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Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular
fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by
specialized proteins, named fusogens, that overcome the energetic barriers during this
process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was
identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being
both essential and sufficient for the membrane merger in some species. The identification of
HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in
vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families
of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and
class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form
the Fusexin superfamily. While some attributes are shared among fusexins, for example the
overall structure and the possibility of assembly into trimers, some other characteristics seem to
be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the
protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates
nor in fungi, raising the question of whether these genes were lost during evolution and were
replaced by other fusionmachinery or a significant divergencemakes their identification difficult.
Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the
structural, mechanistic and evolutionary relationships with other fusexins.
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INTRODUCTION

The merging of the plasmamembranes of two independent cells with the subsequent formation of an
individual cell containing both cytoplasmic contents mixed is known as cell-cell fusion. This
biological process is mediated and finely controlled by fusion proteins, termed fusogens, which
are specialized proteins capable of overcoming the energetic barriers required for the fusion to occur
(Chernomordik and Kozlov, 2003) and are both necessary and sufficient to mediate membrane
merging (Brukman et al., 2019). In particular, the fusion between two gametes or “gamete fusion” is
one of the hallmarks of meiotic sex and its ubiquitous distribution among eukaryotes suggests an
ancestral origin (Ramesh et al., 2005; Speijer et al., 2015; Radzvilavicius, 2016). The first gamete
fusogen identified was HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) that catalyzes
fertilization in flowering plants, protists and probably in some invertebrates. This protein was
originally found as an essential sperm factor required for male fertility in flowering plants (Johnson
et al., 2004; Mori et al., 2006; von Besser et al., 2006) being later shown that it is necessary for mating
in Chlamydomonas and Plasmodium (Hirai et al., 2008; Liu et al., 2008). More recently, the
Arabidopsis HAP2/GCS1 (AtHAP2/GCS1) was shown to be sufficient to induce fusion of
mammalian cells in culture and the infection of enveloped virus to cells (Valansi et al., 2017).
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Strikingly, HAP2/GCS1 shares an overall three-dimensional
structure with the somatic Fusion Family (FF) proteins
discovered in nematodes (Mohler et al., 2002; Sapir et al., 2007;
Pérez-Vargas et al., 2014) and with class II viral glycoproteins (e.g.,
dengue, rubella and zika viruses) (Fédry et al., 2017; Pinello et al.,
2017; Valansi et al., 2017). This superfamily of fusion proteins
essential for sexual reproduction and exoplasmic merger of plasma
membranes was named Fusexin. Even though the mechanisms of
cell-cell and virus-cell fusion are diverse and may be mediated by
different families of fusion proteins (Segev et al., 2018; Vance and
Lee, 2020), the fusexins represent a remarkable case of ancestral
fusogens present across the tree of life. Here we review the recent
research on HAP2/GCS1-mediated gamete fusion and its
functional and structural relationships with other fusexins.
Furthermore, we compare the regulation of fusion processes
driven by fusexins to the fertilization process in mammals,
where the presence of distant members of the Fusexin
superfamily is uncertain.

STRUCTURAL SIMILARITIES AND
DIFFERENCES BETWEEN FUSEXINS

Previous studies have shown FF proteins, like C. elegans’ EFF-1
(CeEFF-1), and HAP2/GCS1 are structurally homologous to
viral class II fusion proteins and display a trimeric, postfusion

hairpin conformation consisting of three β-sheet-rich domains
(DI, DII, DIII) (Figure 1) (Pérez-Vargas et al., 2014; Fédry et al.,
2017; Pinello et al., 2017; Valansi et al., 2017). The first of the
three domains consist of a β-barrel, followed by a mostly β-
stranded elongated domain, and an Immunoglobulin (Ig)-like
domain. They are anchored to the cell surface by
transmembrane domains at the C terminus. Even though
these proteins share very low sequence similarities, the
surprising conservation in their architecture suggests that
they share a common ancestor forming the Fusexin
superfamily (Figure 1). A particular region on one end of
the ectodomain has been extensively studied due to
functional implications (Figure 1). In viral class II fusion
proteins, fusion loops or α-helices located at the tip of
domain II containing hydrophobic residues have been
proposed to insert into the target membrane during
conformational changes, like tick-borne encephalitis virus
protein E (Bressanelli et al., 2004). In CeEFF-1, the cd loop
at the membrane-proximal side may play a similar structural
role, however it is mainly composed of acidic residues forming
an electronegative surface which is unlikely to interact with
lipidic membranes (Pérez-Vargas et al., 2014). The fusion loops
regions in HAP2/GCS1 orthologs are highly variable, with a
single helix in AtHAP2/GCS1, three short loops in
Trypanosoma cruzi (TcHAP2/GCS1) and three amphipathic
helices in Chlamydomonas reinhardtii (CrHAP2/GCS1)

FIGURE 1 | The Fusexin superfamily. Ribbon representation of the fusion protein trimersC. elegans EFF-1 (PDB 4OJC; Pérez-Vargas et al., 2014), TBEVE (PDB 1URZ;
Bressanelli et al., 2004), and A. thalianaHAP2 (PDB 5OW3; Fedry et al., 2018) with domains I, II, III colored by red, yellow, blue, respectively. Surface representation of trimers
viewed from the membrane was displayed. The surface is colored according to the electrostatic potential on a scale from -5 to 5 kT/e (calculated with APBS, Jurrus et al.,
2018) from red (negative) to blue (positive). Solvent-excluded surfaces of trimers are colored based on molecular lipophilicity potential maps, ranging from dark cyan
(hydrophilic) to dark gold (lipophilic). Proposed fusion loops at the tip of domain II are contoured in black. In the center, an unrooted tree inferred using a distance matrix
extracted from (Valansi et al., 2017). Colors are HAP2/GCS1, blue; FF proteins, green; class II viral fusogens, red. M superscript represents models.
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(Baquero et al., 2019). The functional relevance of the different
configuration of this region is discussed in the next section.

MECHANISMS OF ACTION OF FUSEXINS

One Way or Another
How do fusexins mediate membrane fusion? First of all, some
fusogens may be required only in one of the opposing
membranes, as in the case of class II viral glycoproteins
(Podbilewicz, 2014), while others must be present on both
sides, like the EFF-1 and AFF-1 somatic fusogens
(Podbilewicz et al., 2006; Avinoam et al., 2011). These two
possible mechanisms are termed unilateral and bilateral,
respectively (Figure 2). However, in the case of HAP2/GCS1

the evidence is controversial. On one hand, the deletion of the
Athap/gcs1 gene induces male-specific sterility (Johnson et al.,
2004; von Besser et al., 2006), even though some levels of
expression were detected in ovules (Borges et al., 2008),
suggesting a unilateral mechanism of action. In contrast,
when studied in heterologous systems, AtHAP2/GCS1 could
mediate exoplasmic fusion only bilaterally (Valansi et al., 2017).
Similarly to flowering plants, genetic studies in Plasmodium and
Chlamyodomonas, showed that HAP2/GSC1 is absolutely
required in only one of the fusing gametes (Hirai et al., 2008;
Liu et al., 2008). By contrast, in the ciliated protozoan
Tetrahymena thermophila, all seven mating types express
HAP2/GCS1 and its absence in only 1 cell of the mating pair
disrupts fusion (Cole et al., 2014; Pinello et al., 2017). The slime
mold Dictyostelium represents a particular case where two

FIGURE 2 | Pathways and regulations of fusexin-mediated fusion. (A) Different models for the mechanism of action of fusexins. Fusion can be induced from both
merging membranes (“bilateral,” i, ii, iv and v) or from one of them (“unilateral,” iii and vi). Within the bilateral mechanism, fusexins may interact forming dimers or trimers
leading to fusion (“trans-interaction,” reminiscent of trans-SNAREs, i and iv) or cooperate by binding to the opposedmembrane (“trans-cooperation,” ii and v). Depending
on the intermediate states that mediate membrane merging the mechanisms can be divided into trimer-driven fusion (i, ii and iii) or monomer/dimer-driven fusion (iv,
v and vi). Independently of the mechanism, the post-fusion conformation is hairpin-shaped trimers. (B) Known mechanisms of pre-fusion activation (left panel) or post-
fusion inactivation (right panel) of fusexins described in this review. Created with BioRender.com.
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homologs of HAP2/GCS1 were identified: HgrB, which is
expressed in the three sex types, and HgrA, expressed only in
types I and II (Okamoto et al., 2016). Genetic studies suggest
that both HgrA and HgrB are essential in both membranes in
crosses between types I and II, but only in one membrane when
crossed with the third gamete type (Okamoto et al., 2016;
Bloomfield, 2019).

Regardless of the species, structural and biochemical studies
show that the hydrophobic tip of domain II of HAP2/GCS1
(Figure 1) is critical for interactions with liposomes (Pinello
et al., 2017; Fédry et al., 2018; Feng et al., 2018; Baquero et al.,
2019). This HAP2/GCS1-membrane interaction is consistent
with a unilateral pathway (Figures 2Aiii,vi) but also with a
bilateral mechanism with trans-cooperation (Figures 2Aii,v), or
even a hybrid system. More recently, this hydrophobic region
was shown to be relevant for oligomerization in
Chlamydomonas (Zhang et al., 2021). It was shown that the
formation of a small population of SDS-resistant trimers in this
species was observed even in the absence of fusion, however, the
temporal and spatial resolution of these experiments is not
sufficient to confirm that these trimers are responsible for
membrane merging.

Which Comes First, the Fusion or the
Trimer?
As mentioned before, all fusexins studied thus far can form trimers.
The most studied group within the Fusexin superfamily are the viral
class II fusion proteins. In mature virions of alphaviruses and
flaviviruses, these proteins exist as heterodimers/trimers or
homodimers, respectively, in some cases lying parallel to the
membrane and forming an icosahedral lattice on its surface
(Zhang et al., 2003; Voss et al., 2010). Upon internalization into
the target cells, the low pHwithin endosomal compartments triggers
the activity of class II fusogens leading to infection (White et al.,
2008). It is commonly accepted that class II viral fusogens, after a
transient monomeric state, trimerize before fusion and that the
zippering of these trimers is the driving force for membrane merger
(Baquero et al., 2013). In the post-fusion state, these proteins can be
found in the already previouslymentioned folded trimers of hairpins,
however, the existence of the hypothetical extended trimer has not
been experimentally confirmed. Therefore, the possibility that
monomers rearrange into hairpins to induce fusion prior to their
trimerization cannot be excluded (Figures 2Aiv,v,vi).

Even though CeEFF-1 is suggested to be monomeric on cell-
derived membrane vesicles (Zeev-Ben-Mordehai et al., 2014), its
ectodomain purified and crystallized as a post-fusion trimer
(Pérez-Vargas et al., 2014). The monomeric (but not trimeric)
soluble protein was able to inhibit cell-cell fusion in vitro (Pérez-
Vargas et al., 2014) and soluble EFF-1 trimers stimulate the
fusion of insect cells ectopically expressing EFF-1 (Podbilewicz
et al., 2006). Similarly to viral fusexins, EFF-1-mediated fusion
can be blocked by adding soluble domain III (Pérez-Vargas
et al., 2014). Based on the presence of an electronegative instead
of a hydrophobic patch on the tip of the domain II and the
bilateral requirement of EFF-1, it was proposed that trimers/
dimers are formed in trans and that a bidirectional zippering

occurs from both fusing membranes (Podbilewicz, 2014,
Figure 2Ai,iv). However, a trans-cooperation mechanism
where cis-trimers are required from both sides is still a
possible model (Figure 2Aii). In the latter scenario, the
binding to the opposite membrane might be indirect,
distinctly to Class II viral fusexins that involve direct
hydrophobic interactions with the membranes.

Whether fusion is mediated by monomers, dimers, trimers or
even higher oligomeric states is not completely elucidated and
different fusexins may utilize different strategies that should not
be excluded (Figure 2A).

FINE-TUNING OF GAMETE FUSION

Fusion must be a tightly-regulated process. Excessive gamete
fusion can lead to non-specific fertilization or to polygamy that
may produce unviable polyploid zygotes. Also, the fusion of
gametes to their same type or to somatic cells must be
avoided. In this sense, even after cell fate determination and
gamete encounter, many regulatory mechanisms are established
to regulate the activity of gamete fusogens.

Attach and Fuse
Specific adhesion of the gametes seems to be a robust way of
regulating fusion as fusogens require the membranes to be in
close proximity (Hernández and Podbilewicz, 2017). The
concept of “fertilization synapse” was introduced to describe
the complex arrangement of the membranes to enable fusion
(Krauchunas et al., 2016). In flowering plants, the sperm-
specific protein GEX2 (Gamete EXpressed 2) contains Ig-like
domains and it was shown to be essential for sperm attachment
and the subsequent fertilization (Mori et al., 2014). The known
Chlamydomonas factor for gamete adhesion is FUS1 (Ferris
et al., 1996; Misamore et al., 2003), which also contains
extracellular Ig-like domains that form a structure similar to
the one of GEX2 (Pinello et al., 2021). In contrast to the plant
counterpart, FUS1 is expressed in the plus mating type, the
opposite membrane to HAP2/GCS1. However, no direct
interaction between them was reported. Recently, MAR1
(Minus Adhesion Receptor 1) has been suggested to be the
molecular partner of FUS1 in the minus gamete and a key
regulator of HAP2/GCS1 localization to the fusion site (Pinello
et al., 2021, Figure 2B). The only attachment couple known in
mammals is the sperm-borne Izumo1 and the oocyte-specific
Juno (Izumo Receptor). While the former is a type I
transmembrane Ig-like protein, the latter is bound to the egg
plasma membrane by a GPI anchor. The interaction between
these two proteins leads to tight gamete binding that is species
specific and is essential for fusion to occur (Inoue et al., 2005;
Bianchi et al., 2014; Bianchi and Wright, 2015). This molecular
interaction appears to be an evolutionary novelty as Juno is
present only in mammals, however, Izumo1 has a broader
distribution involving many lineages of vertebrates (Grayson,
2015). Interestingly, an Izumo-like gene involved in late stages
of fertilization was described also in C. elegans (Nishimura et al.,
2015; Takayama et al., 2021).
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The Correct Time and Place
The localization of the fusogens plays a crucial role to regulate
fusion. For example, in C. elegans the dynamic internalization of
EFF-1 into intracellular early endosomes regulates its function
(Smurova and Podbilewicz, 2017). Similarly, AtHAP2/GCS1
localization to the plasma membrane increases upon
interaction with EC1 (Egg Cell 1), a small cysteine-rich
protein secreted by the female gamete, which is necessary for
sperm cell plasma membrane to gain fusion competence
(Sprunck et al., 2012). In mammals, the egg tetraspanin CD9
is proposed to be responsible for membrane organization and
correct localization of adhesion- and fusion-related proteins, such
as Juno (Inoue et al., 2020; Umeda et al., 2020). In the mammalian
sperm, Izumo1 localizes into the acrosome, giant intracellular
vesicle in the head. Only after undergoing capacitation, a
maturation process in the female tract, the acrosomal content
is released and Izumo1 relocalizes to the equatorial region of the
plasma membrane where tight binding to the oocyte plasma
membrane occurs (Satouh et al., 2012). The fusogens involved in
mammalian gamete fusion may follow similar localization
behavior to Juno and/or Izumo1.

More Than Just Lipidic Bilayers
Another factor affecting the activity of fusion is the lipidic
composition of both membranes. For example, cholesterol in the
target membrane promotes the fusion mediated by some viral class
II fusexins (Umashankar et al., 2008; Osuna-Ramos et al., 2018;
Pattnaik and Chakraborty, 2021). On the other hand, AtHAP2/
GCS1 was reported to bind better to liposomes containing a lipid
that mimics the phospholipid phosphatidylserine (Fedry et al.,
2018). Phosphatidylserine is a known mediator of many fusion
events (Whitlock and Chernomordik, 2021), including EFF-1-
mediated neuronal repair of axons in C. elegans (Neumann
et al., 2015) and mammalian fertilization (Rival et al., 2019).
Albeit lipids may affect the activity of fusion proteins, the
composition of the membrane by itself is known to determine
the curvature of the bilayer and, therefore, influence directly the
progression of hemifusion and pore opening (reviewed in
Chernomordik and Kozlov, 2008).

Mechanical Forces at Play
An additional element that could contribute to the cell-cell fusion
process is the membrane tension by mechanical forces. For instance,
it is proposed that during muscle formation in Drosophila
melanogaster and in Schizosaccharomyces pombe mating, actin-
rich protrusions from 1 cell are resisted by actomyosin
contractions in the other, producing membrane stress that leads
to fusion (Kim and Chen, 2019; Muriel et al., 2021). In this sense,
actin polymerization was shown to improve EFF-1-driven fusion of
insect cells in culture (Shilagardi et al., 2013). Furthermore, EFF-1
and F-actin colocalize during seam cell daughter-hyp7 cell fusion in
theC. elegans larvae, however, this interaction seems to be important
for the correct localization of the fusogen rather than a mechanical
induction of fusion (Yang et al., 2017). The surface of mammalian
oocytes is structurally complex and its cortex is enriched with F-actin
(Longo, 1985, 1987). Nonetheless, the relevance of this actin network
specifically for mammalian gamete fusion is unclear since

contradicting results were reported [reviewed in (Sun and
Schatten, 2006)]. It is possible that it is involved in membrane
merging or in the later incorporation of the sperm. In addition, the
actin cytoskeleton might control the position of the sperm during
fusion, distancing it from the maternal chromosomes avoiding the
elimination of paternal chromosomes during the formation of the
second polar body (Mori et al., 2021). Cortical actin dynamics are
also required for the correct trafficking of the cortical granules
(Connors et al., 1998; Vogt et al., 2019), specialized vesicles of the
oocyte that contribute to the block of polyspermy after fertilization.

Mechanical stress on the membranes can also be generated by
the pushing and pulling movements of the sperm after
attachment. Even though it was previously thought that
motility was dispensable for mammalian gamete fusion
(Yanagimachi, 1988), recent studies have suggested that a
specific beating mode of the flagellum is required for this
process (Ravaux et al., 2016) supporting older studies using
human gametes (Wolf et al., 1995). It is also possible that
these kinetic perturbations are only required for the
accumulation of CD9 to the fusion site (Chalbi et al., 2014).

Switching the Fusexins off
After fusion occurs, a rapid functional silencing of the fusogens is
often required. First of all, if the fusion proteins require trans-
interactions to be activated (with receptors or to other fusogens),
the post-fusion configuration by itself serves as a mechanism of
preventing them since all the proteins end up in the same
membrane. Alternatively, the fusogens might be removed from
the membrane by internalization, as is reported for CeEFF-1
(Smurova and Podbilewicz, 2016), or simply by degradation, such
as CrHAP2/GCS1 (Liu et al., 2010). Certainly, the adhesion
molecules can suffer these changes turning the membrane into
fusion incompetent. For example, Chlamydomonas FUS1 is also
degraded after fertilization (Liu et al., 2010) and the mammalian
Juno is shed in extracellular vesicles from the surface of the oocyte
after fusion (Bianchi et al., 2014). Other biochemical changes in
the gametes triggered by fertilization may also affect the activity
of the fusogens and block further fusion events. Fast changes in
electric potential occur in the plasma membrane of fertilized eggs
of some organisms with external fertilization, like sea urchins and
frogs, which prevents polyspermy (Jaffe, 1976; Cross and Elinson,
1980). More recently, the release of inorganic zinc from
mammalian fertilized oocytes was described as “zinc sparks”
which can induce changes in the sperm or in the membrane
of the oocyte itself (Kim et al., 2011; Duncan et al., 2016). These
changes may induce conformational changes in the fusogens, in
the same way that low pH induces structural rearrangements in
the viral fusexins, but into an inactivating form. Finally, there is
biochemical evidence for EFF-1 and viral Class II proteins that
trimerization is irreversible (Bressanelli et al., 2004; Modis et al.,
2004; Liao and Kielian, 2005; Nayak et al., 2009; Pérez-Vargas
et al., 2014), which would mean that whenever the post-fusion
conformation is reached the protein remains locked. This
represents a regulatory mechanism that prevents additional
fusion events from occurring. Likely this irreversibility of the
trimerization is also true for HAP2/GCS1, however, these studies
are still missing.
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PERSPECTIVES

Even though the overall fusexin architecture is strikingly
conserved, their distribution among extremely distant
organisms possibly has arisen into a diversity of
mechanisms of action that might be similar or not
(Figure 2). The differences in sequence, local structural
features, molecular environments and interactions highlight
the necessity of studying the individual biology of fusexins
while avoiding overgeneralization.

On the other hand, mammals and other HAP2/GCS1-
lacking organisms present an ongoing mystery. While several
genes were found to be required for gamete fusion to occur
(Brukman et al., 2019; Bianchi and Wright, 2020), the identity of
the proteins that are both essential and sufficient for membrane
merging is still unknown in fungi and vertebrates. New artificial
intelligence-based tools that predict the folding of proteins (Jumper
et al., 2021) may be the key to find other families of fusogens that
may have replaced HAP2/GCS1, or else uncover those proteins that
diverged significantly during evolution but kept the essential
structure of fusexins or other families of fusogens that may have
replaced HAP2/GCS1.
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