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Prostate cancer (PCa) is the third most common cancer among men in India, and
no next-generation sequencing (NGS) studies have been attempted earlier. Recent
advances in NGS have heralded the discovery of biomarkers from Caucasian/European
and Chinese ancestry, but not much is known about the Indian phenotype/variant of
PCa. In a pilot study using the whole exome sequencing of benign/PCa patients, we
identified characteristic mutations specific to the Indian sub-population. We observed
a large number of mutations in DNA repair genes, viz. helicases, TP53, and BRCA
besides the variants of unknown significance with a possibly damaging rare variant
(rs730881069/chr19:55154172C/TR136Q) in the TNNI3 gene that has been previously
reported as a semi-conservative amino acid substitution. Our pilot study attempts to
bring an understanding of PCa prognosis and recurrence for the Indian phenotype.

Keywords: prostate cancer, genomics, exome sequencing, prognosis, biomarkers

INTRODUCTION

Prostate cancer (PCa) is the second most prevalent cancer worldwide and the third most prevalent
cancer in India (Jain et al., 2014). Over 1 million PCa cases are diagnosed per year globally, and the
mortality rate has grown to more than 300,000 deaths per year (Farhat et al., 2000). The Population
Based Cancer Registries (PBCRs) of different cities for the time period shows that PCa has ranked
among the top leading sites of cancer in many cities in India (NCRP, 2013). Prostate cancer leads
in large Indian cities like Delhi, Kolkata, Pune, and Thiruvananthapuram after oral cancer, and is
the third leading site of cancer in cities like Bangalore and Mumbai besides being among the top 10
leading sites of cancers in the rest of the PBCRs of India (Jain et al., 2014). The data show that almost
all regions of India are equally affected, with the incidences of PCa relatively low in some states like
Gujarat (Ahmedabad and Wardha PBCRs) and Madhya Pradesh (Bhopal PBCR), the lowest being
the northeast regions of India (Jain et al., 2014). This could be because of lack of PBCRs in addition
to PCa not actively reported in states where awareness about it is lacking (Kimura, 2012).

Frontiers in Genetics | www.frontiersin.org 1 August 2020 | Volume 11 | Article 874

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00874
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00874
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00874&domain=pdf&date_stamp=2020-08-25
https://www.frontiersin.org/articles/10.3389/fgene.2020.00874/full
http://loop.frontiersin.org/people/1043339/overview
http://loop.frontiersin.org/people/661126/overview
http://loop.frontiersin.org/people/309354/overview
http://loop.frontiersin.org/people/581398/overview
http://loop.frontiersin.org/people/55577/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00874 August 23, 2020 Time: 14:4 # 2

Gupta et al. Exome Sequencing of Prostate Cancer

Although studies on PCa have dealt with the genetics,
genomics, and environmental influence in the causality of PCa,
no association of genotype and phenotype employing the whole
exome sequencing (WES) of PCa has been done to date for
the Indian population. As many Indians are vegetarian, a
polygenic risk with other diseases such as diabetes could be
associated with PCa, which would be interesting to deliberate
(Agrawal et al., 2014). On the other hand, studies at the
sequence level in India have been limited where the genetic
variants have been shown to be associated with PCa but not
linked to pathogenesis (Abate-Shen and Shen, 2000; Shen and
Abate-Shen, 2010). In the recent past, the next-generation
sequencing (NGS) approaches have provided an efficient, rapid,
economical, and global biological means to understand millions
of sequenced DNA reads besides recognizing ample variants
from the samples (Mardis, 2008). It has an increasing potential
to carry a wide spectrum of purposes including many research
fields, for example, in the molecular diagnostics of genetic
diseases, infectious diseases, cancer, and pharmacogenomics (Ten
Bosch and Grody, 2008; Guchelaar et al., 2014). On the other
hand, the integration of systems biology with genomic data
can lead to the profound knowledge of the disease pathway
besides allowing us to identify prognostic biomarkers for drug
target identification.

In this pilot study, while we report mutations from
northwestern Indian patients, we aimed to understand the
marked impact of the risk of PCa specific genes on affected
individuals versus controls. We claim that this is perhaps the
first study of its kind, where WES was employed to screen
mutations and infer the genetic evaluation of PCa in India. With
the new Genome India Project initiative (GenomeIndia Initiative,
2017), the genetic makeup for such diseases could allow us to
understand the pathways associated with PCa native to India. We
also deliberate on mutations associated with polygenic diseases
and vitamin D deficiency, besides those that are unique to human
diet, socioeconomic imbalances, and PCa manifestation when
compared to the Caucasian population (Layne et al., 2019).

MATERIALS AND METHODS

Subjects
The samples were collected from Rukmani Birla Hospital (RBH),
Jaipur, and all patients were identified as native to north or
northwest India. All methods were performed in accordance with
relevant guidelines and regulations. Archival pathological FFPE
blocks containing specimens were obtained retrospectively after
clearance from the institutional ethics committee of RBH, and
informed consent wherever applicable was duly taken. Annotated
FFPE blocks of five benign and five tumors (malignant) were
taken and sent to Xcelris Labs, Ahmedabad, for WES (Table 1).
DNA from sample tissues was extracted using the FFPE tissue
gDNA isolation kit (Qiagen/56404) for DNA isolation, and
quality control (QC) for contamination was done. The baits for
exon capture with a mean target coverage depth of 110× per
sample were achieved with as many as several targets covered for
more than 20×.

TABLE 1 | Samples used for the WES along with their Gleason scores which
constituted one high-grade tumor sample, with three intermediate samples and
one just on par above grade 6, while five others are with less than six
from benign cases.

Sample ID Condition Gleason Score
(primary + secondary)

Z785 Adenocarcinoma 3 + 4 = 7

Z786 Acinar Adenocarcinoma 3 + 4 = 7

Z789 Acinar Adenocarcinoma 3 + 3 = 6

Z791 Acinar Adenocarcinoma 3 + 4 = 7

Z794 Cribriform Adenocarcinoma 4 + 4 = 8

Z787 Benign Nodular Prostatic Hyperplasia <6

Z788 Benign Prostatic Hyperplasia <6

Z790 Benign Nodular Prostatic Hyperplasia <6

Z792 Benign Nodular Prostatic Hyperplasia <6

Z793 Benign Nodular Prostatic Hyperplasia <6

Sample Preparation, Exome Capture,
and Sequencing
DNA was isolated from samples using the Qiagen FFPE DNA
extraction kit. The quality of genomic DNA was checked on
0.8% agarose gel (loaded 3 µl) for the single intact band.
The gel was run at 110 V for 30 min; 1 µl of each sample
was used for determining the concentration using the Qubit
2.0 Fluorometer. All the libraries were prepared using the
Agilent SureSelect XT target enrichment system by following
the manufacturer’s instruction. Briefly, 200 ng of each DNA
sample was used for fragmentation using the Covaris S2
system. While the fragmented DNA was subjected to end
repair, A-tailing, it was followed by adapter ligation which
was hybridized to RNA baits that are designed to physically
capture specific DNA sequences. The captured DNA is then
eluted from the baits, purified using a biotin-based precipitation,
and then amplified by PCR to yield an exome library for
sequencing. All prepared libraries were checked on the Agilent
high-sensitivity (HS) chip on Bioanalyzer 2100 and quantified
on fluorometer by the Qubit dsDNA HS Assay kit (Life
Technologies). The average size and concentration of each
library was calculated from the HS chip and Qubit, respectively
(see Table 2).

The amplified library was analyzed on Bioanalyzer 2100
(Agilent Technologies) using a HS DNA chip as per the
manufacturer’s instructions. After obtaining the Qubit
concentration for the library and mean peak size from
Bioanalyzer, the profile library was loaded onto the Illumina
platform for cluster generation and sequencing. Paired-end (PE)
sequencing allowing the template fragments to be sequenced in
both forward and reverse directions was ensured with the library
molecules bound to complementary adapter oligos on PE flow
cells. The adapters were designed to allow the selective cleavage
of the forward strands after the re-synthesis of the reverse strand
during sequencing. Finally, the copied reverse strand was used
to sequence from the opposite end of the fragment, and all the
libraries were sequenced with 150 × 2 PE reads, which resulted
in 8–10 GB of data per sample.
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TABLE 2 | Data statistics of the sequenced samples.

File Name Total Reads Total Bases Size in GB

Z785 34,589,627 4,524,820,258
9,035,044,752 9.03

Z785 34,589,627 4,510,224,494

Z786 36,192,378 4,782,261,247
9,552,530,147 9.55

Z786 36,192,378 4,770,268,900

Z787 29,342,454 3,504,276,014
7,023,683,778 7.02

Z787 29,342,454 3,519,407,764

Z788 32,007,925 4,590,702,434
9,142,339,304 9.14

Z788 32,007,925 4,551,636,870

Z789 32,912,966 4,688,597,419
9,332,868,751 9.33

Z789 32,912,966 4,644,271,332

Z790 44,212,484 6,398,843,741
12,730,582,043 12.73

Z790 44,212,484 6,331,738,302

Z791 33,311,709 4,822,305,019
9,600,461,768 9.60

Z791 33,311,709 4,778,156,749

Z792 36,245,502 5,367,958,348
10,658,814,541 10.65

Z792 36,245,502 5,290,856,193

Z793 37,261,051 5,344,729,573
10,640,702,373 10.64

Z793 37,261,051 5,295,972,800

Z794 33,200,697 4,584,192,242
9,148,425,756 9.14

Z794 33,200,697 4,564,233,514

Quality Control and Variant Calling
The datasets were run through our in-house pipeline described
earlier (Meena et al., 2018).The quality assessment was done for
all the samples using FastQC (Andrews, 2010) with raw reads
checked for quality, GC bias, K-mer quality, and duplication
levels. Calling and filtering of variants and indels were performed
using Vt (Tan et al., 2015) and Annovar (Wang et al., 2010) before
we established the sensitivity and specificity of called variants.
Mutations were counted as heterozygous (“het”) using awk/bash
one-liners and the two sets of average depth (≥5 DP ≤ 20
and DP ≥ 20) were parsed for further downstream annotation
(Supplementary Information). Population stratification at a
gross-level was deemed not necessary given the small size of the
population on a small scale; however, contamination crosscheck
both at sequence (fastq and bam levels) were ensured to assess
the heterogeneity of each given site of pooled dataset. Variant
analysis using Vt predicted the variant types and were filtered
by setting criteria for a false discovery rate (FDR) that yielded
the genomic variants in affected individuals versus controls.
The samples were analyzed for mutations predicted as causal,
and the corresponding genes were filtered against GeneMania
(Warde-Farley et al., 2010) and checked for the significant
association of pathogenesis with the risk of genitourinary/PCa-
specific genes. A brief overview of the methodology is described
in Figure 1.

Downstream Analyses
Downstream annotation was done using various open source
tools. The reported PCa variants were confirmed from NCBIs’
ClinVar (NCBI ClinVar Database, 2019) using the search term
“prostate” with filters “pathogenic” and “single nucleotide” and
checked against the generated VCF files. The bcftools was

employed to retrieve the heterozygous mutations with the varied
depth as mentioned earlier. A final list of variants was validated
using Sanger sequencing. For the latter, we have maintained an
average of 400–600 bp of product size with the 200–250 bp
flanking from both sides of the location of the SNP mutation.
Primers were designed in such a way that secondary structures in
the genome were avoided. We adjusted the GC content as 50% to
maintain a balanced distribution of GC-rich in CDS regions. The
PCR was set with initial denaturation at 95◦C for 5 min, followed
by 35 cycles of denaturation at 95◦C for 30 s, annealing at 60◦C
for 30 s and an extension at 72◦C for 45 s and final extension of
5 min at 72◦C.

RESULTS AND DISCUSSION

Characteristics of PCa Relevant to the
Indian Phenotype
Ten subjects, including five cases, those including one high
Gleason grade sample (8), and four between 6 and 7 grades
were subjected to WES. The sequences were aligned to human
genome reference (build hg38) using bowtie2 to produce the
sequence alignment file. We observed 944,509 annotated variants
and upon further normalization, we discovered 897,926 SNPs,
indels and a few copy number variants (CNVs) among them. Post
downstream analyses, the generated VCF files were filtered for the
variants which were heterozygous and 42 SNPs were confirmed
that exhibited significant association with PCa in affected subjects
(Supplementary Table 1). Among them, 17 SNPs were subjected
further to Sanger validation in an independent platform wherein
primers were designed with a length of 18–25 nucleotides
(Supplementary Table 2). We found that all the SNPs/samples
except one unaffected (rs73598374) passed the sequencing quality
thresholds from quality checks with a mean read depth of
14.4. The false positives were carefully checked between benign
prostate hyperplasia (BPH) and PCa samples even as a number
of exome sites, low-coverage sites, and large deletions could
not be validated. In total, we observed 671,609 heterozygous
variants confirming the above thresholds that were filtered
across all samples.

Association of Variants With PCa
The variants segregating from cases were retained, while those
from controls were excluded to rule out the false positives.
The minor allele frequency cut-off 0.05 intersecting the allele
frequency were judiciously checked for low penetrated variants
that are associated with a large number of disease susceptibility
genes, primarily cancers. Therefore, we setup the variant
identification to as low as DP = 5 and further, segregated the
variants those that fall in≥ 5 DP≤ 20 and DP≥ 20 (Figure 2A).

High-Impact Variants in High-Grade
Tumors
The identification of tumor-specific somatic mutations was
possible with our pipeline. Among the inferred mutations, the
prominent were BRCA2 mutations (rs276174889, rs80358600,
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FIGURE 1 | A brief overview of methodology employed for inferring variants using WES.

FIGURE 2 | (A) A union of intersection of variants between cases and controls with respect to depth ≥ 5 DP ≤ 20 respectively. (B) Protein-Protein Interaction (PPI)
map of genes associated with DNA repair genes.

rs80359171, rs771203198, and rs145988146) associated with
high-grade and intermediate tumors (Z794, Z785, and Z786)
(Couch et al., 2007). While, BRCA gene mutations lead to
development of breast and ovarian cancer, they have been
linked to PCa in addition to pancreatic cancer and other
myelomas (Paul and Paul, 2014; Cavanagh and Rogers, 2015).
The BRCA2 mutations in particular have been associated with
an 8.6-fold increased risk for the PCa manifestation (Castro
and Eeles, 2012) even as BRCA1 was also seen characteristically
in one sample (Z785): rs28897696. Common genetic alterations
are usually associated with heterozygous BRCA1 or BRCA2
mutations, and these include loss of the wild-type BRCA1
or BRCA2 allele (LOH), loss of TP53 (which encodes p53),

and ATM or CHK2 function (Roy et al., 2012). These
additional alterations may allow cells to bypass checkpoint
controls and evade apoptosis, and thereby initiate tumorigenesis.
Additionally, tumor complexity makes the detection of cancer-
specific CNVs even more difficult (Zare et al., 2017), and
the variants observed are frameshift, loss, or gain of stop
codons which have significant insertions/deletions at a number
of bases in different reading frames with altered protein
sequences. While we found them to be significantly associated,
we observed that mutations in TP53 and COL6A1 among
the other 102 frameshift variants were shown to be affected
with spliced regions. Sanger validation (orthogonal) was used
to disprove a false-positive variant wherein we performed a
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systematic validation of variants of these genes and found no
discrepancies among them.

The majority of mutations that are detected in the current
study (viz., GJB6, KRIT1, GNPTAB, ANG, MCM8, and NF1) are
only significant to high-grade PCa. The SNPs have been widely
studied in context to cancer genomes and its predisposition,
and so, we believe these SNPs cannot be associated with the
familial aspect of the cancer. On the other hand, we observed
that a few pathogenic SNPs were absent in high- and median-
grade PCa samples and present in the low-grade sample, viz.,
BRAF, RAD51C, RHAG, CYP11B2, PRICKLE1, CAPN3. With the
CNVs considered one of the most important somatic aberrations
in cancer since oncogene activation, it is often attributed to
chromosomal copy number amplification and tumor suppressor
gene inactivation leading to largely heterozygous deletion. With
the identification of somatic CNVs known to have an important
role in cancer prognosis and treatment, we asked if any of
them were significantly associated. On the other hand, we
also found 76 CNVs associated with the gain/loss of function
that we mapped using SNP nexus (Dayem Ullah et al., 2018)
(Supplementary Table 3).

As expected, a large number of DNA repair genes (e.g.,
helicase, TP53, BRCA2) harbor characteristic mutations, which
is in agreement with the WES studies. We also found
possibly damaging rare variants of unknown significance (VUS)
(rs730881069/chr19:55154172: C/T: R136Q) in the TNNI3 gene
that has been previously reported as a semi-conservative amino
acid substitution. The mutation, howev2wer, is known to
impact the PCa cases and seen across multiple hypertrophic
cardiomyopathy case reports and, hence, classified as likely
pathogenic. From the pathway and interaction network analyses,
we inferred that BRCA2 and BRCA1 have a majority of
interacting partners that are largely associated with either DNA
repair genes or helicases, viz., KRIT1, CTNS, USH2A, HEXB,
MCCC1, MYO15A, CAPN3, GNPTAB, RHAG, PRLR, OTOF,
GJB6, MCM8, CYP1B1, PRICKLE1, TP53, COL6A1, DNAAF1,
SCN9A, CYP11B2, ATP6V0A2, NF1, ADA, MT-CYB, OPA1,
ANG, HBB, MRE11 (Figure 2B). Notable among them is
RecQ/BLM helicase, which has been recently reported to regulate
cancer cell proliferation (Qian et al., 2017). In the recent
past, recommendations demonstrated the role of prostate serum
antigen (PSA) levels correlating the patient’s race, age, and
prostate volume (Wu et al., 2017). Since the use of PSA is limited
and controversial, the search for novel PCa-specific biomarkers,
especially from non-invasive bio-fluids, is an important task (Wu
et al., 2017). Furthermore, while it is assumed that the impacts of
the discovered SNPs on tumor initiation and progression cannot
be established due to small sample size, we found that certain
genes have a vivid association with the expression or tumor
type in general agreement. For example, CYP1B1 is known for
increases in high-grade PCa and correlates with Gleason grades
(Chang et al., 2017), P53 and PRLR are shown to correlate
with Gleason grades (Jacobson et al., 2011; Martinez-Gonzalez
et al., 2018), MRE11 is known to have an elevated expression
associated with progression and poor outcome in PCa (Wang
et al., 2019), and ANG is up-regulated in the prostate and
involved in prostate intraepithelial neoplasia (PIN) formation (Li
et al., 2011; Vanli and Guo-Fu, 2015). As no single biomarker is

available for diagnostic and prognostic use (Velonas et al., 2013),
the protein–protein interactions complementing our analyses
show characteristic associations with a large number of pathways
enriched between them (Figure 2B). Although only 5.42% of
the protein interaction map density constitutes the pathways,
COL6A1, which is known to be upregulated in castration-
resistant prostate cancer (CRPC), remains to be the most critical
oncogene regulating the androgen signaling pathways (Zhu et al.,
2015). This is also in agreement with the pathway association
of its sibling genes COL6A2 and COL6A3 (as indicated in light
blue edges). Taken together, our results suggest the importance
of these pathways and support the potential use of COL6A
family members in PCa.

In our PCa cohort, TP53 is the highest prevalent mutation
which is in agreement with the previous studies reported (Ecke
et al., 2010). Apart from well-known and promising cancer genes,
our study uncovered several genes with poorly characterized
functional roles in cancer which needs further experimental
investigation. For example, KRIT1 is an intracellular protein with
ankyrin repeats and a FERM domain that interacts with the Ras-
family GTPase Krev1/Rap1a inferring a role in GTPase signaling
cascades. Most of the studies linked were its involvement in
cardiovascular development but it is known to be ubiquitously
expressed in many cells and tissues (Laberge-le Couteulx et al.,
1999). USH2A, a gene responsible for Usher syndrome, has
been found to be mutated in our cohort demonstrating its
role as tumor suppressor (Van Wijk et al., 2004). Although,
some other genes such as MCC1, COL6A1, and CYP11B2 are
associated with different cancers such as pancreatic, colorectal,
and hepatocellular carcinoma, their involvement in PCa is
not yet explored (Fukuyama et al., 2008; Fan et al., 2016;
Owusu-Ansah et al., 2019). Previous studies, however, have
reported the role of diet in PCa (Labbé et al., 2015), so it
will be enticing to explore if the genes mentioned above have
any role in diet induced PCa. One of the genes, viz., OPA1,
is mutated in our cohort that is important for maintaining
normal mitochondrial morphology and function, with deficiency
of OPA1 checking diet-induced obesity and insulin resistance
(Pereira et al., 2018). Likewise, CYP1B1 prevents diet-induced
obesity and glucose intolerance through AMPK activation (Liu
et al., 2015). We also observed that CTNS (17p13), a gene that
causes cystinosis, is associated with multisystem genetic disorder,
wherein cysteine is accumulated in different tissues including
the adipose and prostate. Strikingly, it is known that vitamin D
repletion could be associated with CTNS knockout or mutated
mice indicating vitamin D as a key-player in the pathogenesis of
PCa (Cheung et al., 2019).

CONCLUSION

Prostate cancer is burgeoning in India. Our comprehensive
bioinformatics analysis confirmed some characteristic known or
unknown mutations from a WES study native to India. Although
our study shows characteristic mutations in certain genes, an
assay comprising multiple biomarkers that are differentially
expressed could be attempted in the future. If this is successful,
the number of biomarkers developed will depend on their
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validation in a large cohort of patients and the translation of
these findings to clinical practice. This pilot study, we believe,
is decisive to understand the inherent genes and mutations
responsible for PCa in India. Furthermore, an attempt was made
to develop a conceptual framework for research particularly in
propagating information on the causal genes and mutations
responsible for PCa. Although the work was limited to a small
number of samples studied, we deem this pilot work would
have an impending role in understanding mutations that are of
particular interest to Indian genealogy.
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