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Checkpoint regulator B7x is epigenetically
regulated by HDAC3 and mediates resistance to
HDAC inhibitors by reprogramming the tumor
immune environment in colorectal cancer
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Abstract

HDAC inhibitors are efficacious for treating lymphoma, but display limited efficacy in treating solid tumors. Here, we
investigated the relationship between HDAC inhibitor resistance and the tumor immune environment in colorectal
cancer. Our data indicated that among the investigated immune factors, B7x expression was enhanced in HDAC
inhibitor-resistant colorectal cancer models in vitro and in vivo. In addition, gene manipulation results demonstrated
that xenograft mice with tumors derived from a B7x-overexpressing CT-26 colorectal cancer cell line were resistant to
HDAC inhibitor treatment. Notably, we found that there is a negative relationship between HDAC and B7x expression
in both colorectal cancer cell lines and patients’ tumors. Furthermore, our data indicated that elevated expression of
B7x was related to a poor prognosis in colorectal tumor patients. Interestingly, treatment with a specific inhibitor or
siRNA of HDAC3, but not HDAC2, 6, and 8, resulted in obvious upregulation of B7x expression in colorectal cancer cells.
In addition, our data showed that a cell line with high HDAC3 expression and low B7x expression had decreased
enrichment of acetylated histone H3 in the promoter region of the gene encoding B7x. This pattern was reversed by
addition of HDAC3 inhibitors. Mechanistically, we found that HDAC3 regulated B7x transcription by promoting the
binding of the transcription activator C/EBP-a with the B7x promoter region. Importantly, our data indicated that an
antibody neutralizing B7x augmented the response to HDAC inhibitor in the colorectal cancer xenograft model and
the lung metastasis model by increasing the ratios of both CD4-positive and CD8-positive T cells. In summary, we
demonstrated a role of B7x in HDAC inhibitor resistance and identified the mechanism that dysregulates B7x in
colorectal cancer. Our work provides a novel strategy to overcome HDAC inhibitor resistance.

Introduction

Histone deacetylases (HDACs) are important epigenetic
regulators that remove acetyl groups from the N-
acetylated lysine residues in the tail of histones and
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condense the chromatin structure to mediate gene silen-
cing'. Multiple HDAC isoforms have been identified and
classified into different groups (HDAC class I-IV).
Increased expression of HDACs is associated with the
development and progression of cancer via dysregulation
of gene expression. Thus, HDACs are potential ther-
apeutic targets for the treatment of cancer'?. To date, five
HDAC inhibitors (HDACi)—SAHA, FK228, belinostat,
panobinostat, and chidamid—have been approved as
anticancer drugs>*. Although they have shown great
promise, HDAC] resistance is frequent and they have
limited efficacy in treating solid tumors®>~’. Therefore,
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there is an urgent need to explore the mechanisms
underlying HDAC:; resistance and to develop mechanism-
based therapeutic approaches.

In fact, several mechanisms are known to contribute to
HDAC i resistance, including elevated levels of thior-
edoxin induced by p21, which counteracts ROS-mediated
DNA damage®, and increased levels of Bcl-2, which
mediate apoptosis resistance®®. Other mechanisms of
resistance have also been identified recently, including
increased drug efflux'®, changes in chromatin and epige-
netic enzymesg’u, and the activation of survival pathways,
such as STAT3, MAPK, and PI3K'*"'*, In spite of these
advances, it is still a challenge to develop strategies for
overcoming HDACi resistance. Recent studies have
demonstrated that the combination of immune check-
point inhibitors and HDAC inhibitors shows promising
efficacy in vitro and in vivo'>'®. These findings suggest
that immune regulation in the tumor microenvironment
might also be involved in HDACi resistance.

Immune checkpoint molecules, including PD-L1/2, B7-
1/2, B7-H3, B7x, VISTA, and Galectin-9, have been
characterized as potent regulators of immune activation,
and play a crucial role in the mechanisms that mediate
tumor immune escape”‘ls. Here, we take colorectal
cancer as an example to investigate the relationship
between HDAC inhibitor sensitivity and immune check-
point regulation. Our results indicated that B7x is upre-
gulated by HDAC inhibitor treatment in vitro and in vivo,
especially in HDAC inhibitor-resistant cells. Mechan-
istically, HDACS3 is a crucial regulator of B7x transcrip-
tion by increasing the binding of the transcription
activator C/EBP-a with the promoter region of the B7x
gene. An anti-B7x antibody augments the response to
HDAC inhibitor in a colorectal cancer model.

Materials and methods
Cell lines and cell culture

The human colorectal cancer cell lines LOVO, Colo-
205, SW480, and SW620 were obtained from Cell Bank of
the Chinese Academy of Sciences (Shanghai, CHN).
Human colorectal cancer cell line HCT-116 and the
mouse colorectal cancer cell line CT-26 were obtained
from American Type Culture Collection (ATCC; Mana-
ssas, VA, USA). The mouse colorectal cancer cell line
MC-38 was obtained from Department of Medicine
(Oncology) in Albert Einstein College of Medicine(New
York, USA). These cancer cells were routinely cultured in
RPMI-1640 or MEM medium supplemented with 10%
fetal bovine serum and maintained at 37 °C in a humidi-
fied incubator with 5% CO.,.

Compounds and reagents

The Pan-HDAC inhibitor SAHA, the HDAC1,2 inhibitor
Romidepsin, the HDAC3 inhibitor RGFP966, the HDAC1,3
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inhibitor ITF-2357, the HDACG6 inhibitor ACY-775 and the
HDACS inhibitor PCI-34051 were obtained from Med-
ChemExpress, USA. The primary antibodies against
HDACS3, NF-kB, Lef-1, C/EBP-a, PARP, and [-actin were
purchased from Cell Signaling Technology (Danvers, MA).
The antibody B7x and HDAC1 used for immunohis-
tochemistry were got from Cell Signaling Technology
(Danvers, MA) and Sant Cruz Technology (Dallas, TX),
respectively. The primary antibody against RFX-1 was
obtained from Abcam Technology (Cambridge, MA). The
mouse B7x antibody was generated by our lab (Albert
Einstein College of Medicine). The HDAC siRNAs and C/
EBP-a siRNA was from Life Technologies, USA.

Immunohistochemistry

A tissue microarray with approved ethical document
was provided from National Human Genetic Resources
Sharing Service Platform(2005DKA21300). For immu-
nostaining, primary antibodies were diluted 1:200
(HDAC1) and 1:50 (human B7x). Evaluation of the
intensity of immunohistochemistry staining and the pro-
portion of positively stained epithelial cells was done as
previously described by two independent pathologist'®.

Cell viability assay

The in vitro cell viability was determined by MTT assay.
The cells (5 x 10* cells/ml) were seeded into 96-well cul-
ture plates. After overnight incubation, the cells were
treated with various concentrations of agents for 48 h.
The optical density of each well was measured at 570 nm
with a Molecular Devices M5 Reader. The experiments
were performed in triplicate, and results were plotted as
the mean + s.e.m.

Transient transfection

Human C/EBP-a full-length cDNA was cloned into the
pCMYV expression vector. The pCMV-C/EBP-a (2 pg/pL)
was transiently transfected into Colo-205 or SW480 cells
by Lipofactamine 2000 (Invitrogen) according to the
manufacturer’s instructions. Transfection efficiency was
verified by western blotting.

Quantitative RT-PCR analysis

Total RNA was isolated from cells using RNeasy Mini
Kits (Qiagen) as described in the product insert. The RNA
was reverse transcribed with RevertAid First Strand
c¢DNA Synthesis Kits (Thermo) and PCR was done using
iQ SYBR Green Supermix and the CFX96 Real-Time PCR
Detection System (Bio-Rad). Primers used in this study
are listed in Supplementary Table 1. The expression of
each gene was determined using the 2 *“T method.
Results were normalized against GAPDH. All experiments
were performed in triplicate, and results were plotted as
the mean * s.d.



Li et al. Cell Death and Disease (2020)11:753

HDAC activity assay

The HDAC assay was conducted with a HDAC fluor-
escent activity assay kit (Biovison, USA) as we previously
reported'®. HDAC activity is shown as the mean + s.e.m.
of three experiments.

Western blot analysis

The colorectal cancer cells were gathered after treat-
ment for the indicated time periods. Western blotting was
performed as previously described”. Briefly, mouse or
rabbit primary antibodies and appropriate secondary
antibodies were used to detect the designated proteins.
The bound secondary antibodies on the PVDF membrane
were reacted with ECL detection reagents (Pierce; Rock-
ford, USA) and exposed to X-ray films. The experiments
were performed in duplicate and results were normalized
to the internal control B-actin.

Chromatin immunoprecipitation (ChIP) assay

The ChIP Assay Kit was purchased from Beyotime
Biotechnology (Shanghai, China). Colo-205 cells, SW480
cells and HDACi-treated SW480 cells were prepared for
ChIP assays, which were performed according to the
manufacturer’s instructions. Ac-H3 or C/EBP-a antibodies
were used for immunoprecipitation. B7x promoter pri-
mers were used to PCR-amplify the DNA isolated by ChIP
assay, and real-time PCR was performed to analyze the
amplification products. The experiments were performed
in triplicate, and results were plotted as the mean + s.e.m.
The sequences of qPCR primers are listed in Supple-
mentary Table 1.

Mouse colorectal heterotopic tumor study

To assess the response to the HDAC inhibitor SAHA,
CT-26 cell lines stably expressing B7x were established.
Control CT-26 [MSCV] and CT-26 [B7x] cells (5 x 10°/
100yl PBS per mouse), as confirmed by trypan blue
staining, were subcutaneously injected into the right flank
of 7-8-week-old wide-type BALB/c mice. When the
average tumor volume reached 50 mm?, mice bearing CT-
26 and B7x CT-26 tumors were randomly divided into
two groups: the control group (saline only, # = 7) and the
SAHA group (40 mg/kg/3 days, i.p; n=7). After 15 days,
the mice were sacrificed and the tumors were excised. The
mRNA was extracted and analyzed by real-time PCR.

To test the efficacy of the combined treatment
(SAHA+-anti-B7x Ab), CT-26 cells (5 x 10°/100 ul PBS
per mouse) were subcutaneously injected into the right
flank of 7-8-week-old wide-type BALB/c mice. When
the average tumor volume reached 50 mm?, the mice
were randomly divided into four groups: control group
(saline only, n=6), SAHA (40 mg/kg/3 days, i.p. n =6),
anti-B7x Ab (200 pg/mouse /2days, i.p. n=6), and
combination group (SAHA+anti-B7x Ab). Tumor size

Official journal of the Cell Death Differentiation Association

Page 3 of 11

was measured once every 3 days with a caliper (calcu-
lated volume = shortest diameter” x longest diameter/
2). The body weight was also measured once every three
days to assess gross toxicity. After 15 days, the mice
were sacrificed and the tumors were excised and stored
at —80 °C until western blot analysis. The protocol was
approved by the Committee on the Ethics of Animal
Experiments of the Shenyang Pharmaceutical Uni-
versity. The above mentioned animal study was blinding
done by independent researcher.

Mouse lung metastatic tumor study

To further investigate the efficacy of the combination
therapy and its correlation with the immune environment,
we established a lung metastatic tumor model. A total of
10° B7x overexpressed CT-26 cells were intravenously
injected into the tail vein of wild-type BALB/c mice in
100 uL of PBS to induce the pulmonary experimental
metastasis model. After one week, the mice were ran-
domly divided into four groups: control group (saline
only, n = 6), SAHA (40 mg/kg/3 days, i.p.; n = 6), anti-B7x
Ab (200 pg /mouse /2days, i.p. n = 6, Each mouse received
a total of 14 mg antibody), and combination group
(SAHA + anti-B7x Ab). After 15 days, the mice were
sacrificed and the lungs were excised and the size and
number of metastatic tumors was determined by stereo-
microscope. In a subset of mice from each experiment,
lung tumors were harvested and digested into single-cell
suspensions with mechanical dissociation followed by
enzymatic dissociation using a mouse tumor dissociation
kit (Miltenyi Biotec) and a GentleMACS Dissociator, then
analyzed by flow cytometry for tumor cell surface markers
and immune cell phenotypes®’. The protocol was
approved by the Committee on the Ethics of Animal
Experiments of the Shenyang Pharmaceutical University.
The above mentioned animal study was blinding done by
independent researcher.

Statistical analysis

Differences between experimental groups were eval-
uated by one-way ANOVA with Turkey’s post-hoc test
using the SPSS11.5 software package for Windows (SPSS,
Chicago, IL). The correlation of linear regression analysis
was performed with Pearson r test. The Chi-square test
was used to analysis the correlation of protein expression
of tumor tissues. Survival curves were constructed using
the Kaplan—Meier method. Statistical significance was
based on a P value of 0.05 (P < 0.05, two-tailed test).

Results
Resistance to the HDAC inhibitor SAHA is related to B7x
induction in colorectal cancer

To mimic acquired HDACi resistance, we first estab-
lished a CT-26 colorectal cancer heterotopic mouse
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model, in which tumor-bearing mice were treated with
the pan-HDAC inhibitor SAHA for 4 weeks. As shown in
Fig. 1la, the mice displayed differential sensitivity to
SAHA. About half of the mice exhibited resistance to
SAHA treatment, based on the larger tumor size. In order
to further explore the relationship between HDACI
resistance and immune checkpoint regulation, we mea-
sured the expression levels of mRNAs encoding the
immune checkpoint molecules PD-L1, CTLA4, B7-1, B7-
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indicated that only B7x mRNA was obviously increased in
SAHA-resistant tumor tissues to SAHA-
responsive tumor tissues. Next, we confirmed the
SAHA-induced upregulation of B7x in seven colorectal
cancer cell lines. The colorectal cancer cell lines were
continuously treated with HDACi at 5 pM for 2 weeks. As
shown in Fig. 1c, the IC5, values for SAHA in all seven
colorectal cancer cells were significantly increased in the
continuously treated cells. Real-time PCR data showed
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Fig. 2 The negative relationship between HDAC and B7x in colorectal cancer cells and patients’ tumors. a B7x protein level and HDAC activity
in colorectal cancer cell lines. The protein expression of B7x was measured by western blot, and HDAC activity was analyzed by microplate reader.
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confirmed the in vivo data. To further confirm the role of
B7x in SAHA resistance in vivo, we also established a
mouse colorectal cancer model using a CT-26 cell line
with overexpression of B7x. As shown in Fig. le, admin-
istration of SAHA significantly inhibited the growth of the
CT-26 tumors, but could not block the growth of the B7x-
overexpressing CT-26 tumors. The above results sug-
gested that B7x is induced by SAHA and might be
involved in the mechanism by which colorectal tumors
acquire resistance to HDAC inhibitors.

Expression of B7x is associated with HDAC activity and
predicts a poor outcome

In order to investigate whether the induction of B7x
was correlated with HDAC inhibition, we next exam-
ined the levels of B7x and HDAC activity in colorectal
cancer cell lines. Our data showed that HCT-116,
LOVO and Colo-205 cell lines expressed a relatively
high level of B7x protein, and SW620 and SW480 cell
lines expressed a moderate level, whereas MC-38 and
CT-26 cells expressed a relatively low level of B7x (Fig.
2a). In contrast to the level of B7X protein, HDAC
activity was higher in CT-26, SW480, MC-38, and
SW620 cell lines, and was lower in HCT-116, LOVO
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and Colo-205 cell lines (Fig. 2b). The correlation ana-
lysis data showed that B7x expression is negatively
associated with HDAC activity, with an R value of
—0.75. Next, we confirmed this relationship between
B7x and HDAC activity in tumor samples from 90 col-
orectal cancer patients. Our results indicated that 49
tumors (54.4%) displayed a relatively high level of
HDAC1, which is the main functional isoform of
HDAC:s. It should be noted that among the 49 tumors
with increased HDAC1 expression, 33 tumors (67%)
expressed a lower level of B7x (Fig. 2c, d). Statistical
analysis of the data indicated that there was a negative
correlation between B7x and HDACI1 levels in tumor
tissue from colorectal cancer patients (P < 0.01, Fig. 2d).
This confirmed the inverse relationship between HDAC
activity and B7x expression. In addition, survival rate
analysis indicated that the level of B7x was significantly
correlated with the patients’ overall survival
(P=0.03, Fig. 2e, right). In contrast, the expression of
HDAC1 was not related to the overall survival of the
colorectal cancer patients (P = 0.35, Fig. 2e, left). These
results suggest that B7x may be valuable as a prognostic
marker. Taken together, these results strongly support
the possibility that B7x expression is regulated by
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HDAC activity, and suggest that B7x plays an important
role in the progression of colorectal cancer.

The isoform HDAC3 specifically regulates the expression of
B7x in colorectal cancer

Different isoforms of HDACs exhibit different func-
tions*?, so we further investigated which isoform con-
tributes to the regulation of B7x. Using real-time PCR, we
assessed the expression level of B7x in Colo-205 cells after
treatment with inhibitors of different HDAC isoforms. As
shown in Fig. 3a, treatment with the pan-HDAC inhibitor
SAHA or the HDAC1/2 inhibitor Romidepsin moderately
induced expression of B7x mRNA in Colo-205 cells,
whereas both the HDAC6-specific inhibitor ACY-775 and
the HDACS8-specific inhibitor PCI-34051 did not induce
the expression of B7x. Interestingly, the HDAC3-specific
inhibitor RGFP966 and the HDAC1/3 inhibitor ITF-2357
both significantly upregulated the expression of B7x
mRNA. In order to verify the specific role of HDACs in
B7x regulation, we measured B7x expression in Colo-205
cells after transfection with various specific siRNAs for
HDACI, 2, 3, 6, and 8. The data showed that siRNA
knockdown of HDACS3, but not other HDACs:, led to
significant upregulation of B7x at both the protein and
mRNA levels (Fig. 3b, c¢). To further explore the rela-
tionship between HDAC3 and B7x, we investigated the
expression level of HDACS3 in colorectal cancer cell lines,
and found that there was a negative relationship between
HDACS3 protein expression and B7x mRNA expression
(R=-0.76, Fig. 3d). Next, to elucidate the underlying
mechanism, we measured the accumulation of acetylated
histone H3 (Ac-H3), a HDAC3 substrate, in both Colo-
205 (relatively high B7x along with low HDAC3) and
SW480 (relatively low B7x along with high HDACS3) cells.
ChIP data showed that the accumulation of Ac-H3 was
increased at promoter regions of B7x in Colo-205 cells but
not in SW480 cells (Fig. 3e). In addition, we also found
that the accumulation of Ac-H3 in SW480 cells was
increased after treatment with the pan-HDAC inhibitor
SAHA or the specific HDAC3 inhibitor RGFP966, but not
with HDAC6 or HDACS inhibitors (Fig. 3f). Taken
together, the above data demonstrate that the isoform
HDACS3 specifically regulates the expression of B7x in
colorectal cancer cells.

HDAC3i and transcription factor C/EBP-a synergistically
regulate B7x expression in colorectal cancer cells

To further explore the mechanism by which HDAC3
regulates B7x, we analyzed the promoter region of B7x
using the TRANSFAC transcription factor prediction
system. The results indicated that four transcription fac-
tors—NF-«B, RFX-1, C/EBP-a, and Lef-1—had a higher
matrix score (Fig. 4a). Next, we investigated the rela-
tionship between these four transcription factors and B7x
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in colorectal cancer cell lines. As judged by western
blotting (Fig. 4b), only C/EBP-a displayed a positive cor-
relation with B7x. The relationship between C/EBP-a and
B7x was further confirmed by genetic manipulation. Our
data showed that overexpression of C/EBP-a induced
expression of B7x in both Colo-205 and SW480 cell lines,
whereas knockdown of C/EBP-a resulted in the down-
regulation of B7x in HCT-116 cells (Fig. 4c). Importantly,
we further confirmed that treatment with pan-HDACi or
HDACS3i increased the binding of C/EBP-a to the P1
region of the B7x promoter, which includes the C/EBP-«
binding site (Fig. 4d). In summary, the above results
suggested that the transcriptional regulation of B7x was
mediated by cooperation between HDAC3 and C/EBP-a.

B7x neutralizing antibody sensitizes the heterotopic
colorectal cancer mouse model to HDAC inhibitor
treatment

To investigate the therapeutic value of the above finding,
we established the CT-26 heterotopic mouse colorectal
cancer model. As shown in Fig. 5a, administration of the
pan-HDACi SAHA for three weeks had moderate efficacy,
with a tumor inhibition rate of 53.5%. On the contrary,
single treatment with a B7x neutralizing antibody just
yielded a weak antitumor efficacy, with a tumor inhibition
rate of 27.8%. Notably, the combination treatment of SAHA
and B7x neutralizing antibody significantly retarded tumor
growth as compared to the single treatment and control
groups. The tumor inhibition rate of the combination
treatment was 80.6%. To further explore the underlying
mechanism, we examined the apoptosis status of tumors
from the four groups. As shown in Fig. 5b, western blot data
showed that the cleaved PARP band was stronger in the
SAHA and neutralizing antibody groups than in the control
group, which suggests that apoptosis is enhanced by the
single treatments. Among the four treatment groups, the
combined treatment group displayed the strongest cleaved
PARP band, which is consistent with the antitumor efficacy
data. Taken together, our results showed the B7x neu-
tralizing antibody sensitized the tumors to HDAC inhibitor
in the colorectal cancer mouse model.

The combination of B7x neutralizing antibody and HDAC
inhibitor reduces metastasis in a mouse lung metastatic
model

As metastatic disease represents the major challenge in
the clinical treatment of colorectal cancer®, we next
established a B7x overexpressed CT-26 mouse lung
metastasis model by intravenous injection and tested the
efficacy of the single treatments and the combined treat-
ment. As shown in Fig. 6a, b, single administration of B7x
neutralizing antibody and SAHA achieved marginal effi-
cacy in reducing the number and size of lung metastases,
whereas the combined treatment had a significant effect.
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Fig. 3 HDAC3 regulates B7x expression in colorectal cancer cells. a The expression of B7x mRNA in Colo-205 cells after treatment with various
inhibitors (5 uM) for 48 h. The mRNA was detected by real-time PCR. GAPDH was used as the loading control. b The expression of B7x protein in Colo-
205 cells after treatment with various specific HDAC siRNAs (100 nM) for 48 h(up). B-actin was used as the loading control. The efficacy after
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Next, we counted the number of CD8" and CD4" T cells  freshly isolated in vivo metastatic samples. Our results
infiltrating the metastatic B7x CT-26 tumors. To do this, showed that, as compared with vehicle control group,
we performed tumor section flow cytometric analysis on  there was a decreasing tendency, but without statistical
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significance, of the proportion of CD8" and CD4" T cells
in SAHA treated group. Notably, the proportion of CD8"
and CD4" T cells was significantly increased in tumors
from mice administered with the B7x neutralizing anti-
body alone and with the combined treatment as compared
with SAHA treated group (Fig. 6¢). The above data sug-
gested that the B7x neutralizing antibody synergized with
HDAC:; in the colorectal cancer model through regulation
of the tumor immune microenvironment.

Discussion

Inhibitors targeting HDACs have been used in the
treatment of hematological malignancies, including per-
ipheral T-cell lymphoma and cutaneous T-cell lym-
phoma**. However, most of the clinical trials on HDAC
inhibitors showed that these drugs only have a limited
efficacy in solid tumors. This suggests that there might be
an intrinsic resistance to HDAC inhibitors in solid
tumors, but not in hematological malignancies. Recently,
a large number of published papers have reported that the
tumor immune microenvironment plays a crucial role in
the regulation of malignant behavior, including drug
resistance, in solid tumors>>2°. Here, we took colorectal
cancer as an example to investigate the relationship
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between HDACi resistance and tumor immune factors.
Our data showed that expression of the immune factor
B7x was enhanced after HDAC inhibitor treatment
in vitro and in vivo. Clinical immunohistochemistry
demonstrated that there was a negative correlation
between B7x and HDAC levels in tumor samples from
colorectal cancer patients, which further confirmed the
relationship between B7x and HDAC. Mechanistically, we
found that HDAC3, an HDAC isoform, regulated B7x
transcription by promoting the binding of the transcrip-
tion activator C/EBP-«a with the promoter region of the
B7x gene. Importantly, our data indicated that a B7x
neutralizing antibody augments the response to HDAC
inhibitor in a mouse colorectal cancer model.

B7x, also known B7-H4 or B7S1, is a member of the B7
family of immune regulators. Molecules in this family can
stimulate or inhibit T cells*’. It has been reported that
B7x has an immunosuppressive role which leads to the
inhibition of CD4" and CD8" T cells*”*®. Furthermore,
several studies indicated that B7x is overexpressed in
multiple tumors and is often related to a poor outcome
for patients’*®, As a co-inhibitory molecule, B7x is
known to be associated with TCR-mediated T-cell pro-
liferation, cell-cycle progression, and IL-2 production®®*”,
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However, the role of B7x in drug resistance has not yet
been elucidated. Here, we present the first evidence that
the expression of B7x, but not other co-inhibitory mole-
cules, is induced by HDAC inhibitor treatment and is
associated with HDAC inhibitor resistance in colorectal
cancer. Clinical study showed that B7x expression was
negatively correlated with the patients’ overall survival,
which further demonstrates the crucial role of B7x in
colorectal cancer. Taken together, our results indicate
that the co-inhibitory immune molecule B7x not only
contributes to tumor growth, but is also involved in drug
resistance. This information suggests a novel combination
strategy against HDAC inhibitor resistance.

HDACS, a class I HDAC isoform, has been shown to
play an important role in the processes of apoptosis,
cellular progression and DNA damage repair, which are
often dysfunctional in cancer®. Furthermore, HDACS3 is
overexpressed in a variety of cancers, including colorectal
cancer, and therefore it is regarded as a promising target
for cancer’®®!. Here, we found that the HDAC3 is the
main HDAC isoform that contributes to regulation of B7x
expression. Knockdown or inhibition of HDAC3 results in
the downregulation of B7x in colorectal cancer cells,
suggesting the potential of HDAC3 as target for regulat-
ing the tumor immune microenvironment. Our data
showed that mechanistically, HDAC3 synergistically
cooperates with transcription factor C/EBP-a to regulate
the expression of B7x. Interestingly, a recent study
showed that HDAC3 regulates another co-inhibitory
molecule, PD-L1, in lymphoma?’z. Therefore, HDAC3
might be a crucial epigenetic enzyme affecting the tumor
immune microenvironment.

In clinical trials of HDAC inhibitors in patients with
solid tumors, resistance to the HDAC; usually leads to the
failure of the trial®. Here, our results indicated that a B7x
neutralizing antibody sensitized colorectal tumors to
HDAC inhibitor treatment in vivo, and the combination of
B7x neutralizing antibody and HDAC inhibitor showed
enhanced suppression of metastasis in a mouse lung
metastatic model. Notably, a recent study showed that a
combination of romidepsin, a FDA-approved inhibitor of
HDAC:s, and PD-1 blockade significantly inhibited tumor
growth by enhancing the activation of tumor-infiltrating
T cells in lung cancer®®. Also, several studies have shown
that the expression of co-inhibitory molecules, including
PD-1, PD-L1, and CTLA4, was increased in cells resistant
to chemotherapeutic or molecular targeting agents®**>. In
addition, it has been demonstrated that the combination of
checkpoint inhibitors with chemotherapeutic/molecular
targeting agents can reverse drug resistance’®. Therefore,
treatments targeting the co-inhibitory molecules may be
useful for reversing drug resistance in solid tumors.

In summary, our study showed that the elevated B7x
expression in colorectal cancer may mediate resistance to
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HDAC: treatment. Our findings suggest that B7x may be a
useful indicator of HDACi resistance in colorectal cancer.
Mechanistically, inhibition of HDACs, especially the
HDACS3 isoform, leads to the epigenetically mediated
upregulation of B7x through synergistic cooperation with
transcription factor C/EBP-a. Importantly, we found that
a B7x neutralizing antibody sensitized colorectal cancer
cells to HDAC inhibitor treatment both in vitro and
in vivo. Therefore, our work identifies an epigenetically
regulated pathway, HDAC3/C/EBP-a/B7x, which is
responsible for HDAC inhibitor resistance in colorectal
cancer, and also provides a promising therapeutic
approach to reverse HDAC inhibitor resistance.
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