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Abstract: Hyperspectral remote sensing images (HSIs) have great research and application value.
At present, deep learning has become an important method for studying image processing.
The Generative Adversarial Network (GAN) model is a typical network of deep learning developed
in recent years and the GAN model can also be used to classify HSIs. However, there are still some
problems in the classification of HSIs. On the one hand, due to the existence of different objects with the
same spectrum phenomenon, if only according to the original GAN model to generate samples from
spectral samples, it will produce the wrong detailed characteristic information. On the other hand,
the gradient disappears in the original GAN model and the scoring ability of a single discriminator
limits the quality of the generated samples. In order to solve the above problems, we introduce the
scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification
on three hyperspectral data sets. Compared with the original GAN model with a single discriminator,
the adjusted criterion is more rigorous and accurate and the generated samples can show more
accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN
generated by single discriminator, this paper proposes a multi-discriminator generative adversarial
networks (MDGANs) and studies the influence of the number of discriminators on the classification
results. The experimental results show that the introduction of multi-discriminator improves the
judgment ability of the model, ensures the effect of generating samples, solves the problem of noise
in generating spectral samples and can improve the classification effect of HSIs. At the same time,
the number of discriminators has different effects on different data sets.

Keywords: hyperspectral image classification; generative adversarial networks; Semi-supervised
classification; multi-discriminator generative adversarial network

1. Introduction

Remote sensing technology is a kind of long-distance earth observation technology which was
raised in the 1960s. As a new discipline, it has attracted wide attention and research because of its
establishment on many subjects. The purpose of remote sensing image processing is to restore image
and extract information. Remote sensing images in different periods record the geographic information
of a region’s dynamic changes, reflecting the evolution of urban, lake and other ecosystems, so it
has profound research significance. By the 1980s, the imaging spectrometer was introduced and a
number of satellites with panchromatic, multispectral and hyperspectral sensors were launched in the
United States and Germany, which greatly improved the physical means of remote sensing detection
technology. Hyperspectral remote sensing, also known as imaging spectral remote sensing, its full
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name is ‘hyperspectral resolution remote sensing.’ Compared with ordinary remote sensing image,
hyperspectral remote sensing images (HSIs) have more and more refined bands. Each pixel in the
image corresponds to hundreds of spectral bands, which contains abundant spectral information.
In addition, HSIs contain precise spatial geometric information which can reflect the spatial distribution
and geometric relationship of objects and realizes the organic combination of spectral information
and spatial geometric information. Therefore, compared with panchromatic and multispectral
remote sensing images, hyperspectral data has incomparable advantages in ground object recognition
and classification.

The traditional mathematical method and the SVM method have great limitations for processing
HSIs with a large amount of data. Many morphological methods are applied to the classification of
HSIs to obtain the feature of spatial structure information of HSIs. In addition, the context information
method is also used to retrieve classification results through regularization in the post-processing
stage. The multi-view method has not been widely used in the classification of HSIs, which has a
great application prospect. Zhao et al. [1] developed both supervised algorithm (S-MVML-LA) and
unsupervised algorithm (UMVML-LA). These methods can learn a more discriminative latent space
that contain sufficient information on all the feature sets (or observations) by using very few within-class
and between class neighbors. Xu et al. [2] presented a novel robust learning algorithm for recovering
the latent intact representations for multi-view examples. Xie et al. [3] introduced a general framework
of multi-modal distance metric learning based on multi-wing harmonium model. Yu et al. [4] proposed
a hierarchical bilinear pooling approach to fuse multi-layer features for fine-grained recognition, which
combines inter-layer interactions and discriminative feature learning in a mutually-reinforced way.
Wang et al. [5] investigated several kernel based methods for multimodal information analysis and
fusion. These multi-view methods provide new ideas on how to combine spatial features and spectral
features in HSIs for classification. In the future, we can consider the combination of multi-view method
and deep learning for classification of HSIs.

In recent years, the emergence of deep learning has provided possibilities for the processing of
large-scale data sets. Depending on the strong learning ability of the deep network itself, the original
image processing methods of denoising, dimensionality reduction and other problems have been
greatly improved. The deep neural network has become an effective feature extraction and classification
algorithm. Dewa et al. [6] studied the dimensionality reduction and classification effect of DBN in
large data based on hyperspectral images. Pedram et al. [7] proposed a self-elevating CNN model
and introduced the concept of jitter for the first time to solve the over-fitting phenomenon in remote
sensing image processing. At the same time, the application of deep learning in hyperspectral image
classification is following closely. The classification model of joint spatial and spectral dimension
based on stacked self-encoding proposed by Chen and Lin et al. [8] is a relatively early study. Later,
Zhao and Yang [9] proposed a two-channel deep convolution neural network. The two-channel of CNN
extracts spectral and spatial features respectively and uses transfer learning to improve performance in
the case of small samples. Mou and Ghamisi [10] first used the cyclic convolution network with gated
units to represent spectral pixels as sequential data, thus realizing hyperspectral image classification.
In 2014, with the emergence of Generative Adversarial Networks (GAN) [11], deep neural network has
been developed completely. Later, Goodfellow, the founder of GAN, elaborated on the reasons for the
instability of GAN training in detail in the literature [12] and gave some solutions through experimental
comparison, so as to better train the network. Wasserstein GAN established by Arjovsky M et al. [13,14]
on this basis theoretically solves the problem of gradient disappearance. On the other hand, Salimans
and Odena [15] proposed a Generative Adversarial Network using feature matching method in 2016,
which achieved good results in semi-supervised classification by relying only on a small amount
of training data. The early GAN was mainly used for unsupervised classification. At present,
the application of the Generative Adversarial Network in the semi-supervised classification of images
is still in the initial stage of development. Nasim Souly et al. [16] proposed a semi-supervised GAN
model for semantics segmentation, which generates a large amount of data and realizes automatic
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image semantic annotation through multiple classifiers. Zhao Liyi, Sun Quan and others [17,18]
applied GAN to image restoration and achieved good results in the restoration of damaged images.
Jin Weidong et al. [19] applied a double discriminator generation adversarial network to the anomaly
detection of catenary and could identify abnormal objects such as bird’s nest.

The theory of generative adversarial network, which can imitate the random input variables to
generate similar types of images according to the original images, comes from the idea of zero-sum
game in game theory [20]. This semi-supervised classification method by expanding data sets is a
brand-new model in the field of image classification, which has great research prospects. Based on this,
this paper studies the hyperspectral image classification algorithm based on generative adversarial
network. In the process of hyperspectral image classification, there are some problems: on the one
hand, due to the existence of different objects with same spectrum phenomenon, if only generating
samples from spectral samples, it will produce the wrong detailed characteristic information. On the
other hand, the gradient disappears in the original GAN model and the scoring ability of a single
discriminator will limit the quality of samples generated by the generator. At the same time, the original
GAN of single discriminator has the problem of insufficient diversity of generated samples, which
is also known as Mode Collapse. Specifically, the generator maps different input to roughly the
same output, that is, it generates samples with little difference and cannot learn all the potential
distribution of input samples. In order to solve these problems and improve the performance of
the model, this paper introduces the scoring mechanism of multi-discriminator cooperative work
and proposes a multi-discriminator generative adversarial networks (MDGANs), which is applied
to three hyperspectral data sets to complete semi-supervised classification. The adjusted criteria are
more rigorous and accurate than the original ones and the corresponding features of the generated
samples are more real. The influence of the number of discriminators on the classification results is
also studied in this paper. The experimental results show that the multi-discriminator generative
adversarial networks can improve the classification effect of the model to some extent.

The main contributions of this paper are as follows.

(1) The MDGANs in this paper uses semi-supervised classification. GAN is basically used in the
field of unsupervised learning. We have made some changes on the basis of the original GAN
structure, that is, add a layer of softmax at the top of the discriminator as the classifier. At this time,
the output of the discriminator is l1, l2, . . . ln, which corresponds to the label category. At this time,
GAN can classify labeled raw data and unlabeled generated samples at the same time. Compared
with the original data, the training samples are greatly increased. Therefore, semi-supervised
GAN can be applied to the case of small samples to improve the accuracy of classification of
small samples.

(2) We introduce the scoring mechanism of multi-discriminator cooperative work and on the basis
of this propose a multi-discriminator generative adversarial networks (MDGANs). Compared
with the original single discriminator GAN, MDGANs has more rigorous and accurate judgment
conditions. The generated samples can show more real features. It can effectively solve the
pattern collapse and diversity deficiencies of the original single discriminator GAN and solve the
problem of noise signal in the generated spectral samples. We also study the general process of
semi-supervised classification of hyperspectral images based on MDGANs. The specific process
is shown in the third part of this paper.

(3) We study the influence of the number of discriminators on the classification results. The number
of discriminators can affect the judgment ability of the whole model and has a great impact on the
classification accuracy. The experimental results show that Indian Pines data set is most sensitive
to the number of discriminators, Pavia University data set is least sensitive to the number of
discriminators, MDGANs has different optimal number of discriminators in different data sets
classification. For Indian Pines and Salinas data sets, when the number of discriminators is 5 can
get ideal classification results and for Pavia University data set, choose three or more than three
discriminators ideal classification results can be obtained.
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The rest of this paper is organized as follows. Section 2 discusses the related research work.
Section 3 describes the proposed method in detail. Section 4 presents comprehensive experimental
results on three publicly available data sets. Section 5 concludes this paper.

2. Related Work

Generative adversarial network is a brand-new model that combines generation model with
discriminant model. The generation model learns the distribution of the original data and the
discriminant model is used to determine whether the generated results are consistent with the original
distribution. After adjusting its learning parameters, the original distribution can be best fitted.
The birth of generative adversarial network provides a new unsupervised learning method for feature
extraction. In the whole model, the samples are constantly trained against each other and the generator
parameters are updated from the gradient feedback of the discriminator, which is independent of the
distribution of the input data samples. In theory, the model is more universal.

Typical generative models are Autoregressive Model and Variational Autoencoder (VAE), both of
which are based on maximum likelihood. The autoregressive model is similar to Markov chain
and belongs to the category of sequence generation. It operates on the image at the pixel level [21].
Variational autoencoder is a probability graph model, which usually includes two parts: encoding and
decoding. It mainly constrains the encoding process and forces the decoder to generate reconstructed
images [22]. The characteristic of generative adversarial network is that it does not need to define
the distribution function directly and it relies on the initial noise information to fit and generate
data. Compared with other generative models, GAN has the following advantages: (1) generating
sample data in parallel without changing the boundary conditions; (2) generating function does not
have too many restrictions; (3) Compared with VAE, GAN produces better image quality. However,
the disadvantage of GAN as a generation model is that the training process of generator is not stable
enough and it will be unable to train [11].

2.1. Structure and Application of Traditional GAN Model

After introducing the basic principles of the discriminant model and the generation model,
the next is to expand in detail how the optimization functions of the two models in GAN are solved
and eventually how to reach the equilibrium state.

Suppose x = {x1, x2 ,· · · xm} represents the set of m real samples, z represents the random noise
vector and Pdata(x) represents the sample distribution of real data. {x1, x2 ,· · · xm} is obtained from m
samples sampled from Pdata(x) and m noise samples from prior distribution Pprior(z) are recorded
as Pz(z).

As shown in Figure 1, GAN has two main components in structure: one is generating network G,
which receives random noise samples z and outputs a set of generated pictures, which are recorded
as G(z); the other is discriminant network D, which judges the parameter x from generator or real
data and outputs x as the probability of real data, which is recorded as D(x). D is equivalent to a
two-classifier. According to the decision probability, the data can be divided into two categories: true
and false. On the other hand, D can feed back the difference between the two to generator G through
the expression of distance similarly, so that it can fit the real data as much as possible.
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Thus, the objective function V(D,G) defined by the model can be expressed as [11]:

min
G

max
D

V(D, G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (1)

where E(*) denotes the expected value of the distribution function, D(*) denotes the probability of
estimating the input sample from the real sample, z denotes the random noise samples and G(z)
denotes the pseudo-samples. We can see that this is a minimax problem. In the case of given G, we first
maximize V (D, G) and take D, then fix D and minimize V (D, G) to get G. Where, given G, maximized
V(D,G) evaluates the difference or distance between the generated sample distribution function and
the real sample distribution function.

In order to quantitatively describe the difference value, Jensen-Shannon distance (J-S divergence)
is introduced to calculate the distance between two probability distributions. At this time, the GAN
objective function is obtained by solving the following formula [11]:

min
G

max
D

V(D, G) = −2 log 2 + 2JSD(Pdata(x)||PG(x)) (2)

where Pdata(x) denotes the distribution of real samples, PG(x) denotes the distribution of generated
samples and JSD (*) denotes the calculation formula of J-S divergence. In fact, it can be proved that the
GAN model can converge to special points and the discriminator D and generator G can obtain the
optimal solution accordingly. In many cases, the solution process is called the game process of two
models and the ideal result may reach the state of Nash Equilibrium.

But sometimes the game result in the GAN model cannot lead to the ideal result, that is, the
gradient disappears, which is caused by the distance measurement method defined by J-S divergence.
J-S divergence can be obtained from K-L divergence [23]. For the same random variable x, there are
two separate probability distributions P1, P2. We can use K-L divergence to measure the difference
between the two distributions [24]:

DKL(P1||P2) = Ex∼P1 log
P1

P2
= Ex∼P1

[
logP1 − logP2

]
(3)

Due to the asymmetric property of K-L divergence, that is, DKL(P1||P2),DKL(P2||P1), there exists
meaningless value of K-L divergence. At this time, P1, P2 are inconsistent.

Further, assuming that there are two distributions P1 and P2 and the average distribution of the
two distributions is M = P1+P2

2 , the J-S divergence between the two distributions can be expressed
as the K-L divergence between P1 and M plus the K-L divergence between P2 and M divided by 2,
that is [24]:

DJS(P1||P2

)
=

1
2

KL
(
P1||

P1 + P2

2

)
+

1
2

KL
(
P2||

P1 + P2

2

)
(4)

The range of J-S divergence of any two distributions is 0–log(n) and the maximum log(n) is
obtained when the two distributions are far apart and do not overlap at all. log(n) is a constant and
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the gradient calculated at this point is undoubtedly 0. Therefore, the GAN model represented by J-S
divergence has the phenomenon of gradient disappearance.

Although there are some shortcomings, it still does not affect GAN to play its role in many fields.
In practical applications, GAN is mostly used in image field. As a generation model, the advantages of
GAN are mainly embodied in avoiding the Markov chain learning mechanism, integrating various loss
functions and GAN can still play its own advantages in scenarios where probability density cannot be
calculated. For example, in the field of natural language processing, natural sentences can be realized
by combining with RNN, such as the generation of poems [25]. It is more widely used in the field
of image. From super resolution [26] to image restoration [27] and the emergence of facial attribute
operation [28] in recent years, the application scene of generative adversarial network is constantly
expanded and subdivided. In addition, GAN can combine with reinforcement learning. By introducing
an unstable punishment-reward mechanism, the existence of adversarial network can promote more
high-quality dialogues within the model.

Such applications undoubtedly open up a lot of areas in image processing that have not been
involved before. On the other hand, GAN model is constantly improved and optimized.

2.2. GAN Model for Semi-Supervised Classification

The common semi-supervised learning methods include: self-training method, generation model,
semi-supervised support vector machine (S3VMs), graph-based algorithm, multi-view algorithm
and so on [29]. The graph-based algorithm maps the data set to a graph and the learning process
corresponds to the data node spreading or propagating on the graph. Due to the fact that the solving
process is matrix operation, the processing capacity of large-scale data sets is insufficient and the
addition of new samples requires the reconstruction of graphs for training, so the applicability of
this method is narrow. S3VMs needs to attach category balance as a constraint condition and the
objective function is non-convex and difficult to calculate, the main research direction is to seek efficient
optimization strategy. The multi-view algorithm requires samples to provide the set of attributes under
other views and its applicability is also narrow. However, because the generated model can generate a
large number of unlabeled sample data according to random variables, it provides a large number of
data for model training to do feature extraction. If these unlabeled data are effectively used, it will
undoubtedly improve the performance of the classification model. Among them, GAN is a widely
used generation model.

GAN is basically used in the field of unsupervised learning after it was proposed but it was not
found that there is research value in semi-supervised learning until later. GAN is a semi-supervised
learning method when a small number of tags and multi-classifiers are added to it. However, the
output of the original discriminator is true or false (0 or 1), which is a binary classification problem.
In order to apply GAN to semi-supervised classification and realize hyperspectral image classification,
we have made some changes based on the original GAN structure, that is, adding a layer of softmax
to the top of the discriminator as the classifier. At this time, the discriminator output is l1, l2, . . . ln,

which corresponds to the label category. softmax(xi) =
exp(xi)∑n

j=1 exp(xj)
is a generalized form of Logistic,

which is modeled by polynomial distribution, so it can combine different types of classifiers together
to form multiple classifiers. Assuming that the original sample has many categories, the number
of categories is counted as c. The samples generated by the generator are classified into category
c + 1, so when training semi-supervised GAN model, softmax classifier also adds an output neuron,
which is used to represent the probability that the discriminator model determines the input is false,
namely, category c + 1. It can be seen that the GAN model can classify the labeled original data and
the unlabeled generated samples at the same time and the training samples are much larger than
the original data. Therefore, semi-supervised GAN can be applied to the case of small samples to
improve the accuracy of classification algorithm. The specific semi-supervised GAN structure is shown
in Figure 2, in which the category label L is added to the input to match the classification results at
the output.
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Because the output of the discriminator is no longer the probability of judging true or false, the loss
function is different at this time. Semi-supervised GAN loss function has two parts, one is supervised
learning loss function, the other is unsupervised loss function. The final loss function is obtained by
adding the two functions together [12].

LD = −Ex,y∼pdata(x,y)

[
logPmodel(y|x)

]
− Ex∼G

[
logPmodel(y = c + 1|x)

]
(5)

Among, Lsup = −Ex,y∼pdata(x,y)

[
logPmodel(y|x, y < c + 1)

]
(6)

Lunsup = −Ex,y∼pdata(x,y)
[log[1− Pmodel(y = c + 1|x)]

−Ex∼G
[
logPmodel(y = c + 1|x)

] (7)

Let D(x) = 1− Pmodel(y = c + 1|x), the loss function of unsupervised learning can be simplified
as follows:

Lunsup = −Ex,y∼pdata(x,y)
[logD(x)] − Ez∼noise log[1−D(G(z))] (8)

where c is the number of categories, pmodel(y|x) is the data distribution of each category and pmodel(y =

c + 1|x) represents the probability of being false. It can be seen that the loss function Lunsup of
unsupervised learning can actually be expressed as the loss function of GAN in formula (1). In the
training process, for labeled samples, the cross-entropy loss is calculated, while for unlabeled samples,
the two loss functions need to be minimized simultaneously.

Semi-supervised learning method can expand the data set, improve the generalization ability of
the model through a large number of unlabeled data sets and learn the hidden features in unlabeled
samples. It is suitable for scenarios where labeled data is missing. Before GAN was not used in the
semi-supervised field, these unlabeled data were basically real data available. After the appearance of
semi-supervised GAN, these unlabeled data can be synthesized manually, which solves some problems
that cannot be handled because of the small number of original samples. Generative adversarial
network can be used not only in image and speech generation but also in other image classification
areas where depth model is good at. This is the basis of hyperspectral image classification in this paper.

3. Proposed Methods

3.1. Algorithmic Framework

The structure of multi-discriminator generative adversarial network is shown in Figure 3.
MDGANs consists of multiple discriminators D1, D2, . . . Dn and generators. Softmax classifier
is used in the output layer of discriminator and the output of the discriminator corresponds to the
category L of the label. Softmax is a generalized form of Logistic, which uses polynomial distribution
as the model for modeling, so it can combine different types of classifiers together to form multiple
classifiers. The noise z is input into the generator and the generation spectrum from the generator is
input into the multi-discriminator together with the spatial spectrum sample of the data sets and the
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classification result is obtained, and the loss is returned to the generator. When training the MDGANs
model, softmax classifier added an output neuron, which was used to represent the probability of the
discriminator model judging that the input was false. It can be seen that the MDGANs model can
classify both the original data with labels and the generated samples without labels and the training
samples are greatly increased compared with the original data. The whole model is implemented on
the Pytorch platform and (n − 1) discriminators are added. These discriminators jointly obtain the
discriminating probability of a category and guide the generation of samples. In order to integrate the
results of multiple discriminators, we average the results. There are three commonly used averaging
methods: arithmetic averaging, geometric averaging and harmonic averaging. Finally, add softmax as
classifier at the top of the multi-discriminator and output the category of the sample.Sensors 2018, 18, x FOR PEER REVIEW  8 of 21 
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In many cases, the reason the generated samples are not good enough is not the inadequacy of the
generator’s imitation ability but the inadequacy of the discriminator’s ability to distinguish falsehoods,
which results in some generated samples deceiving the discriminator. After the introduction of multiple
discriminators, more severe judgment ability can be introduced to ensure the effect of generating
samples. The problem of noise signal in the generated spectral samples is solved and the general
process of semi-supervised classification of hyperspectral images based on MDGANs is studied.

The overall scheme and processing flow of the whole system are roughly as follows.
The hyperspectral data sets Indian Pines, Pavia University and Salinas are preprocessed on the
Pytorch deep learning platform and input into MDGANs. High-quality hyperspectral image images
are generated in the training stage and the test samples are classified in the testing stage. A complete
iteration training process includes the following operations: generator G takes noise variable z and
category information L as input and each iteration training learns sample information of corresponding
category. Discriminator D determines whether the input is the actual spectral information or the
generated spectral information. Then, the trained generated spectrum is mixed with the real spectrum
in a certain proportion as the input of the softmax classifier (the function F in Figure 3). Each training
cycle epoch completes the update of network weight until the MDGANs is stable. Finally, the softmax
classifier outputs the categories of objects belonging to each pixel in the test set image.

In the classification stage, the calculation method of MDGANs judging category probability is
as follows. The first method is to use bagging idea. The generator generates samples according
to the input random noise signal. The probability of true or false samples is obtained by majority
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voting among multiple discriminators. The parameters of the generating network are updated by
back propagation. After training is stable, the generated samples and real samples are classified by
classifier to get the classification results of spectral data. The second integration method refers to
Boosting’s algorithm flow. The weighted average of multiple discriminators is based on their own
weights to get the classification results. At the same time, the weight index of each discriminator is
updated according to the error function in the training stage. Considering that the second method is
cumbersome, and the effect may not be ideal, the bagging method with better generalization ability is
selected in the experiment. The specific training steps are as follows:

Step 1: Input the real spectrum sample as the original data set D;
Step 2: Random sampling is performed on D for several times to obtain the sampling set T;
Step 3: k discriminators are obtained after k times of put back sampling;
Step 4: Using majority voting between multiple discriminators to determine the generated samples;
Step 5: Update generator parameters and train discriminators until training is stable, then use

softmax classifier to classify samples;

3.2. Classification of Spatial-Spectral Dimensions

The phenomenon of different objects with same spectrum causes most classifiers to misclassify
sample data. Therefore, the method of extracting spectral samples directly from hyperspectral images
cannot achieve the best classification effect. Considering the spatial similarity of the same kind of objects,
we can use the spatial texture features of hyperspectral images to extract the complete hyperspectral
information by combining spectral samples and spatial samples and improve the accuracy of the
classification algorithm. In order to extract spatial dimension information through GAN, we need real
spatial samples and then we can get spatial-spectral samples by splicing them with spectral samples.
We put this part of the work in the pretreatment part to complete, get the spatial-spectral samples
and then submit them to the MDGANs to complete the classification task. Multiple discriminators
jointly determine the generated spatial-spectral samples. After multiple rounds of training, when the
MDGANs cannot determine the probability of true or false for samples, the training ends and the
classification results are obtained. The MDGANs uses the softmax to calculate the probability that
each sample in the sample set belongs to each category and the maximum probability value belongs
to the category as the final classification result. The specific process flow of classification method is
shown in Figure 4.
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The acquisition of spatial-spectral samples can be divided into two ways. One is to use
morphological profiling method [30] to obtain spatial features and then connect them with spectral
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features simply. Considering that the data is still high-dimensional at this time, dimensionality
reduction is usually carried out before classification. Another way is to extract spectral samples
with spatial information directly, such as 3D-Gabor filter or 2D-CNN, which can extract the whole
spatial-spectral information and classify it. The feature fusion method adopted in this paper is a simple
splicing method. Before this, hyperspectral images are preprocessed and the pre-processing stage
includes normalization, standardization and zero-mean processing of hyperspectral data. Because
there is a great possibility that a small number of pixels in hyperspectral images belong to the same
category, when extracting spatial features, we use sliding window to extract the features of each band
in turn with fixed-size windows. The extracted neighborhood blocks are represented as spatial samples
and then connected with spectral features to generate new spatial samples in MDGANs which used
for training. Compared with the original spectral samples, the noise information of the spatial-spectral
samples after pretreatment is less, which is conducive to improving the quality of the generated
samples and the final classification result.

3.3. Introduction of Dropout and Parameter Settings

Dropout, which is widely used in CNN to prevent model over-fitting, can also be used in the
integration of multiple discriminators [31]. A robust scoring system generally takes into account the
impact of outliers (such as the lowest and highest scores) and removes them. To this end, such a
mechanism was introduced into the training process of MDGANs, that is, part of discriminators were
filtered within each training cycle and the remaining discriminators participated in the voting score.
In this way, in each training cycle, we dynamically integrate discriminators to guide the generator
to generate spectral samples, so that MDGANs can learn a series of pattern features and avoid the
phenomenon of pattern collapse in the training process.

Since the discriminator in the model is strongly classified by the integrated method, the network
complexity of a single discriminator is appropriately reduced to prevent the learning speed of the
generator from matching the training speed of the discriminator. In addition, in order to make the
model more generalized and comparative, the classifier we added after the discriminator did not
choose CNN but the general softmax multi-classifier, so as to better compare with the original GAN
and other classical classification algorithms.

In the specific experiment, dropout = 0.5 is a better choice, that is, half of the total number
of discriminators are randomly used in each training to participate in the voting score. In general,
the scoring method of multi-discriminator makes the discriminator superior to the generator, so we
update the multi-discriminator network parameters after the generator parameters are updated several
times. For training convenience, the remaining initial super parameters include training rounds:
epoch = 100, learning rate:lr = 0.001, batch_size = 256, dimension 30 of initial noise Z, number
of discriminators:n = 5, mixing ratio of generated samples and real samples is 0.1 and it is set as
semi-supervised learning.

4. Experimental Results

4.1. Experimental Configuration

All programs are implemented on the Pytorch Deep Learning Platform by Python Language
and run on 8 GB memory and a 64-b Windows 7 OS desktop. Because the training samples of each
experiment are randomly selected from the original data set, the results of each experiment are slightly
different. In order to control the influence of different variables, all the experimental data in the
following tables are the results of experiments under the same conditions.
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4.2. The Evaluation Index and Data Set Description

Three commonly used hyperspectral datasets, Indian Pines, Pavia University and Salinas, are
used to carry out experiments. The following is an introduction to several indicators used to assess the
accuracy of classification and the specific situation of the above data sets.

In this paper, three indexes, including Overall Accuracy (OA), Average Accuracy (AA),
Class Accuracy (CA) and Kappa coefficient, were used to evaluate the classification performance of the
model. Among them, the OA is equal to the percentage of the number of pixels correctly classified in the
test set to the total number of samples in the whole test set and the AA is the average of the classification
accuracy of each category. Kappa coefficient is another index for evaluating classification accuracy.
It is used to evaluate the consistency between classification results and real markers. The Kappa value
greater than 0.8 means that the consistency between classification images and real information of
objects is very high or the accuracy is very high. 0.61–0.80 means good consistency, 0.4–0.6 means
medium consistency and less than 0.4 means poor consistency. Assuming that the ground objects to be
classified in hyperspectral data set are of class C and that the sample number of the ground objects
of class i being correctly classified into class i is nii and the sample number of the ground objects of
class i being wrongly classified into class j is nij, then OA, AA, CAi (accuracy of class i-th) and Kappa
coefficients are defined as follows:

OA =

C∑
i=1

nii

C∑
i, j=1

ni j

(9)

AA =

C∑
i=1

Ai

C
(10)

CAi =
nii∑C
j ni j

(11)

Kappa =
OA− Pe

1− Pe
, among : Pe =

1
N2

C∑
i=1

aibi (12)

where, Ai refers to the proportion of correctly classified samples of class i in the total samples of this
class, N refers to the total samples to be classified, ai refers to the true samples of class i ground objects

and bi refers to the predicted samples of class i ground objects, namely ai =
C∑
j

ni j, bi =
C∑
j

n ji.

Indian Pines: this hyperspectral image was completed in 1992 with an AVIRIS sensor and has 220
bands of 145× 145, a spatial resolution of 20 m and a spectral range of 0.4 µm to 2.45 µm. The image area
is the Northwest Indiana Agricultural Region. It is mainly used for agricultural research. It contains
16 types of ground objects, a total of 10,249 labeled pixels, of which 2/3 are crops, 1/3 are forests and
other natural perennial plants. The number of samples of various types of ground objects is shown in
Table 1. Figure 5 shows the false color image and the corresponding ground truth maps distribution of
the hyperspectral image.
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Table 1. Numbers of Training and Test Samples Used in The Indian Pines Data Set.

No. Class Training Test

1 Alfalfa 14 32
2 Corn-notill 428 1000
3 Corn-mintill 249 581
4 Corn 71 166
5 Grass-pasture 145 338
6 Grass-trees 219 511
7 Grass-pasture-mowed 8 20
8 Hay-windrowed 143 335
9 Oats 6 14
10 Soybean-notill 292 680
11 Soybean-mintill 737 1718
12 Soybean-clean 178 415
13 Wheat 62 143
14 Woods 380 885
15 Buildings-Grass-Trees-Drives 116 270
16 Stone-Steel-Towers 28 65
Total 3076 7173Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 
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Pavia University: this hyperspectral image was taken by ROSIS sensor and the imaging area is
Pavia University in northern Italy. Its spatial resolution is 1.3 m, the spectral band is 103, the size
is 610 × 340 and it contains 9 categories of ground objects and 42,776 labeled pixels. The number of
samples of various types of ground objects is shown in Table 2. Figure 6 shows the false color image
and the corresponding ground truth maps distribution of the hyperspectral image.
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Table 2. Numbers of Training and Test Samples Used in the Pavia University Data Set.

No. Class Training Test

1 Asphalt 1989 4642
2 Meadows 5595 13,054
3 Gravels 630 1469
4 Trees 919 2145
5 Painted metal sheets 404 941
6 Bare Soil 1509 3520
7 Bitumen 399 931
8 Self-Blocking Bricks 1105 2577
9 Shadows 284 663
Total 12,834 29,942Sensors 2018, 18, x FOR PEER REVIEW  13 of 21 
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Salinas: this hyperspectral image was collected by the AVIRIS sensor in the Salinas valley region
of California. The image has a spatial resolution of 3.7 m, a size of 512 × 217 and contains 224 bands.
Generally, 20 of the absorbent bands are removed and only 204 bands are reserved for related studies.
The data set contains 16 categories of ground objects and a total of 54,129 labeled pixels. The number
of samples of various types of ground objects is shown in Table 3. Figure 7 shows the false color image
and the corresponding ground truth maps distribution of the hyperspectral image.
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Table 3. Numbers of Training and Test Samples Used in the Salinas Data Set.

No. Class Training Test

1 Brocoli_green_weeds_1 603 1406
2 Brocoli_green_weeds_2 1118 2608
3 Fallow 593 1383
4 Fallow_rough_plow 418 976
5 Fallow_smooth 803 1875
6 Stubble 1188 2771
7 Celery 1074 2505
8 Grapes_untrained 3381 7890
9 Soil_vinyard_develop 1861 4342
10 Corn_senesced_green_weeds 983 2295
11 Lettuce_romaine_4wk 320 748
12 Lettuce_romaine_5wk 578 1349
13 Lettuce_romaine_6wk 275 641
14 Lettuce_romaine_7wk 321 749
15 Vinyard_untrained 2180 5088
16 Vinyard_vertical_trellis 542 1265
Total 16,238 37,891
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4.3. Performance Evaluation

According to Tables 1–3, the Indian Pines, Pavia University and Salinas hyperspectral data sets
of training set and test set are partitioned for semi-supervised classification. In order to evaluate
the performance of MDGANs accurately, four models, K-Nearest Neighbor (KNN), Neural Network
(NN), Support Vector Machine (SVM) and Convolutional Neural Networks (CNN), are selected as
comparative experiments. Figures 8–10 show the classification results of different methods. Tables 4–6
shows the classification accuracy of different methods in different types of objects. The most accurate
value is marked in bold.
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Figures 8–10 show the classification performance of different methods in three data sets: Indian
Pines, Pavia University and Salinas. It can be clearly seen that the MDGANs has a better classification
result in the classification of three different HSIs data sets.

Tables 4–6 shows the classification accuracy of different methods in three HSIs datasets. In Indian
Pines dataset, the CA, OA, AA and Kappa of 16 ground objects are higher than those of the other
four methods. In Pavia University dataset, the AA, Kappa and the CA of 8 ground objects are higher
than those of the other four methods. The OA is 0.12% lower than CNN and the overall classification
performance is still better than the other four methods. In Salinas dataset, the OA, AA, Kappa and the
CA of 8 ground objects are higher than those of the other four methods.
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Table 4. Classification Results by Using Different Methods on the Indian Pines Data Set.

No. Class KNN NN SVM CNN MDGANs

1 Alfalfa 41.50% 78.00% 87.50% 64.20% 95.20%
2 Corn-notill 61.10% 88.10% 82.00% 84.60% 99.20%
3 Corn-mintill 59.60% 83.90% 77.90% 80.50% 92.70%
4 Corn 49.40% 78.50% 72.70% 73.00% 97.20%
5 Grass-pasture 86.20% 91.40% 92.90% 92.90% 94.10%
6 Grass-trees 90.20% 95.90% 95.10% 95.40% 99.80%
7 Grass-pasture-mowed 87.80% 88.90% 90.00% 87.20% 97.60%
8 Hay-windrowed 94.10% 97.60% 99.00% 97.50% 99.90%
9 Oats 48.00% 74.10% 33.30% 75.00% 78.30%
10 Soybean-notill 70.00% 86.00% 76.50% 84.60% 96.70%
11 Soybean-mintill 74.80% 88.80% 83.70% 86.10% 97.90%
12 Soybean-clean 51.90% 87.70% 87.40% 87.90% 96.40%
13 Wheat 91.90% 100.00% 97.60% 95.50% 100.00%
14 Woods 92.00% 94.70% 94.70% 93.90% 99.40%
15 Buildings-Grass-Trees-Drives 45.00% 69.90% 71.20% 65.40% 81.60%
16 Stone-Steel-Towers 91.80% 96.90% 94.60% 96.10% 97.70%
OA 73.74% 89.10% 85.58% 87.14% 95.73%
AA 70.96% 87.53% 83.51% 84.88% 97.68%
Kappa 0.700 0.876 0.835 0.853 0.952

Table 5. Classification Results by Using Different Methods on the Pavia University Data Set.

No. Class KNN NN SVM CNN MDGANs

1 Asphalt 91.50% 95.50% 95.10% 96.20% 97.60%
2 Meadows 93.50% 96.90% 97.00% 96.90% 95.20%
3 Gravels 73.60% 80.60% 83.50% 85.90% 95.70%
4 Trees 91.70% 96.10% 96.90% 96.90% 99.00%

5 Painted
metal sheets 99.60% 99.60% 99.50% 99.60% 99.90%

6 Bare Soil 76.20% 93.50% 90.10% 92.70% 99.90%
7 Bitumen 81.70% 90.30% 88.50% 91.40% 99.10%

8 Self-Blocking
Bricks 82.70% 83.80% 88.30% 89.70% 98.70%

9 Shadows 99.90% 99.90% 99.90% 99.90% 99.90%
OA 89.33% 93.86% 94.37% 94.79% 94.67%
AA 79.44% 93.01% 93.20% 94.36% 98.50%
Kappa 0.700 0.876 0.835 0.853 0.931

As can be seen from Table 7, the Overall Accuracy of the Indian Pines data set, with a relatively
low total data volume, has improved significantly as the proportion of training set increases from 5%
to 50%. The Overall Accuracy of the Pavia University and Salinas data sets, with a relatively more
total data volume, has improved not as obvious as that of Indian Pines dataset as the proportion of
training set increases from 5% to 50%. The reason is that Pavia University and Salinas data set has more
amount of data and the Overall Accuracy can still be more than 93% when only 5% training set are
used. For Salinas data set, the 50% training set is not as effective as the 30% training set. The reason is
that Salinas has the largest amount of data and overfitting occurs when the 50% training set is adopted.
Therefore, it is not true that the higher the training set proportion is, the higher the classification
accuracy will be.
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Table 6. Classification Results by Using Different Methods on the Salinas Data Set.

No. Class KNN NN SVM CNN MDGANs

1 Brocoli_green_weeds_1 99.40% 99.70% 99.90% 99.90% 97.30%
2 Brocoli_green_weeds_2 99.50% 99.60% 99.90% 99.80% 100%
3 Fallow 97.10% 99.30% 99.40% 97.20% 99.80%
4 Fallow_rough_plow 99.10% 99.40% 99.30% 99.30% 99.50%
5 Fallow_smooth 98.30% 99.30% 99.20% 97.60% 100%
6 Stubble 99.80% 99.90% 99.90% 99.90% 98.90%
7 Celery 99.40% 99.70% 100% 99.80% 99.40%
8 Grapes_untrained 83.50% 86.00% 85.20% 87.00% 97.10%
9 Soil_vinyard_develop 99.20% 99.70% 99.60% 99.40% 99.70%
10 Corn_senesced_green_weeds 93.20% 96.50% 96.90% 96.90% 98.10%
11 Lettuce_romaine_4wk 94.60% 96.60% 98.30% 97.80% 98.00%
12 Lettuce_romaine_5wk 98.30% 99.60% 99.60% 99.70% 98.10%
13 Lettuce_romaine_6wk 96.90% 99.50% 99.90% 98.90% 98.60%
14 Lettuce_romaine_7wk 93.90% 98.40% 98.60% 97.50% 98.00%
15 Vinyard_untrained 73.50% 77.90% 72.50% 79.00% 93.90%
16 Vinyard_vertical_trellis 98.90% 98.80% 99.40% 99.50% 88.90%
OA 91.90% 93.59% 93.02% 93.87% 96.19%
AA 95.29% 96.87% 96.73% 96.83% 97.74%
Kappa 0.910 0.929 0.922 0.932 0.958

Table 7. The Overall Accuracy of Three Data Set under Class Imbalance Condition.

Training Set 5% 10% 30% 50%

Indian Pines 85.12% 91.04% 95.73% 95.98%
Pavia University 93.51% 94.30% 94.67% 95.14%
Salinas 93.44% 94.85% 96.19% 96.03%

From Table 8, we can see that for Indian Pines data set, the STMI-CSA proposed by Feng et al.
and the CNN proposed by Romero et al. also adopt 30% training set, the MDGANs model proposed in
this paper has certain advantages in OA, AA and Kappa. The DBN proposed by Chen et al. achieves
high accuracy when using 50% training set. The MDGANs model proposed in this paper still has
some advantages in OA, AA and Kappa. For Pavia University data set, the STMI-CSA proposed by
Feng et al. adopt 30% training set, the MDGANs model proposed in this paper has certain advantages
in OA, AA and Kappa. When using 60% training set, the SC-DBN proposed by Li et al. has 1.16%
higher OA and 0.014 higher Kappa than the method proposed in this paper. The reason is that the
training set is twice as large as the method in this paper, so the accuracy is slightly higher than the
method in this paper. For Salinas data set, the STMI-CSA proposed by Feng et al. also adopt 30%
training set, the MDGANs model proposed in this paper has certain advantages in OA, AA and Kappa.

Experimental results show that the MDGANs can introduce more severe judgment ability after
introducing multiple discriminators, so as to ensure the quality of generating samples, solve the
problem of noise signal in generated spectral samples and improve the classification effect of HSIs.
Compared with some traditional classification methods, it has certain advantages.

As can be seen from Figures 11–13, for Indian Pines, the accuracy rate tends to stabilize when
the training period reaches 150 and the loss function approaches 0 when the number of MDGANs
iterations exceeds 80k and basically remains unchanged; for Pavia University, the accuracy rate tends
to stabilize when the training period reaches 100 and the loss function approaches 0 when the number
of MDGANs iterations exceeds 200k; for Salinas, the accuracy rate tends to stabilize when the training
period reaches 70 and the loss function tends to stabilize 0 when the number of MDGANs iterations
reaches 100k, because the data volume of Pavia University and Salinas is larger.
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Table 8. Comparison with Other Methods.

Dataset Reference Method Training Set OA AA Kappa

Indian Pines

Feng et al. [32] STMI-CSA 30% 83.70% 73.50% 0.813
Romero et al. [33] CNN 30% - - 0.840
Chen et al. [34] DBN 50% 91.34% 89.70% 0.901
- MDGANs 30% 95.73% 97.68% 0.952

Pavia University
Feng et al. [32] STMI-CSA 30% 94.60% 92.80% 0.928
Li et al. [35] SC-DBN 60% 95.83% 94.67% 0.945
- MDGANs 30% 94.67% 98.50% 0.931

Salinas
Feng et al. [32] STMI-CSA 30% 93.70% 96.80% 0.930
- MDGANs 30% 96.19% 97.74% 0.958
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In order to compare with the original GAN classification model, we studied the influence of the
number of discriminators n on the classification results. In the experiment, control other variables
remain unchanged and only the number of discriminators is changed, which is in order: 1, 3, 5, 8, 10,
the learning rate is set to 0.001 and the training period is 800. Finally, the overall classification accuracy
of MDGANs on Indian Pines, Pavia University and Salinas datasets is obtained. The experimental
results are shown in Figure 14 as follows:

As can be seen from Figure 14, when n is 1, the MDGANs is GAN model of a single discriminator.
Since the MDGANs in this paper does not combine CNN classifier to improve classification performance,
the classification result of a single discriminator is inferior to SVM and CNN classification method.
The method of ensemble learning can improve the generation effect of a single discriminator and
the increase of the number of discriminators can enhance the judgement ability of the MDGANs
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and effectively improve the classification accuracy. The experimental results show that the method
of multi-discriminator integration can improve the classification accuracy of the model to a certain
extent. For the Indian Pines and Salinas data sets, the influence of the number of discriminators is
obvious. When the number of discriminators is 5, a better classification result can be obtained and the
running time of the MDGANs is not too long. However, for Pavia University data set, the number of
discriminators does not have a significant impact and the selection of three or more discriminators can
achieve ideal classification results. When the number of discriminators is 3, the running time of the
MDGANs is relatively short.
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A multi-discriminator ensemble method, the MDGANs, is applied to HSIs classification.
By dynamically selecting discriminators to vote on the generated results, the phenomenon of pattern
collapse in GAN is overcome and the quality of generated samples is guaranteed. At the same time,
the MDGANs has the characteristics of diversity. Experiments show that the classification accuracy of
this method is higher than SVM and CNN in three hyperspectral data sets. At the same time, we also
studied the influence of the number of discriminators on the classification accuracy and the results
showed that the classification result of the MDGANs was better than that of the single discriminator
classification model.
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5. Conclusions

In view of the fact that there are noise signals and too few training samples in hyperspectral images,
this paper proposes Multi-Discriminator Generative Adversarial Networks applied to hyperspectral
image classification -MDGANs. The model using the thought of ensemble learning applied to the
optimization of structure of GAN, from hyperspectral image preprocessing to get spatial-spectral
samples for training the generator. Then, the majority voting method is used to determine whether
the generated samples are true or false and the voting score of multiple discriminators is used to
guide the generation of samples. Compared with the original GAN, the stability of the training
process is guaranteed, and the quality of the generated samples is improved. At the same time,
the softmax classifier is used at the output to realize the multi-classification task of spectral samples.
The experimental results show that the classification result of multi-discriminator network structure
is better than that of single discriminator. At the same time, compared with CNN, SVM and some
traditional methods, it has certain advantages in classification accuracy.

The MDGANs model proposed in this paper still has great room for improvement. Although the
classification accuracy is improved, the training time also increases correspondingly. At the same time,
there is still a lot of room for improvement in the means of extracting spatial features. How to better
combine spectral features and spatial features is worthy of our deeper study. Multi-view learning has
a wide range of applications in various fields. In the future, I will consider using multi-view learning
to better integrate spectral features and spatial features and combine it with MDGANs model for HSIs
classification, so as to achieve greater harvest.
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