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Abstract: Mainstream approaches that are currently used as anti-aging therapies primarily explore
the senescence and epigenetic drift aging hallmarks and they are at two ends of the spectrum.
While senolytic therapies include either the selective elimination of senescent cells or the disruption
of their secretome with the use of drugs or natural compounds, cellular reprogramming uses genetic
manipulation to revert cells all the way back to pluripotency. Here, we describe the progress that has
been made on these therapies, while highlighting the major challenges involved. Moreover, based on
recent findings elucidating the impact of mitotic shutdown and aneuploidy in cellular senescence,
we discuss the modulation of mitotic competence as an alternative strategy to delay the hallmarks
of aging. We propose that a regulated rise in mitotic competence of cells could circumvent certain
limitations that are present in the senolytic and reprogramming approaches, by acting to decelerate
senescence and possibly restore the epigenetic landscape.
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1. Aging Hallmarks Explored in Anti-Aging Therapies: Epigenetics and Senescence

Aging is characterized by a progressive loss of physiological integrity and function over time [1].
Being the largest risk factor for the incidence of cancer, cardiovascular, and neurological diseases [2],
it results from several interconnected molecular processes that decline with advancing age and that are
commonly categorized in nine “aging hallmarks”: genomic instability, epigenetic alterations, telomere
attrition, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular
senescence, stem cell exhaustion, and altered intercellular communication [3]. Among these hallmarks,
which are nevertheless interdependent, epigenetic alterations and cellular senescence have gained
increased relevance, as they have been modulated by the current mainstream anti-aging therapies.

Aging epigenetics refers to changes in gene expression that naturally occur during an organismal
lifespan without altering the DNA sequence. Chromatin epigenetics is regulated by several enzymes,
which collectively give rise to modifications in DNA methylation and histone methylation/acetylation
processes. During aging, the chromatin appears to be in a more active state, with an overall decrease
in DNA methylation, thus leading to more relaxed global gene expression [4]. On the other hand,
some studies have shown that several other chromatin sites, such as CpGs islands, bivalent chromatin
domain promoters that are associated with key developmental genes, and Polycomb-group protein
targets, are subject to age-related hypermethylation [5–7]. The analysis of DNA methylation (mDNA)
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status of specific CpGs islands allowed for the development of predictors of biological age, which are
known as the “epigenetic clocks” [8–12]. Horvath’s multi-tissue age predictor is the most widely
used with a correlation of 0.96 to chronological age and error margin of 3.6 years [10]. It has been
established as one of the best age-predictor biomarkers [13], where the same epigenetic signature
was found independently from cellular proliferative capacity or tissue-derived dynamics. In the
case of the Hutchison–Gilford Progeria syndrome (HGPS), a severe laminopathy that is caused by
a mutant form of Lamin A, known as progerin, an accelerated epigenetic aging was described in
comparison to healthy individuals with the same chronological age [9]. Moreover, changes in chromatin
localization can also drive histone alterations that occur during aging. For instance, nuclear lamins,
which are the major components of the nuclear lamina and are responsible for maintaining nuclear
shape, have been associated for upholding a repressive heterochromatin environment at the nuclear
periphery [14]. Thus, in the HGPS laminopathy, there is a loss in epigenetic control of pericentric
constitutive heterochromatin that is characterized by the down-regulation of heterochromatin mark,
histone H3 trimethylated on lysine 9 (H3K9me3), and the up-regulation of histone H4 trimethylated
on lysine 20 (H4K20me3). H3K9me3 reduction is accompanied by an overall reduction of its binding
partner, heterochromatin protein 1α (HP1α) [15], and a decrease in their binding affinity. An increase
of pericentric satellite III repeat transcripts is associated with this reduction, which suggests an
up-regulation of the transcriptional activity of pericentric regions. Moreover, the up-regulation
observed for H4K20me3, a mark for telomeric heterochromatin, blocks telomere elongation [16].
Overall, it appears to be consensual that epigenetic dysregulation is a key driver of aging and is thus
responsible for the main alterations in gene expression within cells over time.

Another main driver of aging is cellular senescence. It refers to a state of permanent cell-cycle arrest
that occurs in response to a variety of cell-intrinsic and -extrinsic stresses, such as nutrient deprivation,
oncogenic activity, epigenetic stress, DNA damage, telomere shortening, and de-repression of
the INK4/ARF locus, which irreversibly prevents the proliferation of damaged cells [17,18].
Senescence-inducing stressors usually engage either the p53-p21CIP1 or the p16INK4A-pRB tumor
suppressor pathways, depending on stress or cell type, which can independently halt cell cycle
progression [19]. DNA-damaging stressors activate p53 through DNA damage response (DDR)
signaling (ionizing radiation [20,21], chemotherapeutics [22], oncogenic proliferation [23]), leading
to the up-regulation of the p53 transcriptional target p21, which, in turn, induces a cell-cycle arrest
by inhibiting cyclin E-Cdk2. p16INK4A also inhibits cell-cycle progression, but tit does so by targeting
cyclin D-Cdk4 and cyclin D-Cdk6 complexes. Both p21 and p16INK4A then prevent the phosphorylation
and inactivation of retinoblastoma (RB) [24–26], thus resulting in a steady repression of E2F-target
genes that are required for cell cycle progression [17,27–29].

Although a single universal marker for cellular senescence is still to be unveiled, senescent cells
present several distinguishing features in vitro, such as (i) flattened morphology and enlarged nuclear
size [30]; (ii) increased senescence-associated β-galactosidase (SA-β-Gal) activity [31]; (iii) activation of
p53 and p16INK4A-pRB tumor suppressor pathways that block cell cycle progression; (iv) activation
of DNA damage response (53BP1 and γH2AX foci); and, (v) the formation of heterochromatin foci,
enriched in chromatin modifications, such as S83-HP1γ, HIRA, ASF1, macroH2A, and H3K9me3,
which remodel the transcriptional landscape [29,32,33]. Moreover, cellular senescence is accompanied
by the development of a senescence-associated secretory phenotype (SASP), a distinctive cell-specific
secretome that consists of various pro-inflammatory cytokines (e.g., IL-1α, -1β, -6, and -8), growth
factors (e.g., VEGF, HGF, TGF-β, and GM-CSF), chemokines (e.g., CXCL-1, -3, and -10), serine
proteases and their inhibitors (e.g., PAI-1), and matrix remodeling enzymes (e.g., MMP-1, -2, -3,
-7, and -9) [34]. On a more extended view, SASP is not restricted to secreted bio-active factors,
but it also includes membrane-bound cell surface ligands and receptors that exacerbate the cellular
responses. For instance, the CXCR2 receptor binds to angiogenic CXC chemokine family members
(including IL-8, CXCL-1, CXCL-3) that, by cooperating in an autocrine and paracrine fashion, reinforce
senescence in a p53-dependent manner [35]. There has been intensive research examining the
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regulatory mechanisms behind cellular senescence and SASP. It is now clear that this occurs on
two fronts; while p53 and pRB are responsible for halting cell cycle progression during cell senescence,
the regulation of the secretory component seems to be mainly mediated by the NF-κB signaling
pathway [36–38]. Recently, Hernandez-Segura and colleagues identified and validated a “core
signature” of the senescence-associated transcriptome, based on RNA-sequencing datasets from
melanocytes, keratinocytes, and astrocytes. This meta-analysis revealed a common signature of
55 genes that were strongly associated with specific stresses and cell types, enriched for gene ontology
(GO) terms related with chromatin organization, DNA repair, and replication [39].

To this day, the biological significance of cellular senescence remains yet to be fully understood.
If, on one hand, it works as a safeguard mechanism against tumorigenesis [30], accumulating evidence
has suggested an impact on several biological processes, such as embryonic development [40,41], tissue
repair/regeneration [42], inflammation [43], immunosurveillance [36,44–46], and angiogenesis [47].
However, the significance of cellular senescence as a driver of organismal aging has gained
firm ground, with studies demonstrating that senescent cells contribute to an early onset of
age-related phenotypes [48–50] and the accelerated progression of age-associated pathologies
(diabetes, atherosclerosis, Alzheimer’s disease) [19]. The gradual accumulation of senescent cells
coupled with the spread of senescence to neighboring healthy cells through a highly dynamic SASP,
fuels a state of chronic sterile inflammation (indicating the absence of detectable pathogens) called
“inflammaging” [43,51–53], thus entailing a deleterious spiral of increasing inflammation and the loss
of tissue integrity and function. This dual role of cellular senescence is a clear example of evolutionary
antagonistic pleiotropy, being beneficial at young ages but detrimental at older ages [54].

2. Aneuploidy as an Aging Hallmark Inter-Reliant with Senescence and Epigenetics

For several decades, many observations have demonstrated an incidence of aneuploidy along
human chronological aging [55–60]. Aneuploidy is defined as an abnormal chromosome number
resultant from chromosome mis-segregation during cell division, in both gametes and somatic cells.
The molecular mechanisms behind the age-associated aneuploidy globally point to alterations in
the expression levels of genes that are involved in the cell cycle and in the mitotic apparatus,
which have been extensively reviewed in [61]. Interestingly, genomic instability, telomere erosion,
epigenetic drift, and defective proteostasis, which are the primary hallmarks of aging acting as
initiating triggers leading to secondary hallmarks, have all been reported to induce mitotic defects and
aneuploidization [61]. Moreover, aneuploidy resulting from lagging chromosomes/weakened mitotic
checkpoint has been associated with cellular senescence and premature aging in mice, reinforcing
the potential role of aneuploidy in age-associated loss of tissue homeostasis [62–65]. Growing
evidence has been showing aneuploidy to be able to drive the transition to a full senescent state,
both in cases of mild [66] or highly [67,68] complex karyotypes that were observed in aged and
cancer cells, respectively. Interestingly, micronuclei that were generated during defective mitoses
can trigger an immunostimulatory response [69,70]. Such micronuclei occur after chromosome
mis-segregation during cell division, consisting of chromatin surrounded by its own nuclear membrane.
Micronuclear DNA is particularly susceptible to DNA damage, massive fragmentation, and leakage to
the cytoplasm following spontaneous rupture of the micronuclear membrane [71,72]. The presence
of cytosolic double-stranded DNA (dsDNA) activates the innate immune signaling, which elicits a
pro-inflammatory response through the activation of the cyclic GMP-AMP synthase-stimulator of
interferon genes (cGAS-STING) anti-viral pathway and the downstream interferon type I and NF-κB
signaling pathways [73,74]. This results in cellular senescence and consequent SASP in an auto- and
paracrine manner [69,70,75,76], which likely has implications in the cellular aging phenotypes.

Besides cellular senescence, aneuploidy has also been linked with epigenetic alterations, namely
DNA hypomethylation. For instance, in acute lymphoblastic leukemia (ALL), most of the tri- and
tetra-somic chromosomes were found to be significantly less methylated in gene-poor regions, when
compared to their disomic autosomal counterparts [77]. Additionally, trisomies 7 and 14 in colon



Int. J. Mol. Sci. 2019, 20, 938 4 of 20

cancer have been reported to exhibit a decrease in DNA methylation [78]. In constitutional aneuploidy
syndromes, such as Down syndrome, the extra chromosome 21 was shown to be responsible for the
epigenetic changes that were observed in a trans-acting effect and mostly on other chromosomes [79].
More recently, aneuploidy was suggested as a direct cause of epigenetic instability in yeast with 3% of
random aneuploid karyotypes disrupting the stable inheritance of silenced chromatin during cellular
proliferation [80].

Altogether, the emergent findings point to age-associated aneuploidy as an aging hallmark that is
caused by a steady down-regulation of the mitotic machinery over time. Even though aneuploidy is
often categorized as a particular case of genomic instability, with evidence supporting that DNA
damage and aneuploidy are inter-causal [81,82], still aneuploidy meets the criteria of an aging
hallmark as (i) it manifests during normal aging [55–60], (ii) its experimental aggravation accelerates
aging [62–68], with many aneuploidy-associated phenotypes being aging hallmarks [61], and (iii) its
experimental inhibition delaying aging [66,83]. Importantly, aneuploidy is interconnected with both
cellular senescence and epigenetic dysregulation, in one hand contributing to these other hallmarks,
as discussed, but is also likely aggravated by them [61] (Figure 1). This raises interesting questions
as to whether the effects of mainstream strategies targeting senescence and epigenetics act to delay
aneuploidy and whether improvement of mitotic fidelity could act to prevent aneuploidy-driven
senescence and epigenetic alterations during aging.
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Figure 1. Epigenetic dysregulation, cellular senescence and aneuploidy: emerging targets for
organismal rejuvenation and healthspan. Distinct changes in cells are observed during aging, including
the accumulation of epigenetic alterations (global DNA demethylation and heterochromatinization,
down-regulation of H3K9me3, up-regulation of H4K20me3, and delocalization of heterochromatin
protein 1α (HP1-α)) and an evolving proinflammatory senescent phenotype (with activation of DNA
damage and p16/p21 signaling pathways, senescence-associated β-galactosidase activity and of a
highly secretory phenotype). An emerging hallmark, age-associated aneuploidy results from a gradual
down-regulation of the mitotic machinery along aging, perhaps driven by the other hallmarks, but also
shown to elicit epigenetic alterations and cellular senescence.
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3. Mainstream Approaches for Anti-Aging Therapies: Partial Cellular Reprogramming
and Senolysis

3.1. Partial Cellular Reprogramming

Yamanaka’s breakthrough on discovering that differentiated cells can be reverted to a pluripotent
state by the expression of a small group of transcription factors (Oct4, Sox2, Klf4, and c-Myc, OSKM)
opened the possibility that one day patient-specific cells could be transdifferentiated in vitro and was
routinely used for cell replacement therapy [84]. The reversible nature of chromatin rearrangement
with partial cellular reprogramming opens the exciting possibility of using therapeutic targeting of
chromatin regulators to ameliorate aging hallmarks. However, the use of viral vectors raised safety
issues that hampered the potential use of induced pluripotent stem cells (iPSCs) in regenerative
medicine. In 2008, Yamanaka’s group reported the production of iPSCs with repeated transfection
of expression plasmids [85] and, in 2009, two independent groups reported having achieved
induced pluripotency from mouse and human fibroblasts, using OSKM proteins combined with
cell-penetrating peptides [86,87]. A few years later, Hou and colleagues developed a new generation
protocol to induce pluripotency in somatic cells using small-molecule compounds, designating it as
chemically-induced reprogramming [88]. During the chemical induction of mouse fibroblasts, the cells
undergo an extra-embryonic endoderm (XEN)-like intermediate state before reaching pluripotency,
which is sufficient to directly reprogram cells into specific lineages and specified cell subtypes [89].
The methylation status of the DNA itself appears to be a crucial feature for effective reprogramming,
as the correct DNA demethylation process was found to be highly important for the primordial stage
of reprogramming, instead of the latter acquisition of pluripotency [90]. Interestingly, Vitamin C also
has been shown to enhance the reprogramming efficiency [91] by promoting the activity of histone
demethylases Jhdm1a and Jhdm1b [92]. The latter is responsible for accelerating cell cycle progression
and suppressing cell senescence during the reprogramming process [92]. All of these advances in the
last years might allow for standardizing safe, controllable, and clinically relevant protocols for specific
cell type production, without having to revert differentiated cells to their pluripotency state, thereby
surpassing the risks of tumorigenesis.

In the context of premature aging, iPSCs that were derived from fibroblasts of HGPS patients
and healthy donors were reported to be nearly indistinguishable in terms of pluripotency, nuclear
architecture, transcriptional, and epigenetic profiles [93]. However, once allowed to differentiate
into vascular smooth muscle cells, HGPS cells recapitulated disease progression, with progerin
expression starting shortly after differentiation, accompanied by premature aging phenotypes,
such as decreased proliferation, premature loss of peripheral heterochromatin, increase in senescence,
and decreased telomere length [93,94]. Despite reprogramming-induced reset of epigenetic dysfunction,
cellular senescence [94], transcriptome landscape, telomere size, oxidative stress, and mitochondrial
metabolism [95], not all aging-associated hallmarks can be reset. For instance, the accumulation
of nuclear and mitochondrial DNA damage is an aspect of aging that might not be rescued by
reprogramming technology [96]. Nevertheless, rejuvenation during organismal aging may be possible
if partial reprogramming is continued over time. In 2016, Ocampo et al. induced partial reprogramming
by the cyclic expression scheme of OSKM transcription factors in a premature aging HGPS mouse
model. Tightly controlled transient reprogramming of cells over time allowed for the cells to
enter an intermediate state, inducing cellular rejuvenation without the loss of cellular identity and
function. The authors reported not only improving cellular and physiological hallmarks of aging
but also prolonging lifespan [97]. A similar approach was performed in vitro, with “interrupted
reprogramming” in murine epithelial cells as a strategy to generate induced progenitor-like cells,
allowing for controlled expansion but maintaining the ability to efficiently return to their original
phenotype [98]. Arguably, in the case of mesenchymal stromal cells, the interruption of in vitro
reprogramming process before cells reach pluripotency, did not prolong cell expansion or improve
the molecular and epigenetic hallmarks of senescence. Moreover, the continued transfection of the
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OSKM factors promoted cell transformation [99]. Still, when full pluripotency is achieved in vivo by
the forced expression of OSKM factors, it results in tumor development in multiple organs due to
altered epigenetic regulation [100], with the acquisition of totipotency, expressing markers for both
embryonic and extra-embryonic layers, which are normally absent in standard iPSC or ES cells [101].
A recent study has analyzed the dynamics of epigenetic aging during human iPSC reprogramming and
found that partial reprogramming leads to a steady reduction in the epigenetic age, proportional to the
loss of somatic gene expression [102]. The TRA-1-60 (+) cells were reported as partially reprogrammed
between day 7 and 11 after OSKM transduction, presenting the high expression of pluripotency genes,
accompanied by a high reversion rate towards the somatic state [103]. Oppositely, in Ocampo et al.,
partial reprogramming was achieved in only two days in mice carrying a doxycycline-inducible OSKM
transgene system [97]. It has been shown that transgenic mice carrying an inducible OSKM transgene
have a 25–50-fold greater efficiency than observed using direct transduction with a lentiviral system
under the same inducible promoter [104]. Nevertheless, using the epigenetic clocks that are available
to measure epigenetic age during iPSC reprogramming, it appears that the rejuvenation process occurs
within the uncommitted reprogramming phase before cells lose their somatic identity [102]. Overall,
the cell reprogramming technology appears to be a highly valuable resource as an anti-aging strategy,
suggesting that partial epigenetic reprogramming can indeed be used as a rejuvenation mechanism in
human cells.

3.2. Senolytic Therapies and Clearance of Senescent Cells

Aging is a biological process that can be positively or negatively influenced by environmental
factors. Many natural antioxidants are known for long to promote a positive influence on aging
kinetics, such as vitamin E [105], kinetin [106], carnosine [107], and garlic [108]. Some noteworthy
examples of anti-aging drug discovery are the use of small molecules, such as resveratrol, targeting
the pharmacological manipulation of sirtuin 1 [109], rapamycin, through the inhibition of the mTOR
signaling pathway [110], and metformin, which was initially approved as a drug to treat diabetes,
but that appears to target a number of aging-related mechanisms [111]. More recently, clearance of
senescent cells has been targeted as a potential anti-aging therapy, with focus on alleviating or delaying
age-related diseases. A few distinct classes of compounds with evidence of senolytic properties have
been identified: natural compounds (such as quercetin [112], piperlongumine [113], and fisetin [114]),
BCL2 family inhibitors [115,116], forkhead box protein O4 (FOXO4)-interacting peptide [117], Hsp90
inhibitors [118], and histone deacetylase inhibitor [119]. These compounds have been reviewed
in [120,121].

To support the hypothesis that senescent cells are responsible for the predisposition of age-related
dysfunction, small numbers of senescent cells were introduced into young (six-month old) mice
and this was enough to cause physical dysfunction, earlier occurrence of age-related diseases,
and shorter survival. An intermittent pharmacological intervention with the combination of dasatinib
plus quercetin, in both senescent cell-transplanted young mice and normally aged mice, improved
overall fitness and survival [122]. This senolytic cocktail has also been found to be effective as an
alternative method for the treatment of age-related osteoporosis [123] and of hepatic steatosis [124].
As a long-term pharmacological treatment, it was also found to improve the vasomotor function in
established aging-associated vascular phenotypes and in chronic hypercholesterolemia [125]. The exact
mechanism of action dasatinib plus quercetin on senescent cells remains unknown. Emerging evidence
suggests that, apart from senescent cell clearance, there is a recovery of cell proliferative capacity.
For instance, quercetin is a widespread flavonoid that is derived from plants and it has been extensively
reported to have strong anti-inflammatory and immune-enhancement capacity [126]. When used at
low dose (100 nM), it was found to effectively reduce senescence levels by increasing cell proliferation
and restoring the heterochromatin architecture in human mesenchymal stem cells (hMSCs) of the
Werner syndrome (WS) premature aging model. In here, the percentage of senescent cells was
significantly reduced, which was primarily due to the proliferative capacity rescue of surrounding
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cells, as shown by a 2.5-fold increase in Ki67 staining and a consequent overall decrease of p16 and
p21 markers, DNA damage-response markers γ-H2AX and 53BP1, reactive oxygen species (ROS)
production, mRNA levels of proinflammatory cytokine IL-6, and cell apoptosis. Also, in HGPS,
quercetin alleviated the cellular senescence and physiological aging of hMSCs by reducing the progerin
levels, decreasing population doubling time, decreased SA-β-Gal percentage, and increased clonal
expansion and proliferative ability. Moreover, transcriptome analysis revealed that quercetin improved
WS-hMSC through the up-regulation of genes that are involved in cell cycle, cell division, chromosome
segregation, and cell proliferation [127]. Comparatively, vitamin C was also found to improve the
aging defects in WS-hMSCs. Once more, RNA sequencing revealed that the vitamin C mode of
action altered the expression of several genes that are involved in chromatin condensation, cell cycle
regulation, DNA replication, and DNA damage repair pathways [128]. When quercetin and vitamin
C transcriptional profiles were compared, 153 up-regulated genes were found to be common in both
treatments, enriched in biological processes GO terms related to cell cycle, chromatin condensation,
and anti-oxidation [127]. Additionally, in a different report, 0.1 mM of vitamin C was found enough to
significantly increase the in vitro proliferative capacity of bone-resident osteoblasts and decrease the
amount in senescent cells. Likewise, transcriptome analysis revealed that, in the presence of vitamin
C, the main pathways activated are apoptotic, cell cycle-proliferation, and catabolic pathways [129].
Altogether, senolytic therapies aim at the selective clearance of senescent cells with the ultimate
goal to delay age-related disorders by keeping tissues and organs cleared of senescent cells and
their distinctive pro-inflammatory phenotype. However, the question of whether these compounds
effectively clear senescent cells or act either on the microenvironment or on the proliferating capacity
of healthy cells, consequently diluting the senescent cell population (and thus the overall secretory
phenotype) remains unanswered.

4. Modulation of Mitotic Competence as a New Anti-Aging Therapy

Despite being widely accepted, why is cell proliferative capacity lost during aging, why do
cell cycles slow down and become erroneous with age, and what ultimately causes elderly cells
to stop dividing has remained unclear. An intriguing link between loss of mitotic fidelity and
aging was originally evidenced by van Deursen and co-workers while studying a series of mice
with a graded reduction in the expression of the spindle assembly checkpoint protein BubR1 [62].
Despite developing progressive aneuploidy, these mice did not present increasing spontaneous
tumorigenesis. Instead, they exhibited a variety of premature aging features (e.g., shortened lifespan,
growth retardation, sarcopenia, cataracts, loss of subcutaneous fat, and impaired wound healing)
and premature cellular senescence [62]. Remarkably, sustained overexpression of BubR1 was later
shown to extend lifespan and delay age-related degeneration and aneuploidy [83]. These findings,
combined with the observation that BubR1 expression, declines drastically in aged mouse tissues [62]
has suggested that BubR1 functions as a key regulator of the natural aging process, through
its role on the mitotic checkpoint. Consistent with the idea that aneuploidy drives the loss of
tissue homeostasis, double-haploinsufficient mice for the mitotic checkpoint proteins Bub3 and the
Bub3-related protein Rae1 [130] were also shown to exhibit early traits of aging [63]. Nonetheless,
not every aneuploidy-prone mouse model is reported to develop traits of premature aging. At first
sight, this seems to argue against the idea that aneuploidy can drive aging. This might be explained
due to the fact that (i) most of these chromosomally-unstable mouse models present high aneuploidy
rates, leading to tumorigenic development and a premature sacrifice before the onset of the aging
phenotypes; (ii) the onset of the aging phenotype might require synergistic action from other cellular
stressors, which engage senescence pathways; and, (iii) genes that trigger chromosome instability
(CIN) when mutated, causing aneuploidy [131], might be organized in a hierarchy playing multiple
functions outside cell division.

The role of CIN/aneuploidy in the process of chronological aging is yet to be fully disclosed.
Though informative, the BubR1-deficiency model suffers the drawback that the induced aneuploidy
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rates are non-physiological and they are present from early development onwards, not resembling
the steady accumulation of aneuploid cells that will senesce during aging. Further, the impact
of senescent cells seems to depend on their gradual accumulation on the tissue to give rise to an
increasing inflammatory loop. BubR1-hypomorphic mouse embryonic fibroblasts senesce very quickly
and in a much higher extent than the naturally aged BubR1-proficient counterparts [50]. Progress
in the understanding of how senescent cells arise during aging appears to rely on the identification
of the precise molecular mechanism underlying age-associated chromosomal instability. The first
steps towards this identification were taken by the work of Ly and colleagues, which suggested
mitotic dysfunction as a driver for chromosomal pathologies during aging, through a comparative
analysis of gene expression in natural and accelerated aging human samples [132]. Although a
pioneer, this study based on mixed populations of cells at different stages of the cell cycle limited
the conclusions regarding mitotic gene repression in elderly cell cultures with a lower mitotic index.
Recently, our group tackled this caveat by focusing on purified mitotic subpopulations [66]. Through
direct long-term live-cell imaging of young, middle-aged, and old-aged primary human dermal
fibroblasts, we found an increased frequency of mitotic abnormalities in older cells, resulting in
mild aneuploidy levels. RNA-sequencing analysis of mitotic extracts of young and old cells further
confirmed a transcriptional shutdown of the mitotic gene cluster, with the Forkhead box M1 (FoxM1)
transcription factor being disclosed as the molecular determinant of this age-associated mitotic decline.
FoxM1 is the main driver of the G2/M transition transcriptional program in mammalian cells [133].
Being tightly correlated with the cell’s proliferative rate, FoxM1 is expressed in all embryonic tissues,
but is then restricted to adult tissues with a high proliferation index [134]. FoxM1 expression
can also be induced following tissue injury, as shown for regenerating livers after both chemical
insult [135,136] and partial hepatectomy [137]. The RNA-sequencing datasets also revealed an
up-regulation of the senescence-core signature and SASP gene clusters that correlated with this
dysfunction on mitotic machinery [39], indicating an unforeseen senescent phenotype in elderly
diving cells. We further questioned whether the mild aneuploidy levels occurring during aging also
account for the accumulation of senescent cells. Through innovative experimental layouts, such as
aneuploidy measurement in fluorescence-activated cell-sorted senescent cells and long-term live-cell
microscopy, we demonstrated that the FoxM1-depleted aneuploid cells ultimately engage a permanent
cell cycle arrest, evolving into full-blown cellular senescence and a highly active SASP. Conversely,
reinstating the FoxM1 transcriptional activity of old cells to levels of young cells rescued the loss
of mitotic proficiency and delayed cellular senescence. Altogether, the data gathered in this work
support a model in which proliferating naturally aged cells undergo a FoxM1-driven mitotic shutdown,
with simultaneous senescence-associated gene expression signature (early senescence state). Elderly
cells ultimately generate aneuploid progeny, which significantly accounts for the accumulation of the
full senescent phenotype (permanent cell cycle arrest and SASP), ultimately driving aging. Noteworthy,
several studies have also demonstrated a positive correlation between increased FoxM1 levels and
poor cancer prognosis endowing cancer cells with over-proliferative capacities [138]. However, clear
evidence of FoxM1-induced tumorigenesis in a homeostatic setup is still missing, as it has only been
shown to have tumorigenic potential in combination with oncogenic mutations [138–141].

With the emergence of aneuploidy as a candidate hallmark of aging, these intriguing findings
opened a new window regarding the biology of aging, by suggesting an unexpected positive
feedback loop between cellular aging and aneuploidy that can be further explored. A recent study
strengthens this new concept of restoring the cells’ proliferative capacity as a means of preventing
cellular senescence and the auto- and paracrine inflammatory loops of SASP [142]. Here, Bussian
et al. established a direct link between the accumulation of senescent astrocytes and microglia,
the proliferative cell populations in the brain, and cognition-associated neuronal loss in a mouse
model of tau-dependent neurodegenerative disease. The continuous clearance of p16-positive
astrocytes and microglia using the INK-ATTAC “suicide” transgenic approach, before disease onset,
had a profound positive effect on disease progression, preventing gliosis, neurofibrillary tangle
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formation, neurodegeneration, and cognitive decline. The clearance of senescent cells using the
senolytic compound ABT263 (navitoclax) had similar effects, reducing the accumulation of neuronal
tau phosphorylation, thus preventing its aggregation [142]. Overall, it appears to be crucial that
the proliferative capacity of astrocytes and microglia is not hampered for proper brain function.
Nevertheless, these new data highlight the impact of senescence acquired by proliferative cell types
in the healthy status of neighboring differentiated cells in the tissue, supporting the modulation of
mitotic competence and fidelity as a promising anti-aging strategy to counteract cellular senescence
(Figure 2 and Table 1).
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Figure 2. Epigenetic reprogramming, senolysis and modulation of mitotic competence: emerging
strategies for organismal rejuvenation and healthspan. Epigenetic reprogramming and selective
clearance of senescent cells are already being explored in the bench as anti-aging approaches.
Modulation of mitotic fitness emerges as a new potential strategy to take into consideration as
anti-aging therapy, by allowing the reversion of the dysregulated epigenetic landscape and delaying
the accumulation of senescent cells and senescence-associated secretory phenotype (SASP)-induced
inflammatory microenvironment.
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Table 1. Studies reporting aging therapeutic/preventive strategies that show improvement of cell proliferative fitness.

Study Therapeutic/Preventive Rejuvenation Strategy Epigenetic
Modulation

Decrease in
Cellular Senescence

SASP
Modulation

Improvement of Cell
Proliferative Fitness Ref.

Reprogramming

Esteban 2010 Vitamin C promoted generation of mouse and human iPSCs
√ √

[91]

Wang 2011 Histone demethylases Jhdm1a/1b identified as key effectors in
vitamin C induced reprogramming

√ √ √
[92]

Liu 2011 Reprogramming of HGPS cells alleviated progeroid phenotypes
√ √ √

[94]

Ocampo 2016
Transient expression of OSKM factors alleviated age-associated
symptoms, prolonged lifespan in progeroid mice and improved

tissue homeostasis in older mice

√ √ √ √
[97]

Senolysis

Baker 2011 Long-life and late-life ablation of p16-positive cells delayed or
attenuated progression of age-related disorders

√ 2 √ √
[48]

Jeon 2017
Ablation of p16-positive cells/ use of senolytic compound UBX0101

attenuated the development of post-traumatic osteoarthritis and
created a pro-regenerative environment

√ 2 √ √
[143]

Xu 2018 Combination of Quercetin + Dasatinib extended both health- and
lifespan in aged mice

√ √ √ 1 [122]

Geng 2018 Quercetin rejuvenated WS, HGPS and chronologically-aged hMSCs
√ √ √ √

[127]

Li 2016 Vitamin C rejuvenated WS hMSCs
√ √ √ √

[128]

Burger 2017 Vitamin C attenuated senescence of human osteoarthritic osteoblasts
√ √

[129]

Chang 2016 ABT263-induced senescent cell clearance and rejuvenated aged
hematopoietic stem cells (HSCs) and muscle stem cells (MuSCs)

√ 2 √ √
[116]

Fuhrmann-Stroissnigg
2017

HSP90 inhibitor 17-DMAG delayed onset of age-associated
symptoms in a progeroid mouse model

√ 2 √ √
[118]

Mitotic Competence

Baker 2012 High-level expression of BubR1 extended lifespan and delayed
age-related deterioration and aneuploidy in several tissues

√ √
[83]

Macedo 2018 Restoring levels of FoxM1 in elderly and HGPS cells reestablished
mitotic proficiency and reduced senescence

√ √ √ √
[66]

1 Not statistically significant. 2 Selective clearance of senescent cells.
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5. Concluding Remarks and Future Directions

Nowadays, there is a rapidly increasing trend for aging populations, which will translate into a
significant burden in healthcare systems. The reversible nature of chromatin rearrangement with partial
cellular reprogramming opens the exciting possibility of using therapeutic targeting of chromatin
regulators to rescue the aging hallmarks. The concept that cellular differentiation is a bidirectional
process, and that cell fate is flexible through partial cellular reprogramming, is very appealing for future
patient-derived cell replacement therapies. It appears that we are now facing the beginning of the
rejuvenation era, with epigenetics considered by many of the most conserved aging hallmarks [144,145],
and the know-how in precise epigenetic modulation expected to disclose standardized rejuvenation
platforms that will improve healthspan. On the other hand, several reports point to the accumulation of
senescent cells in tissues and organs as having a significant impact on age-related pathologies, with the
selective clearance of these cells leading to a healthier and longer life [48,146]. Even a relatively
small percentage of senescence in an organism, as 10–15% described for aged primates, is enough to
cause a significant decline in physiological function [147]. Senolytic therapies drive the hypothesis
that targeting a fundamental key factor in the aging process, such as cellular senescence, will delay
age-related diseases as a group, instead of a single disease in detriment of another. We are left to
learn more what a truly senescent cell is, if there is the need of long- or short-term clearance from the
organism, and, more importantly, if we can rescue the still proliferative “pre-senescent” cells. In this
context, a new candidate hallmark for aging arises, aneuploidy, an abnormal chromosomal number
that results from mis-segregation events during mitosis, which has been linked to normative aging
and age-associated diseases, with the underlying mechanisms being poorly understood. Recently,
aneuploidy was shown to increase with advancing age due to an overall dysfunction of the mitotic
machinery [66]. Furthermore, several reports have uncovered the impact of aneuploidy on cellular
fitness and proliferative capacity [148–150], with several characteristics of aneuploid cells overlapping
with those that are found in aged cells. Interestingly, as mitosis slows down with advancing age,
so does the cumulative rate of mitotic defects. Mitotic decline that is observed during aging is primarily
due to the repression of the FoxM1 transcription factor that drives the expression of the late cell cycle
gene cluster. The accumulation of macromolecular damage, including DNA damage, accounts for
FoxM1 repression. It would be interesting to determine whether the current mainstream anti-aging
therapies modulating epigenetics and clearing senescence impact FoxM1 expression. As discussed,
emerging evidence support that both cellular reprogramming [92] and senolytic compounds [127–129]
up-regulate the expression of genes that are involved in cell cycle progression and cell division fidelity.

Although, it is well accepted that mitotic competence is largely affected by epigenetic
alterations [45,61,151–153] and senescence [154–158], the inverse link is now being considered. In fact,
we previously found that the restoration of mitotic competence through the re-establishment of FoxM1
expression in elderly and HGPS fibroblasts is able to alleviate senescence phenotypes and SASP and
our RNA-sequencing profiling disclosed a FoxM1-driven modulation of several epigenetic regulators,
such as HP1α, SUV39H1, and HDAC1 [66]. Evidence of accelerated epigenetic aging in trisomy
21 patients [159] and of low levels of cellular senescence in BubR1-overexpressing mice [83] reinforce
the impact of mitotic competence in the epigenetics and cellular senescence. What now remains
to be fully understood is whether this is through the inhibition of aneuploidy or effects in other
cellular non-mitotic processes. Nevertheless, aneuploidy has been associated with the activation of
innate immune signaling [69,70] and epigenetic alterations [80], supporting that it might be a good
therapeutic target in the context of aging. Our latest work provided insight as to how senescent cells
arise, by demonstrating that elderly proliferative cells, primed with the expression of a senescence core
gene signature, evolved into permanent cell cycle arrest (full senescence) following passage through a
faulty mitosis [66]. This further supports that improving mitotic fitness may be used as a potential
anti-aging strategy, thereby counteracting the SASP-induced inflammatory microenvironment and
helping to protect the stem cell and parenchymal cell functions. Indeed, recent findings have shown the
selective targeting of senescent astrocytes and microglia (proliferative cells in the brain) to successfully
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revert tau protein aggregation in neurons. By improving the mitotic fitness, one could prevent the
deleterious accumulation of aneuploid senescent cells, preserving the cellular and tissue homeostasis,
and impacting the organismal healthspan. Thus, in order to further test this idea, it will be important
to optimize the detection and quantification of aneuploid senescent cells in vivo and investigate the
molecular mechanisms by which these cells influence stem and parenchymal cell aging.
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mDNA DNA methylation
HGPS Hutchison-Gilford Progeria syndrome
H3K9me3 H3 trimethylated on lysine 9
H4K20me3 H4 trimethylated on lysine 20
HP1α Heterochromatin protein 1α
DDR DNA damage response
RB Retinoblastoma
SA-β-Gal Senescence-associated β-galactosidase
SASP Senescence-associated secretory phenotype
GO Gene ontology
dsDNA Double-stranded DNA
cGAS-STING Cyclic GMP-AMP synthase-stimulator of interferon genes
ALL Acute lymphoblastic leukemia
iPSC Induced pluripotent stem cells
XEN Extra-embryonic endoderm
OSKM Oct4, Sox2, Klf4, c-Myc
FOXO4 Forkhead box protein O4
hMSCs Human mesenchymal stem cells
WS Werner syndrome
ROS Reactive oxygen species
CIN Chromosomal instability
FoxM1 Forkhead box M1
HSCs Hematopoietic stem cells
MuSCs Muscle stem cells
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