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Abstract

Background: Mental disorders are highly comorbid: people having one disorder are likely to have another as well. We
explain empirical comorbidity patterns based on a network model of psychiatric symptoms, derived from an analysis of
symptom overlap in the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV).

Principal Findings: We show that a) half of the symptoms in the DSM-IV network are connected, b) the architecture of these
connections conforms to a small world structure, featuring a high degree of clustering but a short average path length, and
c) distances between disorders in this structure predict empirical comorbidity rates. Network simulations of Major
Depressive Episode and Generalized Anxiety Disorder show that the model faithfully reproduces empirical population
statistics for these disorders.

Conclusions: In the network model, mental disorders are inherently complex. This explains the limited successes of genetic,
neuroscientific, and etiological approaches to unravel their causes. We outline a psychosystems approach to investigate the
structure and dynamics of mental disorders.
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Introduction

One of the major discoveries in the past century of

psychopathology research is that comorbidity (the joint occurrence

of two or more mental disorders) is the rule rather than the

exception [1]. Since comorbidity has consistently been associated

with a poorer prognosis and greater demands for professional help,

unraveling the causes of comorbidity ranks among the top

priorities in clinical psychology and psychiatry [2,3].

In practice, comorbidity is often investigated by analyzing the

association between composite measures defined on two sets of

items (i.e., a correlation between total scores on checklists) or

between two diagnoses. This methodology has yielded important

insights into which disorders co-occur more frequently than

chance [1,4,5] and into risk factors that predispose towards

comorbidity [6–8].

However, a limitation of this methodology is that symptoms are

viewed as passive indicators of ‘‘latent’’ conditions (disorders) that

do the actual causal work [9,10]. Comorbidity is then suggested to

arise from a root cause that is shared by two or more latent

disorders. For instance, shared genes or a general predisposition

towards negative affect have been put forward as common causes

of comorbidity between Major Depressive Episode (MDE) and

Generalized Anxiety Disorder (GAD; [11,12]).

In clinical psychology and psychiatry, however, symptoms are

unlikely to be merely passive psychometric indicators of latent

conditions; rather, they indicate properties with autonomous causal

relevance. That is, when symptoms arise, they can cause other

symptoms on their own. For instance, among the symptoms of

MDE we find sleep deprivation and concentration problems, while GAD

comprises irritability and fatigue [13]. It is feasible that comorbidity

between MDE and GAD arises from causal chains of directly

related symptoms; e.g., sleep deprivation (MDE)Rfatigue (MDE)Rcon-

centration problems (GAD)Rirritability (GAD). For other disorders, such

chains appear plausible as well: e.g., having suffered from a panic attack

(panic disorder)Rbeing worried about having another attack (panic

disorder)Ravoiding public places (agoraphobia). In accordance with

this idea, Kim and Ahn [14] showed that clinical psychologists

typically interpret symptom patterns in terms of causal networks.

Thus, it is likely that direct relations between symptoms exist. As

a result, there may be individual differences in how comorbid

disorders develop. There may not just be one source of

comorbidity, for which it does not matter which symptoms are

in effect for a given person; there may instead be many roads to

comorbidity, and which one is taken depends on the person and

his or her specific situation. Figure 1 shows an illustration of this

idea, by highlighting possible roads to comorbidity between MDE

and GAD for two fictitious persons, Alice and Bob. In both, MDE

leads to GAD, but in different ways and for different reasons. For

instance, Alice may develop depressed feelings due to the break-up

of a romantic relationship, while Bob may become overweight

after losing his job (see Figure 1). Such differences are plausible,

because the onset of symptoms of mental disorders like MDE is

differentially related to distinct life events [15]. In addition, the

events that set the domino effect in motion may affect the

subsequent road that is taken to comorbidity (Figure 1: Alice and

Bob travel different roads but both end up with a MDE and GAD

diagnosis).
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Reasoning along these lines, our research team has developed a

network approach to mental disorders and comorbidity [16]. In this

approach, symptoms are not viewed as indicators of latent

conditions, but as components in a network; comorbidity is

hypothesized to result from direct relations between symptoms of

multiple disorders. Here, we use this approach to analyze the

entire symptom space described in the Diagnostic and Statistical

Manual of Mental Disorders-IV (DSM-IV; [13]). We construct a

network of this space and show that (a) half of the symptoms in the

DSM-IV are directly or indirectly connected in a so-called giant

component, and (b) this component of connected symptoms has the

characteristics of a small world [17]. This means that a significant

part of DSM-IV comorbidity may indeed arise through the effects

of symptoms shared by multiple disorders (i.e., bridge symptoms;

[16]). In addition, we show through simulations that the network

model can account for population statistics on prevalence and

comorbidity.

Results

Study 1: Construction and analysis of the DSM-IV-
network

A first step towards providing an account of comorbidity from a

network perspective is to examine the most often used taxonomy

of mental disorders, as represented in the DSM-IV. More

specifically, to get a first approximation of the symptom space,

we aim to construct a network that represents all individual DSM-

IV symptoms and connections between them. Subsequently, we

analyze its global structure by the application of network analysis

techniques [18].

Graph construction. The DSM-IV lists 201 distinct mental

disorders, which are diagnosed through 522 criteria. Diagnostic

criteria do not map onto symptoms uniquely. Sometimes the same

symptoms function as criteria for distinct disorders (e.g., fatigue is a

symptom of MDE and of GAD), sometimes one symptom is a

special case of another symptom (e.g., insomnia is a special case of

sleep disturbance), and sometimes two symptoms only differ with

respect to their antecedent causes (e.g., insomnia versus insomnia due

to alcohol withdrawal). We dealt with this overlap by a) equating

symptoms that are literally the same or that are so similar that they

are unlikely to be behaviorally distinguishable (e.g., restlessness in

GAD and psychomotor agitation in MDE), b) discounting symptoms

that refer to external influences (e.g., when insomnia is already

present, insomnia due to alcohol withdrawal is not represented as a

distinct symptom), and c) separating disjunctive symptoms into

their constituent parts (e.g., insomnia or hypersomnia, a criterion for

MDE, is decomposed into insomnia and hypersomnia). The resulting

439 symptoms were used for further analysis.

As a result of this methodology, disorders that feature exactly

the same symptoms (e.g., Bipolar I Disorder, Most Recent Episode

Hypomanic versus Bipolar I Disorder, Most Recent Episode Manic) are no

longer represented as distinct entities. The same holds for

disorders that only differ by reference to external precipitating

factors (Delirium Due to a General Medical Condition versus Substance

Withdrawal Delirium). As a result, the number of explicitly

represented disorders in the final analysis (148) is smaller than

Figure 1. The difference between the existing view on comorbidity (top) versus the network approach (bottom) for two fictitious
persons, Alice (left) and Bob (right). In both figures, the red node represents an external life event; green nodes core MDE symptoms; turquoise
nodes core GAD symptoms; purple nodes bridge symptoms (i.e., symptoms that are part of both MDE and GAD). Edges between nodes represent
pathways between symptoms. The light green edges represent possible pathways; the thicker and dark green edges the pathways taken by Alice and
Bob respectively. roma = break-up of romantic relationship; jobl = job loss; mWei = weight problems; mInt = loss of interest; mRep = self-reproach;
mDep = depressed mood; mSui = (thoughts of) suicide; bSle = sleep problems; bFat = fatigue; bCon = concentration problems; bMot = psychomotor
problems; gAnx = chronic anxiety; gEve = anxiety about more than one event; gCtr = no control over anxiety; gMus = muscle tension; gIrr = irritable.
doi:10.1371/journal.pone.0027407.g001
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the number in the DSM-IV (201). The symptoms and their allo-

cation to disorders are available from http://www.psychosystems.

org/materials.html.

The network was constructed as follows. First, we represent

each of the DSM-IV-symptoms as a node. Second, we draw a

connection (i.e., an edge) between any two symptoms if they

function as criteria for the same disorder. These two steps define a

network structure among the symptoms. Technically this may be

viewed as a projection of a bipartite network, in which symptoms

are connected via common disorders, onto the symptom space. In

the resulting network structure, symptoms of the same disorder

become directly connected, while indirect connections arise

because of the presence of shared symptoms (i.e., bridge

symptoms). For instance, insomnia and lack of interest are directly

connected, because both are symptoms of MDE. Lack of interest and

anxiety, in contrast, are not directly connected (because there are no

DSM-IV disorders that feature both of these symptoms). However,

these symptoms are connected indirectly via insomnia, because

insomnia is a shared symptom of MDE (which also has lack of interest

among its symptoms) and GAD (which includes anxiety among its

symptoms). Finally, two symptoms are unconnected if there is no

way of getting from one to the other via bridge symptoms. To

visualize this network structure, we employed a node positioning

algorithm with the R-package igraph [19] which leads more

strongly connected sets of nodes to cluster closer together [20].

Network analysis. Figure 2 shows the resulting DSM-IV

symptom graph (to identify individual symptoms as well as the

symptom-disorder correspondence, consult http://www.

psychosystems.org/Data/Pics/Graphs/DSMgraph.svg with a

browser that can show .svg files, such as Firefox). The graph has

two properties that are interesting in view of the generally high

comorbidity between DSM-IV diagnoses. First, it features a giant

component spanning 208 (47.4%) of the symptoms: roughly half of

the symptoms are connected. This means that one can reach any

of these symptoms from any other, by traveling along a path

consisting of one or more edges between them. Second, the

structure of the giant component conforms to a small world [17].

This means that, compared to a graph in which the same number

of nodes (208) is connected by same number of edges (1949) in a

completely random fashion (a random graph) it has a similar short

path length between symptoms, but a much higher probability of

an edge between two symptoms that are direct neighbors of a third

symptom, i.e., a higher level of clustering. Table 1 gives an

overview of the characteristics of the giant component in the

DSM-IV network.

To establish the small world property, we examined the

clustering coefficient and average shortest path length of the

DSM-IV graph. The clustering coefficient, based on transitivity, is

defined as 3 times the number of triangles divided by the number

of paths of length 2 [21]. The shortest path length ,(i,j) between

two nodes i and j equals the minimum number of edges that must

be passed over to get from i to j. The average shortest path length

L is the average over the shortest path lengths ,(i,j) of all node

pairs [22]. With a clustering coefficient of CDSM = 0.68 and an

average shortest path length of LDSM = 2.6 (as opposed to the

expected values of CRND = 0.09 and LRND = 2.12 in a random

graph; [22]), the giant component of the DSM-IV network has a

small-world-ness index (SWI = (CDSM/CRND)/(LDSM/LRND);

[21]) of 6.2, which exceeds the conservative small-world-ness

criterion threshold of 3 [21]. Figure 3 shows the density of the

SWIs of 10000 random networks (in black), along with the

observed SWI of the giant component (red line). The assortation of

symptoms and disorders that underlies the giant component differs

from a random assortation schedule with respect to small-world-

ness in the resulting symptom networks. To test this, we

determined the SWIs of 10000 networks, in which 208 symptoms

were assorted randomly with the 69 disorders in the giant

component, while each symptom and each disorder had exactly

the same number of connections as in the giant component

(henceforth: permutation model).

Figure 3 shows the density of the SWIs of the simulated

permutation model networks (in blue), which is located in between,

and is well separated from, the density of the random network

SWI’s and the SWI of the DSM giant component. In addition, the

Figure 2. The DSM-IV symptom space. Symptoms are represented as nodes and connected by an edge whenever they figure in the same
disorder. Color of nodes represents the DSM-IV chapter in which they occur most often.
doi:10.1371/journal.pone.0027407.g002
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probability p of a connection between any two given symptoms is

larger in these networks (0.15,p,0.17) than in the DSM giant

component (p = 0.09). This shows that in the DSM giant

component, symptom groups figure together in multiple disorders

more often than expected under a random assortation schedule.

This is exactly what we would expect if symptom groups are

causally related. In sum, the existent giant component, and its

small world characteristic, reflect that half of the symptoms are

indeed connected, and that the paths to comorbidity arising from

these connections are typically short, with symptom groups

figuring together in multiple disorders.

An important property of nodes in any network is their

centrality [18]. Two of the standard ways of measuring this

property are by determining the degree and betweenness of nodes. The

Table 1. Properties of the DSM-IV giant component.

Global properties

Number of symptoms 208

Number of explicitly represented disorders 69

Number of edges 1949

Average shortest path length 2.60

Average number of shortest paths between two symptoms 3.01

Small-worldness index (SWI), based on transitivity 6.20

Clustering coefficient, based on transitivity 0.68

Average degree 18.74

Symptoms with highest degrees

Symptom name Degree % Connected symptoms

1. Insomnia 71 34.1%

2. Psychomotor agitation 68 32.7%

3. Psychomotor retardation 61 29.3%

4. Depressed 60 28.8%

Symptoms with highest random walk betweenness

Symptom name Betweenness % Connected symptoms

1. Irritable 0.24 23.6%

2. Distracted 0.17 24.0%

3. Anxious 0.16 23.1%

4. Depressed 0.16 28.8%

doi:10.1371/journal.pone.0027407.t001

Figure 3. Small-world-ness indices (SWI). Density distributions of the SWI’s of 10000 random networks (in black), and of 10000 permutation
model networks (in blue). The vertical red line marks the observed SWI of the giant component. Dotted vertical lines indicate the respective mean
SWI.
doi:10.1371/journal.pone.0027407.g003
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degree of a node equals the number of connections a node has with

other nodes. Nodes with a higher degree thus are more central in

the sense of having more direct connections. The degree distribution

(i.e., the probability that a node selected at random has a certain

degree) of a network gives important information about network

structure and is often used in network analysis to classify networks

[23]. The degree distribution of the DSM-network follows an

exponential decay function (top right Figure 4) rather than a

power law (bottom left Figure 4), which classifies it as a single-scale

network [23]. This means that the DSM-IV network is of the same

type as, for instance, an air-traffic network with airports (nodes)

that are connected to small to large numbers of other nodes, yet

without nodes that are connected to extremely large numbers of

other nodes [23]. Similarly, the four most highly connected

symptoms of the DSM-IV network are linked to 60 to 71 other

symptoms (i.e., 14–16% of all symptoms; 29–35% of symptoms in

the giant component). The symptom with the highest degree is

insomnia (71 connections), followed by psychomotor agitation (68),

Figure 4. The giant component and its degree distribution. In the top left and bottom right parts of the figure, node size is proportional to
the centrality of the node: the more central, the larger the node. The represented centrality measure is based on random walk betweenness [36]. That
is, we averaged the number of times that a node was part of a path between two other nodes chosen during consecutive random walks. The top left
part represents the giant component while the bottom right highlights the four most central symptoms. The top right and bottom left parts of the
figure show the fit of two functions on the degree distribution: logistic (to assess power law property; left bottom) and exponential (to assess
exponential decay; top right). The x-as represents the (log) degree while the y-axis represents the probability that a node chosen uniformly at random
has a degree larger than k.
doi:10.1371/journal.pone.0027407.g004
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psychomotor retardation (61) and depressed mood (60). Another important

property of nodes that is relevant in thinking about comorbidity is

their betweenness. This measures the probability that a node lies

on a path between two other nodes. In the DSM-IV graph, the

four symptoms with the highest (random walk) betweenness are

irritable, distracted, anxious and depressed (bottom right Figure 4).

Symptoms with a high centrality may transmit the effects from

many symptoms to many other symptoms. The most central

symptoms in the DSM-IV network are rather ordinary, in the

sense that they are commonly experienced in response to a variety

of external events, such as a quarrel with a loved one or failure to

pass an exam. However, they are also likely to arise from

conditions within the DSM-network. Such diverse conditions as

alcohol addiction, lacking close friends, or amnesia, may trigger

any of these central nodes; in turn, when activated, their effects

may fan out across the network. Thus, the DSM-IV network

suggests that there are many short roads to comorbidity, and more

often than not, these run through what we may consider

‘‘mundane’’ symptoms. Interestingly, the most central symptoms

in the DSM-IV network all function as criteria for two of the

mental disorders with the highest prevalence in the US, namely

mood and anxiety disorders [24]. This is consistent with the idea

that symptom activation indeed spreads though the network

structure along the paths represented in Figure 2.

Study 2: Connecting network structure to empirical data
To the extent that the network as depicted in Figure 2

approximates the causal structure of DSM-IV symptoms ade-

quately, the small world property implies that symptom activation

will spread rapidly through the network, analogous to the way an

epidemic spreads through a population [25]. Thus, the network

model potentially explains a significant part of the substantial

comorbidity among DSM-IV categories. Further, if we make some

basic assumptions about this process, we can derive empirical

predictions from the network hypothesis at the level of the global

comorbidity structure of the DSM-IV. For instance, we may

plausibly assume that the majority of symptoms in the DSM-IV

network are positively connected; that is, having any DSM-IV

symptom results in a higher probability of developing another one.

As such, we assume that symptoms do not function as protective

factors in the development of other symptoms (i.e., resulting in a

lower probability). If this assumption is correct, we should expect

only positive empirical correlations between mental disorders (a

positive manifold). Second, we should expect an association between

distances between disorders in the network and empirical

comorbidity rates: the farther apart two disorders are, the lower

the probability of comorbidity between them.

Average shortest path lengths and comorbidity. To

examine these network predictions, we first determined the

distance between disorders in the graph. For this purpose, we

used the shortest path lengths2 between symptoms. The distance

between two disorders was then operationalized as the average

shortest path length between their respective symptoms. The

average shortest path length between two disorders A and B is thus

equal to the expected number of edges one has to travel to reach a

randomly chosen symptom from disorder A from a randomly

chosen symptom from disorder B. The higher this number is, the

farther apart the disorders in question are situated in the network.

To relate these statistics to empirical comorbidity rates, we used

existing reports on the comorbidity structure in the National

Comorbidity Survey Replication (NCS-R; [1,4]), in which a

sample of over 9,000 individuals completed a structured DSM

interview. In particular, we used the tetrachoric correlations

between common mental disorders as reported in Table 1 of

Krueger’s [26] analysis as our operationalization of comorbidity.

Subsequently, we related the average shortest path lengths

between disorders to the empirical comorbidity rates. Two of

the disorders discussed in [26], Substance Dependence and Substance

Abuse, are not part of the giant component; hence, we could not

include them in this analysis. However, note that although there

are no bridge symptoms that connect these disorders with, e.g.,

major depression, it is likely that causal relations between these

disorders do exist.

Figure 5 shows the empirical correlations between 28 pairs of

common DSM-IV disorders (the blue line; [26]) and the

corresponding average shortest path lengths between the symp-

toms that make up these disorders in our graph (the red line). As is

evident from the figure, the correlation between empirical

comorbidity rates and average shortest path lengths is substantially

negative (r = 20.72 over all pairs of disorders; r = 20.66 for pairs

of disorders that have no common symptoms). In addition,

correlations between disorders are never negative (i.e., they form a

positive manifold), consistent with the network model.

Naturally, this does not constitute proof of the model. First, the

data are consistent with our hypothesis that the causal connections

between symptoms produce the correlations in question, but we

cannot rule out the possibility that other sources of comorbidity led

to this pattern by happenstance. This is relevant because the

DSM-IV itself was constructed partly on the basis of empirical

correlations (i.e., it is likely that the scholars constructing the

various editions of the DSM used the correlations between

symptoms to construct syndromes). In addition, the disorders

themselves partly result from arbitrary or purely pragmatic

decisions. Hence the structure of the graph is unlikely to be

definitive. Finally, although common mental disorders cover a

large share of psychopathology in terms of prevalence, the number

of disorders that we could include in the analysis is limited.

Keeping in mind these caveats, however, the results could easily

have panned out differently, as there is no statistical law that

prescribes that disorders constructed in the DSM-IV fashion

should correlate positively, or that the relation between average

shortest path lengths and empirical correlations should be

negative. Thus, in our view, the results have some evidential

relevance, if only because they show that a network explanation of

the global DSM-IV comorbidity structure is feasible.

Study 3: Simulating symptom dynamics of MDE and GAD
The previous analysis shows that path lengths and empirical

comorbidity rates are correlated as would be expected if symptom

activation propagates via the network structure. However,

disorders are usually temporally dynamic, in the sense that they

are defined with respect to certain time frames (e.g., two weeks for

MDE and six months for GAD). Thus, one would ideally

demonstrate that the dynamic properties of the network can

account accurately for empirical comorbidity rates as they would

arise in time.

The network model is potentially capable of this; when coupled

with a temporal regime that specifies the causal influence of nodes

on each other, the model becomes a dynamic and intra-individual

model that describes how mental disorders and comorbidity

between them develop over time in individual persons (like the

networks for Alice and Bob in Figure 1). As such, the edges

between symptoms represent mediational processes (e.g., homeo-

static and cognitive processes) that, triggered by having symptom

A at time point 1, could result in symptom B at time point 2. For

instance, anxiety (symptom A) is likely to trigger ruminative

processes that result in depressed feelings (symptom B). Now, one

way to demonstrate the potential of the network approach to

The Small World of Psychopathology
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predict empirical comorbidity rates is to simulate dynamics

implied by a network for two disorders and to show that the

resulting prevalence and comorbidity rates are consistent with

their empirical counterparts. This is what we did for two disorders

with a high comorbidity rate: MDE and GAD. Figure 6 shows that

we simulated data on 14 symptoms for which comorbidity arises

only through pathways that include bridge symptoms (i.e., no core

MDE symptoms are directly connected with core GAD symptoms

and vice versa).

Simulation setup. We specified the symptom dynamics as

follows: for a given symptom in the network, the probability of

occurrence increases monotonically with the number of

neighboring symptoms that are activated. For instance, if

someone suffers from depressed mood and loss of interest, the

probability of developing thoughts of suicide is higher than for

someone who suffers from loss of interest but does not suffer from

depressed mood. The parameters of the network symptoms were

derived from an analysis of the NCS-R data. We then simulated

Figure 5. Average shortest path length and comorbidity. Left y-axis represents comorbidity; right y-axis average shortest path length.
Abbreviations: MDE = Major Depressive Episode; DYS = Dysthymia; AGPH = Agoraphobia; SOP = Social Phobia; SIP = Simple Phobia; GAD = Generalized
Anxiety Disorder; APD = Antisocial Personality Disorder.
doi:10.1371/journal.pone.0027407.g005

Figure 6. The simulation of MDE and GAD and its results. The left part of the figure shows core MDE (blue nodes), core GAD (red nodes) and
bridge symptoms (purple nodes). The middle part of the figure represents the implied structure of the simulated network: comorbidity arises through
connections via bridge symptoms. There are no direct connections between core MDE and core GAD symptoms. The right part of the figure displays
the results of the simulations. The x-axis represents the number of replications of the simulation. The y-axis represents 1) odds: odds ratio of
diagnoses as measure of comorbidity, 2) alpha: Cronbach’s a, 3) MDE: prevalence of MDE and 4) GAD: prevalence of GAD.
doi:10.1371/journal.pone.0027407.g006
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the development of MDE and GAD networks for 9282 fictitious

persons over 365 time points (‘‘days’’), allowing for the

reconstruction of yearly prevalence and comorbidity rates for

comparison against benchmark NCS-R data (which have the same

number of persons).

The simulation details are as follows. At time t, a node i has a

probability pit of turning ‘on’ (taking value 1) and of 1-pit of turning

‘off’ (taking value 0). The probability pit is determined by the logi-

stic function pit = a+(12a)[exp{biAi(t-1)2ci}/(1+exp{biAi(t-1)2ci})2a],

where Ai(t-1) is the number of neighbors of i that are activated at t-1,

bi is the sensitivity of symptom i to that activation sum, and ci is a

symptom specific threshold. We chose this probability function

because it has the plausible property of monotonicity and because it

is similar to the response function of common Item Response

Theory (IRT) models that are often used in clinical psychology [10];

hence we anticipated that this function would produce data that has

psychometrically realistic properties. In addition, the parameters of

the logistic function can be based on the analysis of available data,

which allows us to use empirical values for the network parameters.

In particular, we derived the bi and ci parameters from logistic

regression analyses executed on the NCS-R data, where (dichoto-

mous) symptom endorsement was regressed on the total number of

symptoms endorsed for the disorder in question; bi and ci are

respectively the slope and location parameters of that regression.

Finally, the parameter a controls the base rate probability that a

symptom will activate even if no neighbours are on, and the

recovery rate probability that a symptom will deactivate even if all of

its neighbors are on. As the network architecture is derived from the

DSM-IV, and the bi and ci parameters from the NCS-R data, a is the

only free parameter in the simulation. Setting a to a value of .22

produced reasonable results (this effectively corresponds to a base

rate of .05 and a recovery rate of .18) and was used in the

simulations reported. Simulation code is available from http://

www.psychosystems.org/materials.html.

After a simulated ‘‘year’’, we ‘‘diagnose’’ each network for

presence of MDE and/or GAD according to DSM-IV criteria. We

do this by examining which symptoms were present at which time

points; e.g., when a network featured activation of five out of nine

MDE symptoms for a period of at least fourteen days, and these

included at least one of the core symptoms depressed mood and loss of

interest, the network was diagnosed with MDE. For GAD, most of

the symptoms had to be present for most of the days in at least six

months (182 time points), including the core symptoms anxious,

worried about multiple events, and failure to control the worries. Finally, we

compare population statistics to those known from empirical

research. As a conservative check for specificity of the results, we

also obtained results from a random model that had the same

network architecture as the original model, but in which the pairs

of parameter values (bi, ci) from the NCS-R data were assigned

randomly to the symptoms. To check for stability of the results, we

replicated the original model and the random model simulation

1000 times each.

Simulation results. Figure 6 shows that the simulated

population of networks yielded stable and empirically plausible

results. The means for disorder prevalence over simulations are

.12 for MDE and .02 for GAD, which corresponds reasonably

with empirically established prevalence rates (around .1 for MDE

and .03 for GAD; [1,4]). Comorbidity between MDE and GAD

as assessed by the odds ratio of diagnoses is 10.08, which is

somewhat too high, but in our view still lies within the bounds of

empirical plausibility (e.g., in the NCS-R data the odds ratio lies

around 7; [27]). In a traditional psychometric analysis, the

symptoms would yield a mean(SD) Cronbach’s alpha of .78(.005)

over all symptoms, as measured at the last time point of each

simulation. We also fitted a two parameter logistic model [28],

which is known to fit the MDE symptoms [29], to 100 slices

of data, each of which represents a single timepoint in a

simulation. Although the parameter estimates for the simula-

tions are not directly comparable to those of the NCS-R data

due to the complicated structure of the NCS-R interview, the

correspondence is still reasonable; the mean(SD) correlation

between the estimated difficulty parameters in the simulation and

in the NCS data equals .70(0.01); this value is .61(.03) for the

discriminations. In all, the patterns in the simulated data do not

appear to strongly conflict with the empirical patterns we see in

the NCS data.

A noteworthy result is that GAD symptoms were, on average,

more prevalent than MDE symptoms: the lower prevalence of

GAD was solely produced by the stringent duration criterion - i.e.,

in GAD, symptoms need to be present for most days in the last six

months, whereas MDE only requires symptoms to be present for

the last two weeks. The same is true in the NCS-R data.

The question arises whether the empirical plausibility of the

results depends on the use of appropriate empirically derived

parameter values, or can be ascribed merely to the structure of the

network model (independent of its parameterization). To investi-

gate this, we compared our results to the random model

replications. To facilitate this comparison, we heuristically defined

empirically plausible ranges (see Table 2) to be in broad agreement

with the empirical literature. Table 2 shows the percentages of

original and random model replications that gave plausible results

for MDE and GAD prevalences, odds ratio, and Cronbachs alpha.

A total of 99.9% of the original model replications resulted in

overall plausible results (i.e., models which jointly satified the

empirically plausible ranges for all variables), while this was the

case for 3.2% of the random model replications. This difference

does not depend substantially on our choice of empirically

plausible ranges; this can also be seen from Figure 7, which shows

Table 2. Results of simulations.

Plausible range Mean (Sd.) % replications in plausible range

Empirical Random Original Random Original

Prevalence MDE 0.05–0.15 0.199 (0.2193) 0.119 (0.004) 27.9 100

Prevalence GAD 0.01–0.05 0.059 (0.1465) 0.024 (0.005) 19.7 100

Odds ratio 5–15 40.390 (86.933) 10.081 (1.411) 28.2 99.9

Cronbach’s Alpha 0.6–1 0.749 (0.068) 0.777 (0.005) 96 100

Overall 3.2 99.9

doi:10.1371/journal.pone.0027407.t002
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the distribution of original and random model results over the

outcome variables.

It should be noted that the results are derived under an

extremely simple dynamical scheme. Because of this simplicity,

several properties of the simulated networks are empirically

implausible. For instance, there are no individual differences in

network parameters, while it is likely that such differences do exist

in reality. However, the points at which the model is implausible

concern overly restrictive rather than lenient aspects of the model,

and therefore work against rather than for the fit to empirical data.

For instance, if individual differences were included in the

simulations, e.g., by making network parameters random, the

model would become more flexible, making it easier to match

empirical data even better than the current model does. In fact,

that such an austere setup of the network model can come so close

to the actual data is perhaps the most unexpected and surprising

feature of this work.

Thus, although the simulated networks are incomplete and

idealized reflections of reality, the results do establish a proof of

possibility by showing that the network model can produce

empirically realistic results. Furthermore, these empirically realistic

results emerged consistently if and only if appropriate empirically

derived parameter values were used, that is, the results were

specific to the parameterized network model rather than to

network architecture alone. To the best of our knowledge, this

network model is the first dynamical model of psychopathology

that simultaneously explains population statistics regarding

prevalence, comorbidity, and internal consistency, as found in

studies like the NCS-R.

Discussion

The cause of comorbidity is a puzzle, which may have its roots

in the very conceptualization of what a mental disorder is [9,16].

Although much has been learned about the genetics, neuroscience,

and etiology of mental disorders, the past century of research also

shows that they cannot be identified with a simple set of genetic

antecedents, neural correlates, or developmental trajectories. The

network hypothesis may be considered to provide an explanation

for this situation.

First, consider genetics. Behavior genetic research has shown

that individual differences in the liability to develop disorders are,

for a large part, genetically determined (e.g., genes are estimated to

be responsible for around 50 percent of the variance in the

psychological traits considered in [30]). However, only a minor

part of the genetic variance can typically be traced to identified

polymorphisms (often less than 2 percent for psychological traits;

[31,32]). This puzzle is known as the problem of missing heritability

[33]. In the present view, it is plausible that the strength of

symptom connections in a network partly stands under genetic

control, but it is unlikely that all connections in a disorder are

affected by the same genes in all people. Instead, we may consider

the heritability of mental disorders to arise from, e.g., the genetic

transmission of intersymptom connection strength, which in turn

determines global parameters of person specific networks that

correspond to the vulnerability of the system with respect to

external and internal shocks. If this is correct, the network model

may provide an alternative explanation to missing heritability, as

compared to the currently proposed hypothesis that the heritabil-

ity of mental disorders result from very large numbers of polygenes

with small additive effects [33]. Further research should evaluate

which of these hypotheses is more plausible for which disorders.

Second, consider neuroscientific research strategies into mental

disorders. In the public eye, such studies have appeared to reveal

what, say, depression ‘‘really is’’ by linking such a disorder to, for

instance, a neurotransmitter imbalance. However, even though

neuroscientific research has provided a wealth of empirical

information about the correlates of mental disorders, no simple

identifications of disorders with neural dysfunctions have been

forthcoming. The network hypothesis suggests that this will remain

the case, because neural properties are most likely to enter the

model as mechanistic realizations of nodes and edges already in

the network, or as additional nodes and edges that extend it. Such

properties may contribute to the network structure importantly:

for instance, many of the symptoms in the DSM-IV relate to basic

homeostatic brain functions (eating, sleeping, sex, mood regula-

tion), and it is essential to investigate their precise role in sustaining

the network structure. However, just like the small world

properties of the World Wide Web do not reduce to physical

properties of individual webservers, mental disorders are unlikely

to correspond to a single, homogeneous neural substrate.

Third, consider etiology. Some researchers have proposed that a

focus on etiology may lead to a homogeneous grouping of mental

disorders. In our view, this is unlikely. The giant component in the

DSM-IV topology features 208*(208-1)/2 = 21,528 pairs of

symptoms. Even if we just count the number of distinct shortest

paths between any two symptoms in this topology, we obtain

129,643 distinct pathways. Although many pathways in the DSM-

IV symptom space are unlikely to be active in transmitting effects,

and it is probable that some pathways are more prevalent than

others, it would seem unlikely that a focus on etiology could bring

this number down to manageable size. Instead, the network

approach predicts that individual cases of mental disorders will be

highly idiosyncratic, both in the genetic and environmental

determinants of the disorder, as well as in the etiological pathway

by which it developed. The interesting fact is that, under the

network approach, this may be the case even though population

statistics relating to mental disorders are empirically stable. In this

sense, the network hypothesis simultaneously accommodates the

stability of population statistics in this area of research, and the

idiosyncratic unpredictability of the individual person.

Thus, the network model not only yields plausible explanations

for characteristic patterns in empirical psychopathology data, as

shown in the research reported here; it may also illuminate the

limited successes of research paths that have so far been taken. In

particular, if mental disorders correspond to networks of causally

coupled variables, we should not expect them to conform to a

homogeneous biological, genetic, or etiological analysis. Instead,

similar to current systems approaches in biology [34], research

into psychopathology may profitably adopt a psychosystems approach

by investigating the inherent complexity of mental disorders [35]

through explicit models of the interplay between their psycholog-

ical, biological, and social features that play a role in the

development of psychiatric conditions, understood as clusters of

causally linked properties [37,38].

Further research in this direction may be pursued along the

following lines. First, it is important to augment the network

structure with ‘‘positive’’ nodes, that is, with nodes that are known

to act as protective factors against developing pathologies (e.g.,

coping mechanisms used to ‘‘ward off’’ symptoms, or situational

factors that may protect certain symptoms from rising to the level

of pathology). This requires the construction of an ‘‘inverse’’

DSM, i.e., a categorized list of anti-symptoms that protect against

disorders by blocking the spreading of problems through the

network. Second, research into the direction and nature of the

causal effects between network nodes (i.e., symptoms and anti-

symptoms) should lead to a more refined representation of the

network structure. Third, it is of interest to investigate how
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Figure 7. Densities of simulation results of original vs random parameter values. Top to bottom: Prevalence of MDE, Prevalence of GAD,
Odds ratio, Cronbach’ alpha. Densities of networks resulting from original (random) parameter values are shown in blue (red).
doi:10.1371/journal.pone.0027407.g007
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traditional measurement models, which for instance feature

higher-order factors like internalizing and externalizing [26],

relate to network structures. In traditional models, these factors are

most readily interpreted as latent common causes of the item

responses [10,39,40], but in the network models considered here,

such common causes are lacking. Our expectation is that the

relevant factors can be viewed as approximately isomorphic to

regions of strongly connected symptoms, but whether this is

conceptually and mathematically tenable is a question for further

research. Fourth, it is important to test the dynamics of the

network model against real data. Experience sampling studies, or

other ways to track symptom dynamics, would appear to be

especially suited for this purpose. Such research could also begin to

unravel intra- and interindividual differences in network structure,

which would open the possibility to examine salient network

characteristics of individuals known to be at risk for developing

mental disorders. If such characteristics could be charted, specific

targeting of the most important network components (either with

medication or with psychotherapy) might offer a novel way to

develop therapeutic interventions and monitor their effects.
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