 of the 36 tar-

gets Sphinx was able to generate a better decoy than FREAD, and

for 28 targets, Sphinx produced a decoy with an RMSD of below 1

Å; four more than FREAD. Sphinx also gives more top-ranked

decoys with sub-angstrom RMSDs, with 24 compared to 22 for

FREAD.

Sphinx, by including information from fragments, is able to con-

siderably outperform its base ab initio algorithm. When considering

the top 500 decoys, Sphinx is able to generate more accurate con-

formations – the average RMSD of the best decoy produced was

0.89 Å, compared to 2.15 Å for the ab initio algorithm, and overall

the lowest-RMSD decoy generated by Sphinx was better than that

of the ab initio algorithm in 33 cases. The ab initio algorithm could

only produce a conformation with an RMSD below 1 Å for 8 tar-

gets; Sphinx gave 28.

The improved ability of Sphinx to produce near-native loop con-

formations is further illustrated by the RMSD distributions of the

decoy sets produced (Fig. 4). There is a greater proportion of low-

RMSD decoys in the decoy set generated by Sphinx, indicating that

the inclusion of fragment information helps to direct the conform-

ational search towards near-native structures.

The RMSDs of the top-ranked decoys (as predicted by SOAP-

Loop) are significantly better when using Sphinx compared to the

base ab initio method, with an average RMSD of 1.50 Å compared

to 5.13 Å for the ab initio algorithm. The five top-ranked decoys

contained 26 and 7 sub-angstrom conformations for Sphinx and the

ab initio method, respectively. The improved accuracy is especially

noticeable for longer loops – for the 16 targets of 12 or more resi-

dues, the ab initio method gave no sub-angstrom predictions, while

Sphinx was able to produce 7.

To compare Sphinx’s performance to other ab initio algorithms,

we used the loop modelling algorithm within the MODELLER soft-

ware (Fiser et al., 2000) as well as RAPPER (DePristo et al., 2003;

de Bakker et al., 2003) to model the loops in the general target set.

In accordance with their respective papers, for MODELLER we gen-

erated 500 decoys for each target, and for RAPPER we generated

1000. As well as using each method’s scoring system to rank the

decoys, for RAPPER we also used the Sphinx ranking protocol (see

Section 2.4). The results of this comparison are shown in Figure 5.

Sphinx is better than the other two methods by every measure. The

decoy sets produced by Sphinx are of a higher quality, with an aver-

age best RMSD of 0.89 Å compared to 4.34, 2.35 and 2.29 Å for

MODELLER, RAPPER and RAPPER using our ranking system, re-

spectively. Sub-ångström decoys were generated by Sphinx for most

of the targets (28), while this was rare for the other methods.

Considering the top-ranked decoy for each target, Sphinx’s predic-

tions are considerably more accurate, with an average RMSD of

1.50 Å compared to 6.03 Å, 6.34 Å and 4.49 Å for the other three

algorithms. The use of Sphinx’s ranking procedure on the decoys

generated by RAPPER improved the latter’s performance, for ex-

ample, decreasing the average top RMSD by 1.85 Å, but Sphinx’s

Fig. 3. The effect of Rosetta minimization on decoy RMSD, for the general

loop target set. The change in RMSD of each decoy is represented as a hori-

zontal line – the position of the line on the y axis indicates the RMSD before

minimization, while the length of the line represents the change in RMSD.

Decoys with improved RMSDs are on the left of the figure in dark grey while

those whose RMSDs were made worse by the minimization step are on the

right

Fig. 4. RMSD distributions for the 500-decoy sets produced by Sphinx and its

base ab initio method. Decoy sets produced by Sphinx contain proportionally

more near-native decoys. Data shown is for all targets in the general loop

dataset
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enhanced ability to sample near-native conformations means that its

accuracy is still higher. It should be noted, however, that since mem-

bers of the general loop set were used to set parameters used by

Sphinx, this test may overstate its performance.

3.2 Antibody H3 prediction
One type of protein for which loop modelling is key is antibodies – a

class of protein produced by the immune system to bind to and initi-

ate the removal of foreign substances. Their exceptional ability to

bind to a huge variety of antigens, with high specificity and affinity,

makes them ideally suited for use as therapeutics (Chames et al.,

2009).

The region of the antibody that both contributes the most to

antibody binding and introduces the most diversity is the H3 loop

(the third CDR of the heavy chain) – it is found in the centre of the

binding site, forms the most contacts with the antigen (Alzari et al.,

1988; MacCallum et al., 1996) and has the greatest effect on the en-

ergetics of binding (Kunik and Ofran, 2013). Knowledge of H3

structures is therefore extremely useful, enabling predictions to be

made about antibody binding properties and hence their suitability

as drugs (Clark et al., 2006; Diskin et al., 2011; Kiyoshi et al., 2014;

Kuroda et al., 2012; Krawczyk et al., 2013; Lewis et al., 2014;

Lippow et al., 2007; Thakkar et al., 2014).

Unfortunately, H3 structure prediction is a particularly difficult

problem, as demonstrated by the results of a recent blind prediction

study (Teplyakov et al., 2014), where the other five CDRs (L1, L2,

L3, H1 and H2) were predicted with an average RMSD of 1.2, 0.5,

1.6, 1.1 and 1.0 Å respectively, while the H3 loop was predicted

with an average RMSD of 3.5 Å. The difficulty arises due to the di-

versity of H3 structures, which is caused by gene recombination and

junctional diversification (Jeske et al., 1984; Tonegawa, 1983). H3

lengths are extremely variable and tend to be longer than general

protein loops (Li, 2013), meaning that searching the entire possible

conformational space is challenging. The use of H3-specific methods

can help address this problem, however, there are currently less than

2500 antibody structures in the PDB (Dunbar et al., 2014), each

containing only one H3 loop, or a few copies of the same loop.

Given the sequence and length diversity of H3, this covers only a

marginal fraction of possible conformations. The challenging nature

of the problem, however, makes H3 an ideal loop on which to test

the performance of loop modelling algorithms (Sellers et al., 2010).

We produced an H3-specific version of our algorithm, Sphinx-

H3 (see Section 2 for details) and used it to predict the structures of

39 H3 loops, taken from the set used to test RosettaAntibody

(Sivasubramanian et al., 2009). To compare our results to other

software, we also generated predictions using the H3 modelling rou-

tine within RosettaAntibody; a leading H3-specific ab initio loop

prediction algorithm. This uses the next-generation kinematic mod-

elling (KIC) approach described by Stein and Kortemme (2013) –

the full command used is given in the Supplementary Information.

The decoys obtained using Rosetta were ranked using its internal

scoring function. We generated 500 decoys per target, like in Stein

and Kortemme (2013), and the same number from Sphinx that

undergo minimization and final ranking. This allows us to compare

execution times. Predictions were generated with the rest of the anti-

body in its native conformation, in the same manner as the second

round of the second Antibody Modelling Assessment (Teplyakov

et al., 2014). Figure 6A shows the results of this comparison.

The ability of Sphinx-H3 to generate near-native H3 conform-

ations is comparable to RosettaAntibody: the average RMSD of the

best decoy generated is 0.94 Å (median 0.71 Å) for Sphinx-H3 com-

pared to 1.07 Å (median 0.75 Å) for RosettaAntibody. After decoy

ranking, Sphinx-H3 outperforms RosettaAntibody, producing an

average top-ranked RMSD of 2.5 Å (median 2.31 Å) compared to

3.38 Å (median 3.25 Å), and giving predictions below 2 Å for 17

targets (compared to 13 for RosettaAntibody). On a target-by-target

basis, Sphinx gave a more accurate prediction than RosettaAntibody

24 times, increasing to 28 when considering the best of the five top-

ranked decoys.

In addition to achieving better accuracies, Sphinx is also much

faster than RosettaAntibody. RosettaAntibody takes approximately

1 h to generate a single loop conformation (and hence up to

500hours to generate the whole decoy set); Sphinx took (on average)

14 h per target to generate, minimize and rank all decoys, with the ma-

jority of the time being spent on minimization (approximately 12h).

H3 loops can be classified as either ’kinked’ or ’extended’ de-

pending on the conformation of their C-termini, with the majority

being kinked (Weitzner et al., 2015). Using the definition of

Weitzner et al. (2015), we tested how often Sphinx correctly predicts

a kinked or extended conformation. For the 30 kinked loops in the

H3 target set, the top-ranked prediction of Sphinx was also kinked

in 24 cases. This compares favourably to Rosetta, which only pro-

duced a top-ranked prediction of the correct conformation for 14 of

the kinked targets. For both algorithms, five of the nine extended

loops were predicted with the correct conformation.

We then used Sphinx to predict the H3 loops on antibody models

rather than crystal structures, to see how accuracy is affected (Figure

6B). In the model environment, anchor residues are in a non-native

conformation, making prediction more difficult. We generated

model structures of the 39 antibodies in the set using ABodyBuilder

(Leem et al., 2016), a template-based fragment assembly method

that builds antibody models using information from already known

antibody structures. As expected, the results are not as good as

when using the native environment – the average top-ranked RMSD

increases from 2.5 (median 2.31 Å) to 3.26 Å (median 3.12 Å), and

fewer sub-angstrom predictions are made. Interestingly, however,

unlike the previous tests where minimization improved results, here

Fig. 5. Comparison of Sphinx to other ab initio methods: the loop modelling

algorithm of MODELLER and RAPPER. RAPPER results are shown using both

the method’s own ranking system (1) and the ranking procedure used by

Sphinx (2)

A

B

Fig. 6. Sphinx-H3 prediction accuracy. (A) Comparison of Sphinx and Rosetta

antibody H3 loop prediction. (B) Performance of Sphinx antibody H3 loop pre-

diction in a non-native environment
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it appears to decrease accuracy. The average top-ranked RMSD and

the average RMSD of the best decoy in the five top-ranked stay ap-

proximately the same, but the number of targets predicted with an

RMSD below 2 Å decreases from 18 to 10. In 2014, the second

Antibody Modelling Assessment (AMA-II) was held; a CASP-style

blind prediction test specifically for antibody structure prediction.

The second round of this competition focused entirely on H3 predic-

tion - participants were given the crystal structures of ten antibodies

with the H3 loops removed, and asked to model the missing residues

(allowing them to submit five possible models per target). We have

used Sphinx to predict these H3 structures to further compare our

results with those of other groups (all results are given in the

Supplementary Information). We used the same protocol as that

used for the previous H3 loop set, except that fragments from PDB

structures deposited later than March 2013 were ignored (to ensure

a fair comparison). We report our results using the same RMSD

measure as used in AMA-II – using only the carbonyl C and O atoms

of residues 95–100x.

On average, the best of the five models returned by Sphinx has

an RMSD of 1.41 Å. This compares well to the other groups, who

achieved RMSDs of 1.86, 2.09, 1.97, 1.25, 2.41 and 1.12 Å (for

Accelrys, CCG, the Gray group, the Shirai group, Macromoltek and

Schrödinger, respectively). Only the Shirai group and Schrödinger

achieved better results than Sphinx according to this measure.

When looking at the average RMSD across all models, Sphinx

outperforms all the other methods with an RMSD of 2.17 Å com-

pared to 2.89, 3.08, 3.22, 2.43, 3.08 and 2.54 Å. Sphinx is therefore

more consistent than the other methods. For two targets (Ab04 and

Ab10), the best model from Sphinx had a lower or the same RMSD

as the best produced from all other methods. In addition, Sphinx

was able to produce a sub-angstrom prediction for six of the ten tar-

gets, which is the most achieved by any method (equal to the num-

ber generated by Schrödinger).

4 Conclusions

We have developed a loop modelling algorithm, Sphinx, which com-

bines both knowledge-based and ab initio methodologies in a novel

way, such that structural information contained within fragments of

a different length to the target loop can be used. This is important,

since it has been shown that loops of different lengths can adopt

similar conformations (Nowak et al., 2016), and other methods do

not make use of this information. Sphinx is capable of generating

high-quality decoy sets that are enriched with near-native conform-

ations and in addition produces more accurate predictions than can

be achieved using a straightforward ab initio algorithm. Sphinx is

also able to produce a prediction for every target, unlike some

knowledge-based methods, which can fail if a suitable fragment of

the correct length cannot be found.

The H3-specific version of our algorithm, Sphinx-H3, produces

promising results, achieving comparable or better results than some

of the leading H3-specific ab initio algorithms (Teplyakov et al.,

2014). The kinked/extended conformation of the H3 targets was

correctly predicted in the majority of cases – even though no prior

assumptions or predictions were made about the loops, and no re-

straints were imposed on the decoys to force a kinked/extended

structure. Sphinx is also fast – for example, in comparison to

RosettaAntibody, Sphinx gives increased or similar accuracy in

under 3% of the computation time. Sphinx is therefore a more vi-

able option for use in applications such as structure-based virtual

screening.

We have demonstrated that, except potentially in the case of

modelling H3 in the non-native environment, the inclusion of a

minimization procedure improves prediction accuracies, even

though decoy RMSDs may not be consistently improved. This ap-

pears to be because the ability of the ranking method to correctly se-

lect near-native decoys is enhanced. However, this does not occur

when predicting onto model structures – this could be because al-

though the models onto which the decoys are built are good, they do

not have atomic accuracy, and hence errors exist – especially in the

conformations of the side chain. As such, the loop minimization is

being performed in the non-native environment, which may affect

results adversely. Preliminary results show that ranking is improved

by minimizing the entire structure, not just the loop region.

The results achieved by our method indicate that fragments that

are a slightly different length to the target loop are indeed a valuable

source of structural information. Using a hybrid approach allows

Sphinx to use the structural data that is available without being re-

stricted to only returning loop conformations that have previously

been observed. Also, since we have demonstrated that this approach

can be applied successfully to prediction of the difficult H3 loop, we

believe that the algorithm can be easily adapted for other specific

protein loop types and should continue to perform well. For ex-

ample, it could be applied to membrane protein loops, or the other

five antibody CDR loops, since recent exploration into length-

independent canonical conformations show that different length

CDR loops can adopt the same conformation (Nowak et al., 2016).

While Sphinx is the first algorithm of its kind, the concept be-

hind it could easily be applied to other loop modelling algorithms,

allowing them to use the information from structurally similar but

length non-identical loops. For instance, in the case of antibody H3

prediction, RosettaAntibody could be combined with a knowledge-

based method [such as FREAD or H3Loopred (Messih et al., 2014)]

to offer an alternative.

From the results presented in this paper, we believe that in a real

loop modelling situation a knowledge-based method such as

FREAD should be tried first (since such methods are usually very

fast). However, if a suitable fragment cannot be found, then the

next approach should be to use a hybrid algorithm such as Sphinx.

Instead of reverting to a pure ab initio algorithm that ignores previ-

ously observed structures, this allows more of the available struc-

tural data to be used, leading to more accurate predictions.

As the results presented here demonstrate that, using the extra

structural information contained within different length loops,

Sphinx produces high-quality decoy sets and accurate predictions in

a fraction of the time of some existing algorithms. As the PDB ex-

pands and more structural data becomes available, Sphinx’s per-

formance should improve further.
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