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Benchmarking selected 
computational gene network 
growing tools in context of virus-
host interactions
Biruhalem Taye  1,2,3, Candida Vaz1, Vivek Tanavde1,7, Vladimir A. Kuznetsov1,5,  
Frank Eisenhaber1,4,5, Richard J. Sugrue2 & Sebastian Maurer-Stroh1,4,6

Several available online tools provide network growing functions where an algorithm utilizing different 
data sources suggests additional genes/proteins that should connect an input gene set into functionally 
meaningful networks. Using the well-studied system of influenza host interactions, we compare the 
network growing function of two free tools GeneMANIA and STRING and the commercial IPA for their 
performance of recovering known influenza A virus host factors previously identified from siRNA 
screens. The result showed that given small (~30 genes) or medium (~150 genes) input sets all three 
network growing tools detect significantly more known host factors than random human genes with 
STRING overall performing strongest. Extending the networks with all the three tools significantly 
improved the detection of GO biological processes of known host factors compared to not growing 
networks. Interestingly, the rate of identification of true host factors using computational network 
growing is equal or better to doing another experimental siRNA screening study which could also be 
true and applied to other biological pathways/processes.

Gene and/or protein networks are used as a cardinal representation of various types of biological processes and 
help in the prediction of molecular and cellular function1. It has been indicated that interacting genes/proteins 
may be part of the same pathway or biological process and, in larger scale, work together in similar cellular func-
tions2, 3. Reliable prediction and precise treatment of complex cellular functions require knowing the network of 
as many as possible genes and their products (e.g., proteins) connected in functional pathways. Pairwise inter-
actions at the gene and protein levels have been analyzed extensively, often from low or high-throughput exper-
imental screens, with the links (annotated as functional interactions) available in online databases (reviewed in 
ref. 4). However, these methods do not fully investigate the highly complex interaction patterns in cellular systems 
and variability in terms of their accuracy and reproducibility5 is encountered. Additionally, interactions seen 
in vitro, especially in large-scale screens, may not occur in vivo due to spatial and temporal constraints. At the 
same time, the exact number of protein-protein interaction (PPI) in human is not known, and the available data 
is estimated to represent approximately 10% of the total PPIs in human6. Hence, computational PPI predictions 
have become increasingly important for detection of new interactions and protein networks. There are several 
computational gene and/or protein network databases that combine different experimental and computation-
ally predicted interactions through the integration of PPI information that are obtained from different sources 
(reviewed in refs 7–9).

Network growing functions allow extension of networks with additional related genes and are important to 
improve the understanding of the greater functional context and organization of genes and/or proteins, as well as 
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for discovering novel functions of genes that could have been missed by experimental investigations10. This could 
also be achieved by integrating gene expression or “omics” data from specifically investigated conditions with PPI 
information into a complete large network followed by extraction of active sub-networks related to the respective 
conditions11. The non-expressed genes which could be identified in the network are expected to have similar 
function with the expressed genes that could be missed by the experiments11. Such sub-network extraction tools, 
given user input of gene expression data, include DEGAS (DysrEgulated Gene set Analysis via Subnetworks)12, 
KeyPathwayMiner11, and JActiveModules13. While other methods (e.g. Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING)8, GeneMANIA9 and Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com/
products/ipa)14 support the construction of networks for query gene lists without explicit user-provided expres-
sion data and automatic network growing of specific numbers of additional genes for discovering functionally 
related genes15–17.

The motivation of this study was to benchmark the selected gene/protein network growing services STRING8, 
GeneMANIA9 (both academically freely available) and IPA14 (commercialized) in the context of virus-host inter-
action (e.g. Influenza A virus (IAV)) in a user-relevant setup. These three services were selected for their ability 
to take user gene lists as sufficient input and execute the network growing with user-defined numbers of nodes 
automatically added to the query genes (e.g 10, 20, 50 and 100 nodes).

It would be theoretically interesting to compare the tools’ basic algorithms in a well-defined equal search 
space. However, it would not reflect the reality that a characteristic difference of the tools is the use of different 
underlying interaction sources and information, which will directly influence the performance a typical user will 
experience. With the benefit of the user community and intrinsic inseparability of algorithms and used databases 
in mind, our aim was to benchmark the available tools in their full implementation as tool/web service.

We chose influenza virus required host factors (IHFs) interactions for this benchmark because (1) several 
large-scale screens have been performed recently with data available, (2) experimentally validated host factors do 
not correspond to a single pathway but are functionally loosely linked covering a broad range of cellular functions 
and (3) network growing services can be used to find new candidate host factors as potential drug targets against 
influenza in future.

Results
Network growing algorithms partially recover IHFs from siRNA screens. Prior to embarking 
on the network growing benchmark, we performed a complete re-analysis on known IHFs from several siRNA 
screening studies. Overall, 1,580 human IHFs were identified from 11 siRNA studies of which 28 and 158 IHFs 
were shared by at least three and two studies respectively (Supplementary Fig. S1a,b and Supplementary Data 1). 
Mapping of these IHFs to all three network growing tools for fair comparison was successful for 28 of the 28, 
153 of the 158 and 1463 of the 1,580 IHFs (Supplementary Fig. S1a). Next, we used the 28 (small set) and 153 
(medium set) IHFs as query genes (seed sets) to grow with 10, 20, 50 and 100 additional genes in each of the net-
work growing tools. The intersection of grown genes from small set seeds were evaluated against the 153 and 1463 
IHFs, while the grown genes from medium set seeds were evaluated against the whole positive sets (1463) IHFs.

The results showed that as the number of genes building the network increases from 10 to 100, the number of 
genes intersecting with known IHFs also increased (Fig. 1a,b and c). However, the rate of IHFs detections (per-
centage) shows variable trends with slightly decreasing performance after growing 20 and/or 50 (Fig. 1d,e and f), 
suggesting early recruitment of known host factors. Among 100 genes grown from the small set seeds, 60%, 24% 
and 27% of the automatically recruited genes in STRING, GeneMANIA and IPA respectively, overlapped with 
the known IHFs (Fig. 1e). Similarly, the detection rates were 42%, 44% and 21% in STRING, GeneMANIA and 
IPA, respectively with the medium set seeds (Fig. 1f). Therefore, while using the small set as seed genes, STRING 
was the sole strongest performer (Fig. 1e), both GeneMANIA and STRING seem to perform equally well with the 
medium set seed genes (Fig. 1f).

Among the 100 genes recruited by growing networks using the 28 small set seeds, we also examined the dis-
tribution of correctly identified IHFs among the 125 genes with support by 2 siRNA studies vs 1,310 genes with 
support by only one siRNA screen (Supplementary Fig. S1a and Fig. 1a and d). For a gene to be detected in the 
125 shared lists, proportionally we expect ~10 genes to be detected in the 1,310 non-shared genes. Interestingly, 
the proportions of shared genes detected in STRING, GeneMANIA and IPA were 3.4, 3.1 and 2.4 times higher 
than the non-shared genes respectively. This means that the network growing tools recruit shared IHFs in higher 
proportions, suggesting the reliability of the methods for identification of highly relevant IHFs candidates.

The network growing tools recruit other functionally related IHFs. To verify that the performance 
of the network growing tools is neither by chance nor biased by generally highly connected nodes in human 
interaction networks, we randomized the IHFs into two groups, (1) the 153 IHFs were randomly distributed into 
5 non-redundant groups with ~30 genes each (small set IHFs), and (2) the 1463 IHFs were randomized into 10 
non-redundant groups each containing ~146 genes (medium sets) (Supplementary Data 1). Similarly, we ran-
domly selected equal numbers of small set and medium set genes from the whole pool of human genes (19,004 
genes) obtained from HUGO Gene nomenclature committee (HGNC) database18 (Supplementary Data 1). The 
result showed that in both small (Fig. 2a) and medium (Fig. 2b) set genes the percentage mean detection of known 
IHFs was significantly higher with IHF seeds compared to the seeds from random human genes (Fig. 2a and b).  
This suggested that given IHFs as seeds, the detection of other IHFs by using these network growing tools was not 
likely to be by chance but may indeed reflect relevant functional connections.

Performance of IHFs detection varies between the network growing tools due to different 
data sources used. Using the randomized subsets, we could also benchmark statistical significance of the 
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different detection rates of IHFs by the network growing tools confirming highest performance by STRING fol-
lowed by GeneMANIA and IPA (Fig. 2c). The advantage of STRING was most dominant for both the smaller and 
medium sets, while GeneMANIA had relatively small improvement of performance when the medium set was 
used (Figs 1b,c and 2c).

Figure 1. The trend of network growing tools in detecting known IHFs. (a) Number of detected known IHFs 
upon growing networks with the small set (28 IHF) seeds and 153 known IHFs as positive set. (b) Number 
of detected known IHFs upon growing networks with the small set (28 IHF) seeds and 1463 known IHFs as 
positive set. (c) Number of detected known IHFs upon growing networks with medium set (153 IHFs) seeds 
and 1463 known IHFs as positive set. (d) Percentage of detected known IHFs upon growing networks with 
the small set (28 IHF) seeds and 153 known IHFs as positive set. (e) Percentage of detected known IHFs upon 
growing networks with the small set (28 IHF) seeds and 1463 known IHFs as positive set. (f) Percentage of 
detected known IHFs upon growing networks with medium set (153 IHFs) seeds and 1463 known IHFs as 
positive set.
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To gain more insight on the differences in the performance, we investigated the grown gene differences, and 
the effect of edges (data sources) and network topological parameters. Pairwise analysis of the grown genes from 
the small and medium set IHFs seeds from each network growing tool showed that among the 1966 grown genes 

Figure 2. Detection rate of network growing tools after randomization of IHFs and random human proteins. 
(a) Comparison of the detection performance of the network growing tools after growing 100 genes using either 
small set (30 genes) IHFs or random human proteins as seeds and 1463 IHFs as positive sets. P-values are the 
result of a paired Student-t test analysis. (b) Comparison of the detection performance of the network growing 
tools after growing 100 genes using either medium set (146 genes) IHFs or random human proteins as seeds and 
1463 IHFs as positive sets. P-values are the result of a paired Student-t test analysis. (c) Detection performance 
comparison of the three network growing tools (d) The detection rate of STRING and GeneMANIA after 
combination and interchange of the 1st 50 grown genes.
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(from all network growing tools (Supplementary Data 1)), only 3.7% were shared by all three tools and high 
proportions of distinct genes were being grown by IPA (40.3%) followed by GeneMANIA (29.6%) and STRING 
(7.9%) (Supplementary Fig. S2a). These differences could be due to several reasons, including data sources as 
well as the growing algorithms used by the three tools. It was difficult to directly compare the tools over the same 
search space restricted to the same underlying database because their success and performance perceived by the 
user (the aim of our benchmark) depends critically on the combination of their unique and different sets of edge 
sources. Nevertheless, we tried to evaluate the performance of the three tools in a setup of closest possible search 
space where the original source databases are largely overlapping, which is the case for protein-protein interaction 
data covered by edge info labels “experiment and database” for STRING, “physical interaction” for GeneMANIA 
and “experiment” for IPA (Supplementary Data 1 and Supplementary Fig. S2b). However, also only using this 
overlapping subset of the source data, there continues to be a difference in performance of the tools. One factor 
contributing to this is that even in cases where the same original source database was used, e.g. BioGRID, there 
can be different interpretation and hence consideration of edge data in the different tools. However, STRING 
and GeneMANIA performed similarly when co-expression data is used as the only data source (Supplementary 
Fig. S2b). This suggested that the experimental protein-protein interaction database in STRING may play a big 
role in its performance.

To study this further, we compared the contribution of each annotated edge type on the respective tools’ 
performance. This analysis was limited to STRING and GeneMANIA as IPA didn’t provide results by edge type 
as direct output. The result showed that analyzing with only “experimental” edge was almost as powerful as 
the performance of STRING default considering all edge types (Supplementary Fig. S2c). Similarly, using only 
co-expression had similar performance as the complete GeneMANIA suite, with additional strong individual per-
formances of edge types “Predicted” (protein-protein interaction including annotation transfer from orthologues 
in other organisms) and “Pathway” (Supplementary Fig. S2d).

Comparison of the mean scores of grown genes intersecting or non-intersecting with known IHFs somewhat 
reflects comparing known true positives with unknown true plus false positives. Interestingly, GeneMANIA was 
significantly better than STRING in separating these two sets when intersecting with the smaller set of 153 known 
IHFs that are shared at least by two studies, while it is the other way round in favour of STRING when intersecting 
with the complete 1463 known set. This occurs because the genes non-intersecting with the small known set, 
but predicted by STRING, are in fact good candidates intersecting with the bigger known set (Supplementary 
Fig. S2e,f).

Network topology analysis shows characteristic differences between networks from different 
tools. Network topology analysis indicated that the mean values of several network topological parameters 
were significantly different between STRING and GeneMANIA. The mean values of average shortest path length, 
clustering coefficient, eccentricity, radiality and topological coefficient were significantly higher in STRING when 
compared with GeneMANIA (Supplementary Data 1). In contrast, closeness centrality and degree averages were 
higher in GeneMANIA when compared with STRING (Supplementary Data and Supplementary Fig. S3a). Upon 
investigation of the degree distribution, the higher degree average in GeneMANIA originates from a long tail 
made up of several very high degree nodes (Supplementary Fig. S3b). It was interesting to note higher degrees in 
GeneMANIA but higher clustering coefficient in STRING. This was, because the degree of a node represents sim-
ply the number of immediate neighbours it has, while the clustering coefficient measures the same plus further 
interconnectivity of these immediate neighbours with each other. The latter could be high when the edge data 
comprises physical interaction clusters typical for protein complexes which may be a dominant edge source for 
STRING. We also computed the topological properties of the intersecting and non-intersecting grown genes, and 
the result showed that the mean score of betweenness centrality and stress in intersecting grown genes (known 
IHFs) were consistently higher compared to the non-intersecting grown genes (Supplementary Data 1). Nodes 
with higher stress and betweenness centrality values have a critical role in overall network connectivity and often 
connect clusters or cellular processes. Future detailed follow-up work will have to establish if this can be exploited 
to improve identification of known host factors or it simply reflects that critical hubs are more likely to be found 
in phenotypic screens which are the source of our known set.

Interchanging and combination of genes didn’t improve the performance of the free tools. As 
many grown genes by the network growing tools are distinct, we tested if combination and interchange of the first 
50 genes from GeneMANIA and STRING (free web services/tools) could improve the detection rate of known 
IHFs. First, we tried combining the first 50 genes of all pairs of the methods to get a total of 100 genes. However, 
the performance of the combination of genes from the two network growing tools doesn’t exceed the performance 
of 100 genes from STRING alone (Fig. 2d). Next, we tried interchanging gene sets by taking the first 50 genes 
from one method as a seed along with the randomized 30 IHFs to a second method for growing by another 50 
genes to complete 100 grown genes (see materials and methods for detail). The result showed that GeneMANIA 
with the first 50 from STRING as input seems better compared to GeneMANIA alone (Fig. 2d). However, it was 
again lower than the detection rate of STRING alone, and it appeared that the number of genes contributed by 
STRING correlated with the strength of performance.

Network growing algorithms detect GO biological process and pathways of the known 
IHFs. As described above, the network growing tools have the potential to detect IHFs known from siRNA 
screens at rates as high as 60%. We extended the analysis into benchmarking the performance of the network 
growing tools at the GO biological process (BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis level. Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.819 was used for 
analysis using the seed genes before and after growing 100 genes in the respective network growing tools. As the 
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true positive list of pathways, we defined all those found when using either 153 or the combined set 1463 IHFs as 
input. We found that the mean percentage of correctly identified pathways after growing the networks was higher 
in STRING (both from 153 and 1463 IHFs pathways) and GeneMANIA (for 153 IHF pathways) than before 
growing networks, but not statistically significant (Fig. 3a). It should also be noted that more than 70% pathways 
from the grown 100 genes in GeneMANIA and STRING were true positives (Supplementary Fig. S3c), which was 
considerably better than the recall rates of genes (31.4 to 48.4%, Fig. 2c). In contrast, the intersection of GO BP 
after growing a network was significantly higher compared to before growing the networks (Fig. 3b). This is not 
too surprising, since the tools may include edge sources correlating with GO similarity in the growing process. 
Similar to the KEGG pathways more than 60% of the GO BP of the grown genes in GeneMANIA and STRING 
were intersecting with true positive set pathways (Supplementary Fig. S3d).

When comparing the overlap of KEGG pathways (Fig. 3c) and GO BP (Fig. 3d) identified after network grow-
ing, we observed several shared but also some unique pathways or BPs suggested by the different tools. Matching 
the underlying biology, several of the intersecting pathways were implicated in supporting different stages of the 
IAV replication cycle20–22. In addition, the three network growing together identified 5 and 40 novel pathways and 
GO BP respectively (Fig. 3c and d and Supplementary Data 2) that could be investigated further.

Network growing approach on existing data could be as powerful as new siRNA screens for 
finding relevant additional IHFs. The overlap of IHFs from a single siRNA screen with any of the other 
siRNA screens ranged between 11. 1% and 43.1%, with a mean percentage of 21.5% (Supplementary Data 1). 
However, the mean overlap of the IHFs retrieved from growing networks with any other siRNA screen was 46.7, 
33.1 and 18.9 for STRING, GeneMANIA and IPA (Fig. 4) respectively. This leads to the interesting conclusion 

Figure 3. Performance comparison of the three network growing tools in terms of KEGG pathways and GO 
BP. (a) Rate of overlapping KEGG pathways before and after network growing relative to pathways of the 153 
and 1463 known IHFs. (b) Rate of overlapping GO BP of the grown genes relative to GO BP of the 153 and 1463 
known IHFs. (c) Pairwise analysis of KEGG pathways from the grown genes in the network growing tools and 
KEGG pathways of the positive sets (1463 IHFs) (d) Pairwise analysis of GO BP from the grown genes in the 
network growing tools and GO BP of the positive sets (1463 IHFs).
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that computational network growing approaches on existing data could be as powerful as new experimental 
siRNA screens in finding additional relevant IHFs.

Discussion
In this study, we compared the performance of selected computational gene network growing tools with each 
other using a large set of 1,463 experimentally determined influenza host factors. This set is well suited since the 
siRNA screen data has not yet directly been exploited by the tools, and the genes were found to cover a broad 
range of representative cellular functions. Considering the experimentally determined genes as true positives, the 
detection percentages are equivalent to a measure of precision or positive predictive value of the methods.

We need to emphasize that network growing tool performance is intrinsically linked to the respective under-
lying data types and data sources used, which is also apparent in our benchmark results. Besides the differences in 
underlying databases between the tools, we have also observed considerable performance fluctuations of different 
versions of the same tool after database updates which highlight the clear dependency of this approach on the 
available search space (e.g., Fig. S3e).

Furthermore, another main difference between the tools was that they not only use protein-protein interac-
tions, but they also use other interaction/edge types such as co-expression, gene neighbourhood, co-localization, 
shared domains, text-mining, genetic interaction etc which are mostly unique to the different tools. Since the 
contribution of the different edge type sources may be of interest to understand why certain tools perform bet-
ter, we provided a detailed comparison of the individual edge type contributions to prediction performance 
(Supplementary Data 1 and Fig. S2b,c,d) and found that protein-protein interaction data in STRING seems 
to play a dominant role in overall performance while for GeneMANIA co-expression is the main contributor. 
Interestingly, using co-expression alone performed equally well when used through STRING or GeneMANIA 
which suggested that the basic algorithms used to recruit genes may perform similar if the same underlying data 
type and set would be used. However, each tool also uses different interpretations for reliability and rules applied 
to define edges even from the same dataset. Network topology analysis further revealed characteristic differences 
of the networks produced by the two tools in parameters such as average degree, closeness centrality and cluster 
coefficient mostly reflecting the differences in approach and underlying source data. Interestingly, some network 
parameters seem to distinguish between true hits and assumed false positives, which will require further testing, 
but could inspire future method development.

There may be concerns that the network growing approach could select highly connected genes in general and 
not necessarily those specifically related to the input set. To confirm that this is not the case, we compared the 
network growing performance of the influenza-related host seed genes with that of random human genes and find 
a significant difference in favour of growing influenza-related rather than the highly connected but random genes.

Although there are considerable numbers of distinct genes suggested uniquely by some methods but not 
others, the interchange and combination of genes recruited from GeneMANIA and STRING did not improve the 
performance of host factor detection rates. Although the performance was not improved, interpretation of results 
from a single method may lead to biases in interpretations and considering multiple methods could uncover a 
more diverse and complete set of host factors albeit at the same time diluted with false positives.

Overall, the network growing tools had better recall rates at GO Biological Process and KEGG pathway level 
than for genes. This was expected, since several of the tools directly use this information for growing networks 
and it was also reported previously that influenza host factors (IHFs) identified with siRNA screens in different 
studies have higher overlap at functional categories than at gene level23.

Figure 4. Comparison of siRNA experimental studies and network growing tools in detecting known IHFs.
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The main goal of the previous influenza siRNA screens was to identify druggable host targets. There is cur-
rently a limited availability of drugs to treat and prevent influenza virus infection, which is compounded by high 
mutation rates that lead to drug resistance. Drug repurposing is a recent strategy that has been proposed as one 
possible solution to this problem. In this strategy, existing drugs that are in clinical use and that have known 
safety profiles are evaluated for either anti-viral activity or as therapeutics to treat virus infection. System-wide 
phenotypic data together with bioinformatics methods have been used for in silico prediction for repurposing 
FDA approved drugs as alternative therapeutics against infectious diseases and cancer24, 25. Therefore, it would be 
plausible that network growing could identify new host factors that could be suggested as anti-influenza targets. 
Indeed, applying this approach on newly identified candidate host targets from network growing (Fig. S4a,b and 
Supplementary Data 3) suggested 258 new predictions for existing FDA-approved drugs for further investigations 
as potential anti-IAV therapy (Fig. S4c and Supplementary Data 3). Importantly, six drugs that have previously 
been shown experimentally to have an effect on influenza virus were also identified by our investigation, thereby 
adding support to the validity of the approach (Fig. S4c and Supplementary Data 3)20.

Conclusion
Our aim was to establish the performance of selected network growing tools in a typical real usage scenario to 
recover known influenza host factors from siRNA screens not included as source for the tools. All 3 tools tested 
are able to do so significantly better than expected by chance and even to a similar extent as conducting a new 
experimental siRNA screen. A detailed comparison of network topology and performance contribution of differ-
ent data types used by individual tools highlighted that the network growing algorithms crucially depend on their 
underlying databases and data types that are used. While we used the system of influenza host interactions here, 
we believe that these network growing tools would be similarly able to recover relevant gene/protein connections 
also for other biological systems, viruses and diseases.

Materials and Methods
Data collection. Influenza A virus host factors (genes) with the same phenotype i.e. either supporting or 
suppressing IAV replication were collected from siRNA screen studies. A total of 11 published siRNA screen 
studies were identified which either investigated larger sets consisting of groups of genes (e.g. kinases)26, 27 or the 
whole genome-wide level20–22, 28–33 (Supplementary Data 1). There are only limited gene overlaps between the 
siRNA screening studies and this discordance is mainly due to false negative results23, 34. Therefore, a merged list 
of all the siRNA screening studies in the context of IAV would give the most comprehensive positive set of IHFs. 
For the studies that used non-human host cells (e.g. DL129 and MDCK cells)32 in their experimental design, the 
human homologues of the corresponding genes were used in the analysis. We note that a single gene may have 
multiple Entrez IDs and names19 and for the sake of consistency we used the “Official gene symbol” for rep-
resentation of all genes.

Network growing tools. Three network growing tools STRING8, GeneMANIA9 and IPA14 were used for 
network growing analysis. STRING uses experimentally well-described genes, proteins and their interactions and 
a number of computationally predicted interactions such as gene neighborhood (e.g. prokaryotic operons), paired 
fusion proteins, gene links via common evolutionary histories (phylogenetic profiles), co-transcription regulators, 
co-expression patterns, text-mining associations, links inferred from transferring interactions of orthologous 
proteins interacting in another organism and similarity of the protein structures. STRING (version 10) covers 
more than 2000 organisms, >900 million interactions of 9.6 million proteins and is updated regularly8. STRING 
uses a naive Bayesian algorithm for computing combined scores from different edge types including a correction 
for the probability of random observation of an interaction adding related genes to grow the query network is 
based on the closest combined scores35.

GeneMANIA uses association data, including protein and genetic interactions, pathways, co-expression and 
co-localization similarity information and protein domain similarity data. This tool supports the network analysis 
for nine organisms (A.thaliana, C. elegans, D. rerio, D. melanogaster, E. coli, H. sapiens, M. musculus, R. norvegi-
cus and S. cerevisiae) and uses aggregated interaction links from hundreds of data sets (experimentally validated 
and/or computationally predicted)9. GeneMANIA utilizes two algorithms: (1) a linear regression algorithm to 
calculate composite functional association network (based on Gene-Ontology (GO) biological process, molec-
ular function and cellular compartment) from multiple networks obtained from different data sources and (2) a 
Gaussian field label propagation algorithm for predicting gene function from the composite network. For a longer 
list of query genes (>5) the weights are chosen automatically using linear regression maximizing interaction 
between seed genes while minimizing interactions of seed genes to other genes not on the query list9, 36.

The main attribute of the IPA knowledge database is the high-quality manual curation of texts from 
peer-reviewed journals and both public and private biomedical databases. The retrieved knowledge is structured 
into ontologies and the ontology made available as knowledgebase for various applications including functional 
network analysis. Given user seed genes and the knowledge-base of interaction of thousands of genes with each 
other, IPA uses a multi-stage, heuristic six step algorithm to produce networks. Briefly, IPA sorts seeds genes based 
on their interconnectivity to construct multiple small networks. The small networks are then merged by growing 
with genes from the knowledge-base that can connect the small into bigger networks. Then a p-score is calculated 
as the probability of finding f more seed genes in a set of n genes randomly selected from the knowledge-base37.

Growing networks and network analysis. Before growing networks, we first mapped the IHFs to the 
network growing tools. The IHFs that were mapped to the three tools were used for growing networks. For the 
network analysis, we first defined two seed sets with different size (number of genes); (1) 28 genes that were 
shared in more than 2 studies, (2) 153 genes shared by at least two studies (Fig. S1a). Using these two sets of genes 
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as a seed we automatically grew 10, 20, 50 and 100 genes with each of the network growing tools. These numbers 
(10, 20, 50 and 100 genes) were selected because GeneMANIA uses these fixed numbers for growing networks 
and the other tools allowed defining any numbers.

The second step of the network analysis was utilizing randomized gene sets as seed base to confirm whether 
the detection rate was by chance or not. The 153 genes that were shared by two studies were randomized into five 
groups of 30 genes (small sets (30 A to E)), and the 1,463 genes into 10 groups of 146 genes (medium sets (146 
A to J)) (Supplementary Data 1). Each set (either 30 or 146) was used as seed to grow 100 genes in each of the 
networking tools. In parallel, we randomly selected an equal number of small and medium set genes from 19,006 
human genes obtained from HGNC18. The grown genes were separated from the seed genes and the newly grown 
genes from each network growing tool were compared against the list of known IHFs.

The third step of analysis was combining or interchanging grown genes between the network growing tools 
(STRING and GeneMANIA: as these tools are freely available online) to test if this improves the detection rate of 
known IHFs. For combination, the first 50 genes from two network growing tools were combined and compared 
against the list of known IHFs. For interchange, smaller sets of genes were used, and the first 50 grown genes in 
one tool was used along the seeds to grow additional 50 genes in the other tool. Like the previous analysis, the 
grown genes from each network analysis were separated from the corresponding seeds and compared against the 
list of known IHFs.

Topological parameters (average shortest path length, betweenness centrality, closeness centrality, clustering 
coefficient, degree distribution, eccentricity, neighborhood connectivity, radiality and stress) of the networks 
from STRING and GeneMANIA were analyzed using Network Analyzer in Cytoscape v 3.4.038.

KEGG pathway and GO biological process analysis (BP). KEGG pathway and GO BP enrichment 
analysis was performed using DAVID version 6.819. First, we did KEGG pathway analysis for small and medium 
seed sets, as well as the full true positive sets (for 153 and 1463 IHFs). Then, the pathway and GO BP analysis is 
repeated after growing 100 genes with each respective tool. Significantly enriched (p < 0.05) pathways and GO 
BP were compared against significant pathways and GO BPs from the true positive sets. In addition, pathway and 
GO BP for the 100 grown genes by each of the network growing tools were also separately compared with the 
significant pathways and GO BPs from the positive sets.

Drug-interaction analysis. Drugs that interact with the known IHFs (1,445 genes) and the new can-
didate IHFs (1,538 genes) (excluding anti-viral genes) from the network growing analysis were identified 
using MetaCore39. Therapeutic drug-target interactions and secondary drug interactions were obtained via 
drug-interaction analysis and those drugs with effect on the known or new host targets were extracted if they 
were FDA approved and only have inhibitory effects on the IHFs. Previously in silico predicted or experimen-
tally tested anti-IAV drugs or small molecules were also manually curated from previous reviews and reports 
(Supplementary Data 3)20, 40–43, and were compared using their DrugBank IDs with the current predictions.

Statistical analysis. Customized Perl scripts were used to refine and count gene lists, for randomization, 
overlap (pairwise) analysis, and filtering the grown genes from the input seed genes. Percentage of detection for 
the network growing analysis was calculated as overlap of grown genes with the positive sets of genes (either 153 
or 1463 IHFs):

=
(1)

Percentage Genus Number of grown genes in each networking tool overlapping with the known IHFs
Genes Total number of grown genes in growing networks usually

( ) (%)
( ) ( 100)

=
(2)

Percentage
Number of pathways GO BP before or after growing networks overlapping with positive set pathways GO BP

Total number of pathways GO BP from the whole host factors
(%)

/ /
/

=
(3)

Percentage Number of pathways GO BP from the recruited genes overlapping with positive set pathways GO BP
Total number of pathways GO BP from the whole host factors

(%) / 100 /
/

Descriptive statistics (percentage (%), mean of percentages) and hypothesis testing (student-t test: two-tail 
assuming unequal variance, one way ANOVA) were derived using R package (Rcmdr)44. The deviation from the 
mean was indicated by standard error bars. P-values < 0.05 at 95% confidence interval were used as a cutoff for 
the level of significance in Student-t test and one way ANOVA analysis. Similarly, in DAVID KEGG pathway and 
GO BP analysis, a p-value < 0.05 was used as cutoff value for identification of significantly enriched pathways.

References
 1. Raman, K. Construction and analysis of protein-protein interaction networks. Automated experimentation 2, 2, doi:10.1186/1759-

4499-2-2 (2010).
 2. Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Molecular 

cell 9, 1133–1143 (2002).
 3. Fievet, B. T. et al. Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy. Nature Cell 

Biology 15, 103–112, doi:10.1038/ncb2639 (2013).
 4. Shoemaker, B. A. & Panchenko, A. R. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS 

Computational Biology 3, 0337–0344, doi:10.1371/journal.pcbi.0030042 (2007).
 5. Syafrizayanti, B., Hoheisel, C. J. D. & Kastelic, D. Methods for analyzing and quantifying protein-protein interaction. Expert Review 

of Proteomics 11, 107–120 (2014).
 6. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting Protein-Protein Interactions from the Molecular to the Proteome Level. Chemical 

reviews 116, 4884–4909, doi:10.1021/acs.chemrev.5b00683 (2016).

http://1
http://3
http://dx.doi.org/10.1186/1759-4499-2-2
http://dx.doi.org/10.1186/1759-4499-2-2
http://dx.doi.org/10.1038/ncb2639
http://dx.doi.org/10.1371/journal.pcbi.0030042
http://dx.doi.org/10.1021/acs.chemrev.5b00683


www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 5805  | DOI:10.1038/s41598-017-06020-6

 7. Pattin, K. A. & Moore, J. H. Role for protein-protein interaction databases in human genetics. Expert Review of Proteomics 6, 
647–659 (2009).

 8. Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research 43, 
D447–452, doi:10.1093/nar/gku1003 (2015).

 9. Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting 
gene function. Nucleic acids research 38, W214–W220, doi:10.1093/nar/gkq537 (2010).

 10. Szklarczyk, D. et al. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. 
Nucleic acids research 39, D561–D568, doi:10.1093/nar/gkq973 (2011).

 11. Alcaraz, N. et al. KeyPathwayMiner 4.0: Condition-specific pathway analysis by combining multiple omics studies and networks 
with Cytoscape. BMC Systems Biology 8, doi:10.1186/s12918-014-0099-x (2014).

 12. Ulitsky, I., Krishnamurthy, A., Karp, R. M. & Shamir, R. DEGAS: de novo discovery of dysregulated pathways in human diseases. 
PloS one 5, e13367, doi:10.1371/journal.pone.0013367 (2010).

 13. Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and signalling circuits in molecular interaction networks. 
Bioinformatics 18(Suppl 1), S233–240 (2002).

 14. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 
523–530, doi:10.1093/bioinformatics/btt703 (2014).

 15. Gaballa, A. et al. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proceedings of the National 
Academy of Sciences of the United States of America 107, 6482–6486, doi:10.1073/pnas.1000928107 (2010).

 16. Vlasblom, J. et al. Novel function discovery with GeneMANIA: A new integrated resource for gene function prediction in 
Escherichia coli. Bioinformatics 31, 306–310, doi:10.1093/bioinformatics/btu671 (2014).

 17. Lee, T. L., Raygada, M. J. & Rennert, O. M. Integrative gene network analysis provides novel regulatory relationships, genetic 
contributions and susceptible targets in autism spectrum disorders. Gene 496, 88–96, doi:10.1016/j.gene.2012.01.020 (2012).

 18. Gray, K. A., Yates, B., Seal, R. L., Wright, M. W. & Bruford, E. A. Genenames.org: The HGNC resources in 2015. Nucleic acids research 
43, D1079–D1085, doi:10.1093/nar/gku1071 (2015).

 19. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 
resources. Nature protocols 4, 44–57, doi:10.1038/nprot.2008.211 (2009).

 20. Watanabe, T. et al. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell host & microbe 16, 
795–805, doi:10.1016/j.chom.2014.11.002 (2014).

 21. Karlas, A. et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463, 
818–822, doi:10.1038/nature08760 (2010).

 22. Konig, R. et al. Human host factors required for influenza virus replication. Nature 463, 813–817, doi:10.1038/nature08699 (2010).
 23. Hao, L. et al. Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than 

False-Positive Factors. PLoS Computational Biology 9, doi:10.1371/journal.pcbi.1003235 (2013).
 24. Law, G. L., Tisoncik-Go, J., Korth, M. J. & Katze, M. G. Drug repurposing: a better approach for infectious disease drug discovery? 

Current opinion in immunology 25, 588–592 (2013).
 25. Bourdakou, M. M., Athanasiadis, E. I. & Spyrou, G. M. Discovering gene re-ranking efficiency and conserved gene-gene 

relationships derived from gene co-expression network analysis on breast cancer data. Scientific Reports 6, doi:10.1038/srep20518 
(2016).

 26. Atkins, C. et al. Global Human-Kinase Screening Identifies Therapeutic Host Targets against Influenza. Journal of biomolecular 
screening 19, 936–946, doi:10.1177/1087057113518068 (2014).

 27. Bakre, A. et al. Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. 
PloS one 8, e66796, doi:10.1371/journal.pone.0066796 (2013).

 28. Brass, A. L. et al. The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. 
Cell 139, 1243–1254, doi:10.1016/j.cell.2009.12.017 (2009).

 29. Hao, L. et al. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 454, 890–893, 
doi:10.1038/nature07151 (2008).

 30. Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 
1255–1267, doi:10.1016/j.cell.2009.12.018 (2009).

 31. Su, W. C. et al. Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during 
virus entry. Proc Natl Acad Sci USA 110, 17516–17521, doi:10.1073/pnas.1312374110 (2013).

 32. Sui, B. et al. The use of Random Homozygous Gene Perturbation to identify novel host-oriented targets for influenza. Virology 387, 
473–481, doi:10.1016/j.virol.2009.02.046 (2009).

 33. Tran, A. T. et al. Knockdown of specific host factors protects against influenza virus-induced cell death. Cell death & disease 4, e769, 
doi:10.1038/cddis.2013.296 (2013).

 34. Zhu, J. et al. Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents. Cell 
Reports 9, 752–766, doi:10.1016/j.celrep.2014.09.031 (2014).

 35. von Mering, C. et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. 
Nucleic acids research 33, D433–D437, doi:10.1093/nar/gki005 (2005).

 36. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C. & Morris, Q. GeneMANIA: A real-time multiple association network 
integration algorithm for predicting gene function. Genome Biology 9, doi:10.1186/gb-2008-9-s1-s4 (2008).

 37. IPA: networks generation algorithm: http://webcourse.cs.technion.ac.il/236818/Winter2012-2013/ho/WCFiles/IPA.30Jan2013.pdf, 
(Date of access: 23/12/2016) (2013).

 38. Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Research 
13, 2498–2504, doi:10.1101/gr.1239303 (2003).

 39. MetaCore TM. http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-research/metacore.html, 
(Date of access: 12/10/2015).

 40. De Chassey, B., Meyniel-Schicklin, L., Aublin-Gex, A., André, P. & Lotteau, V. Genetic screens for the control of influenza virus 
replication: From meta-analysis to drug discovery. Molecular BioSystems 8, 1297–1303, doi:10.1039/c2mb05416g (2012).

 41. Josset, L. et al. Gene expression signature-based screening identifies new broadly effective influenza A antivirals. PloS one 5, 
doi:10.1371/journal.pone.0013169 (2010).

 42. Josset, L., Zeng, H., Kelly, S. M., Tumpey, T. M. & Katze, M. G. Transcriptomic characterization of the novel avian-origin influenza 
A (H7N9) virus: Specific host response and responses intermediate between Avian (H5N1 and H7N7) and human (H3N2) viruses 
and implications for treatment options. mBio 5, doi:10.1128/mBio.01102-13 (2014).

 43. Matsuoka, Y. et al. A comprehensive map of the influenza A virus replication cycle. BMC Systems Biology 7, doi:10.1186/1752-0509-7-97 
(2013).

 44. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
http://www.R-project.org/ (2013).

http://dx.doi.org/10.1093/nar/gku1003
http://dx.doi.org/10.1093/nar/gkq537
http://dx.doi.org/10.1093/nar/gkq973
http://dx.doi.org/10.1186/s12918-014-0099-x
http://dx.doi.org/10.1371/journal.pone.0013367
http://dx.doi.org/10.1093/bioinformatics/btt703
http://dx.doi.org/10.1073/pnas.1000928107
http://dx.doi.org/10.1093/bioinformatics/btu671
http://dx.doi.org/10.1016/j.gene.2012.01.020
http://dx.doi.org/10.1093/nar/gku1071
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1016/j.chom.2014.11.002
http://dx.doi.org/10.1038/nature08760
http://dx.doi.org/10.1038/nature08699
http://dx.doi.org/10.1371/journal.pcbi.1003235
http://dx.doi.org/10.1038/srep20518
http://dx.doi.org/10.1177/1087057113518068
http://dx.doi.org/10.1371/journal.pone.0066796
http://dx.doi.org/10.1016/j.cell.2009.12.017
http://dx.doi.org/10.1038/nature07151
http://dx.doi.org/10.1016/j.cell.2009.12.018
http://dx.doi.org/10.1073/pnas.1312374110
http://dx.doi.org/10.1016/j.virol.2009.02.046
http://dx.doi.org/10.1038/cddis.2013.296
http://dx.doi.org/10.1016/j.celrep.2014.09.031
http://dx.doi.org/10.1093/nar/gki005
http://dx.doi.org/10.1186/gb-2008-9-s1-s4
http://webcourse.cs.technion.ac.il/236818/Winter2012-2013/ho/WCFiles/IPA.30Jan2013.pdf
http://dx.doi.org/10.1101/gr.1239303
http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-research/metacore.html
http://dx.doi.org/10.1039/c2mb05416g
http://dx.doi.org/10.1371/journal.pone.0013169
http://dx.doi.org/10.1128/mBio.01102-13
http://dx.doi.org/10.1186/1752-0509-7-97
http://www.R-project.org/


www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 5805  | DOI:10.1038/s41598-017-06020-6

Acknowledgements
We acknowledge the Bioinformatics Institute A*STAR for funding of this study. BT is also grateful to the SINGA 
scholarship programme from A*STAR providing a great opportunity to carry out his PhD work via collaboration 
of School of Biological Sciences from Nanyang Technological University and the Bioinformatics Institute from 
A*STAR.

Author Contributions
B.T. collected the data, did network analysis, interpreted the result, and drafted the manuscript. S.M.S. conceived 
the study, designed the project, participated in drafting the manuscript and its critical review. R.J.S. helped in 
drafting and critically reviewed the manuscript. C.V. and V.T. helped with the I.P.A. and V.K. with MetaCore 
analysis. F.E., V.T. and V.K. also critically reviewed the manuscript. All authors read and approved the final 
manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-06020-6
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-06020-6
http://creativecommons.org/licenses/by/4.0/

	Benchmarking selected computational gene network growing tools in context of virus-host interactions
	Results
	Network growing algorithms partially recover IHFs from siRNA screens. 
	The network growing tools recruit other functionally related IHFs. 
	Performance of IHFs detection varies between the network growing tools due to different data sources used. 
	Network topology analysis shows characteristic differences between networks from different tools. 
	Interchanging and combination of genes didn’t improve the performance of the free tools. 
	Network growing algorithms detect GO biological process and pathways of the known IHFs. 
	Network growing approach on existing data could be as powerful as new siRNA screens for finding relevant additional IHFs. 

	Discussion
	Conclusion
	Materials and Methods
	Data collection. 
	Network growing tools. 
	Growing networks and network analysis. 
	KEGG pathway and GO biological process analysis (BP). 
	Drug-interaction analysis. 
	Statistical analysis. 

	Acknowledgements
	Figure 1 The trend of network growing tools in detecting known IHFs.
	Figure 2 Detection rate of network growing tools after randomization of IHFs and random human proteins.
	Figure 3 Performance comparison of the three network growing tools in terms of KEGG pathways and GO BP.
	Figure 4 Comparison of siRNA experimental studies and network growing tools in detecting known IHFs.




