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Brain metastases are the most common tumor of the brain with a dismal prognosis. A

fraction of patients with brain metastasis benefit from treatment with immune checkpoint

inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to

predict response to ICI. However, the anatomical location of brain lesions limits access to

tumor material to characterize the immune phenotype. Here, we characterize immune cells

present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA

sequencing combined with T cell receptor genotyping. Tumor immune infiltration and spe-

cifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Con-

sistently, identical T cell receptor clonotypes are detected in brain lesions and CSF,

confirming cell exchange between these compartments. The analysis of immune cells of the

CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify

the T cell receptor clonotypes present in brain metastasis.
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Brain metastases (BrM) are the most common tumor of the
brain and a devastating complication of cancer with unmet
therapeutic needs1,2. Immune checkpoint inhibitors (ICIs;

e.g anti-PD1, anti-PD-L1, anti-CTLA4) have shown significant
clinical benefits in patients suffering from progressive or meta-
static solid tumors, including some BrM3,4. Still, only a fraction of
patients responds to ICI, urging for therapy predictive bio-
markers. BrM are genomically and phenotypically different from
extra-cranial lesions5–7 and harbor a unique tumor micro-
environment (TME) that includes brain-specific cell types, such
as microglia and astrocytes8. The composition of the immune
TME has been proposed as a predictive marker of response to
immunotherapy9,10. For example, the degree of inflammation
that can be measured by the IFNγ signature11 and T cell tumor
infiltration12–14 are used to predict response to ICI. Importantly,
the analysis of the molecular characteristics that predict clinical
responses to ICI rely on the ability to characterize tumor speci-
mens. However, obtaining samples from brain malignancies can
be challenging. The anatomical location of brain tumors and
related risk of surgical procedures limit the access to tumors.
Moreover, the evolving heterogeneity of the TME landscape
requires longitudinal analysis and the spatial intra-tumor het-
erogeneity limits the representativity of single tissue biopsies.

We and others have shown that the cerebrospinal fluid (CSF)
can provide fundamental information about the genomic char-
acteristics of brain tumors and hence be used as a relatively non-
invasive liquid biopsy15–18. Interestingly, studies in non-tumoral
diseases, such as multiple sclerosis19 have shown that CSF leu-
kocytes provide insights into the pathophysiology of the diseases.
Thus, we hypothesized that cells in the CSF may reflect the
immune TME of BrM. Instead of charting immune cell types
from bulk transcriptome analysis (averaging of millions of cells)
or using selected markers (flow or mass cytometry); in this work
we have decided to use single-cell RNA sequencing (scRNA-seq).
This approach provides the resolution required to draw a fine-
grained map of the immune TME, comprehensively phenotyping
cell types, transient cell states and cancer-specific transcriptomes.
High-resolution immunophenotyping through scRNA-seq has
been applied to study the immune cell landscapes of several solid
primary tumors20–22, as well as metastatic lesions7,23.

To comprehensively chart the immune cell landscape of BrM
and matched CSF, here we generate high-resolution immune cell
maps by applying scRNA-seq combined with T cell receptor
(TCR) genotyping. The study is complemented with immuno-
histochemistry (IHC), flow cytometry (FC) and targeted gene
expression analyses. Major cell types, such as T cells, NK cells and
tumor-associated macrophages (TAM)/microglia show highly
variable frequencies and different phenotypic profiles across
patients. Importantly, inflammatory states that can predict ICI
response, such as CD8+ T cell tumor infiltration, are recapitu-
lated in the CSF analysis. A continuum of cellular T cell states
points to tumor reactivity and clonal expansion, being also
detectable in the CSF. Importantly, TCR clonotypes in the CSF
match those of the brain lesions, directly linking immune profiles
from both compartments.

Results
The immune landscape of brain metastases. To phenotype the
inflammatory state of BrM, we analyzed 50 surgical specimens
(Fig. 1a, b; Supplementary Data 1; Supplementary Fig. 1a, b;
Table 1). BrM specimens were derived from eight distinct pri-
mary tumor types, being lung adenocarcinoma (LUAD) the most
represented primary lesion (Fig. 1b). In order to assess the degree
of inflammation in BrM lesions, we initially used targeted gene
expression to determine immune cell infiltration as well as the

IFNγ gene signature enrichment (Supplementary Data 2, 3;
Supplementary Fig. 1c, d, g). The samples showed variable
inflammatory gene expression profiles allowing their stratification
through unsupervised clustering into three immune cell infiltra-
tion groups (low, intermediate and high; Fig. 1c). Interestingly,
the inflammation level was not associated with the primary tumor
site (Supplementary Fig. 1e).

As expected, the IFNγ signature was enriched in the highly
immune cell infiltrated group indicating that tumors within this
group were inflamed and susceptible to respond to ICI (Fig. 1d).
Noteworthy, a high degree of inflammation measured through
the IFNγ signature was significantly associated with prolonged
overall survival in BrM LUAD patients (Supplementary Fig. 1f).
Of note, the tumor with the highest tumor mutational burden
(Supplementary Data 4) exhibited a high inflammation (P3)
(Supplementary Fig. 1h).

We further performed CD8 IHC in our BrM cohort
(Supplementary Data 5). A broad spectrum of CD8+ T cell
tumor infiltration was observed ranging from high abundance to
almost absence of cells (Fig. 1e). Consistently, we found a
significant correlation between cytotoxic lymphocytes (CLym)
and IFNγ signature enrichment and CD8+ T cell staining
(Fig. 1f). We also performed FC in a set of tumoral samples, based
on sample availability (Supplementary Data 6; Supplementary
Fig 8, 9a, b). This allowed us to validate the previous results,
analyzing the presence and correlation of CD8+ T cells in the
tumor (Supplementary Fig. 1i).

A single-cell atlas of the BrM immune microenvironment. We
applied droplet-based scRNA-seq and sequenced a total of 15,415
high-quality cells from the tumor specimens of nine patients with
sufficient material to perform the analysis (Supplementary Figs. 1b,
2a–c). Integrating the single-cell derived transcriptome profiles
allowed the clustering of cells and its annotation into major cell
types (Supplementary Data 7; Supplementary Fig. 2a, d–f). Cell
annotation was done by integrating the genes differentially expres-
sed between clusters, the expression of canonical marker genes and
the enrichment of immune cell reference gene sets from the litera-
ture (Fig. 2a; Supplementary Figs. 2a, 3, 4, 5, 6). We identified
abundant cell types, such as TAM/microglia, CLym (including T
and NK cells), and B cells; as well as less abundant cell populations,
such as dendritic cells (DC) and neutrophils. T cells were broadly
divided into naïve, regulatory (Treg) and cytotoxic T cells (including
CD8+ T cells co-clustered with NK cells) (Fig. 2a). All cell types
were detected across patients with highly diverse relative propor-
tions underlining the inter-individual heterogeneity in tumor-
infiltrating immune cells (Fig. 2b). Interestingly, we identified a
cell cluster with an elevated cell cycle signature, indicating active
proliferation in T cells and TAMs (Fig. 2a, c).

BrM immune cell infiltrates are recapitulated in the CSF
compartment. Since the degree of inflammation in BrM can
determine response to ICI, we asked whether the analysis of
immune cells in the CSF could provide information about the
degree of tumor inflammation and provide an alternative to high-
risk brain surgeries to guide therapy decisions. Therefore, we
performed scRNA and TCR sequencing of six patients with
matched BrM-CSF samples, two of them with longitudinal
follow-up sampling (Fig. 3a; Supplementary Fig. 1b, 7a–c); ana-
lyzing a total of 16 samples. We sequenced 2100 high-quality CSF
cells and observed that almost all of them were leukocytes,
thereafter named CSF-infiltrating leukocytes (CILs). CILs were
readily integrated into a joint single-cell map (Fig. 3b; Supple-
mentary Fig. 7d–f). CSF cells were clustered and annotated fol-
lowing the previously applied rationale identifying all tumor
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abundant cell types (Fig. 3c, d; Supplementary Data 8, Supple-
mentary Fig. 7d–g). Interestingly, when analyzing the CSF follow-
up samples in two patients (P3 and P6), we observed that upon
tumor resection, CLym and naïve T cells increased and TAMs
decreased in abundance (Supplementary Fig. 7h).

To further investigate and validate the similarity of immune
cell type abundance in the CSF and the TME, we analyzed eight
patients with matched tumor-CSF samples by FC (Fig. 3a, e;

Supplementary Data 6, Supplementary Figs. 1a, b, 8, 9a, b).
Importantly, we observed that CD8+ T and NK cell abundance
was similar in the tumor and CSF both by scRNA-seq and FC
(Fig. 3e, f). CD4+ T cells detected by FC were also similarly
abundant in the tumor and the CSF (Fig. 3e, f). Noteworthy, we
observed a significantly higher CD8+/CD4+ T cell ratio in the
tumor compared to the CSF (Supplementary Fig. 9c), in
agreement with previous reports24.
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TCR profiling in BrM and the CSF. TCR sequencing provided
2082 sequences (alpha and beta regions, Supplementary Data 9;
Supplementary Fig. 10a, b) for 1729 cells. TCR sequences were
further divided into singleton (1813 sequences) or expanded
(269 sequences) based on the number of cells supporting each
sequence (referred to as TCR clonotype) and mapped onto the
scRNA-seq immune cell map (Fig. 4a). Expanded TCR clono-
types were significantly enriched in cytotoxic T cell populations
including the subset of proliferating cytotoxic T cells; while sin-
gleton clonotypes were significantly enriched in naïve T cells and
Tregs (Fig. 4b, c). In line, T cells with clonal expansion expressed
GZMA/B, PRF1, INFG, and MIK67, indicating their tumor-
reactive and cytotoxic state (Fig. 4d). Pseudotime trajectory
inference ordered T cells in a continuum, originating from naïve
and concluding with reactive/proliferating cytotoxic states and
Tregs (Fig. 4e). Accordingly, the degree of TCR clonal expansion
increased gradually in the pseudotime trajectory suggesting
concerted activation and proliferation programs (Fig. 4e). For
individual tumors, we observed a wide range of TCR clonotype
composition, being P3 the patient bearing a tumor with the most
heterogeneous clonal profile (Fig. 4f).

Importantly, we detected identical TCR sequences between the
CSF and the metastatic lesions in four out of six patients,
confirming the direct interaction between both compartments
(Supplementary Fig. 10c, d). Moreover, identical TCR clones were
detectable at multiple sampling time points (Fig. 4g, h;
Supplementary Fig. 10e). The longitudinal follow-up further
suggested selected TCR clones to be maintained over the course
of the treatment, while others could not be traced over multiple
sampling time points (Fig. 4h, i; Supplementary Fig. 10f).
Together, this indicates the possibility to monitor the BrM
immune and TME T cell subclonal evolution during cancer
progression through the analysis of CILs.

Discussion
The detection of varying immune compositions and inflamma-
tion states could determine the response to immunotherapy and
lays the ground for patient selection and stratification in the
context of ICI therapies. Single-cell profiling allowed us to chart
major cell types and transient tumor-specific states present in the
BrM TME. Most interestingly, we observed that the phenotype of
CLym in the CSF recapitulated the one observed in the tumor,
providing a relatively non-invasive tool to characterize and assess
the degree of inflammation in brain lesions that in turn could be
used to predict response to ICIs.

The nature of the TME can dictate the biology of tumors and
determine the tumor sensitivity to immune therapies. Impor-
tantly, the brain TME has unique characteristics6,7. The singu-
larity of the brain TME and the divergence of the brain lesions
compared to extra-cranial lesions emphasize the requirement to
characterize and monitor the brain TME in each patient in order
to evaluate whether immune therapies could be beneficial.
However, the anatomical location of the tumor limits its acces-
sibility and thus the characterization of the brain TME. Our
observation that the CSF can recapitulate the immune landscape
of the brain lesion indicates the analysis of the CSF to provide
critical information about the brain TME in a relatively non-
invasive manner, avoiding intracranial surgeries.

In the present work, we did not aim to perform a detailed
characterization of the immune cells but focused on evaluating
the levels of CLym, information relevant to determine ICI clinical
responses. Future studies are warranted to thoroughly char-
acterize in detail each of the immune cell types present in the CSF
and compare them to the tumor lesions.

Interestingly, the CSF has been previously analyzed to char-
acterize the pattern of leukocytes in other diseases, such multiple
sclerosis19. Here, scRNA-seq revealed a similar immune land-
scape to the one we observed in BrM. This further reinforces the
relevance of the CSF as a source to characterize the immune
system in brain diseases.

Noteworthy, we identified matching TCR clonotypes of cyto-
toxic T cells in the CSF and the brain tumor. This demonstrates
the interdependence of both compartments and, importantly,
shows that tumor-reactive T cells present in the CSF could be
used in a CSF-guided TCR cloning strategy for cell therapy or
vaccines.

Together, our results show that the CSF immune cell profile
can facilitate the characterization of the immune TME in brain
metastatic lesions and longitudinally monitor the evolution of the
cancer immune response.

Fig. 1 Identification of tumor immune infiltration patterns in brain metastases. a Schematic representation of patient sample collection and the
experimental procedures performed. Immunohistochemistry (IHC), whole exome squencing (WES), cerebrospinal fluid (CSF). b Stacked bar plot showing
the patient distribution of primary tumor of origin of the BrM (see cancer type acronyms in Supplementary Fig. 1e). c Heatmap representing the enrichment
scores of seven immune cell types (rows) in 48 BrM patients (columns). IFNγ signature enrichment score has also been represented, in a distinct color
scale (see color legend) (see the expression levels by gene in Supplementary Fig. 1g). On top, dendrogram of sample aggregation, according to the
enrichment of the seven immune cell types, is shown. Three main clusters have been highlighted (low, intermediate, high); according to the degree of
overall infiltration across cell types. On the left, dendrogram of immune cell type aggregation is shown. BrM primary tumor of origin is shown below,
following the color scale in c. Sample IDs have been colored according to its clustering (blue: low, red: intermediate and high). Cytotoxic lymphocyte
(CLym), tumor-associated macrophage (TAM), T cell regulatory (Treg), dendritic cell (DC), signature (sign). d Boxplot representing the IFNγ enrichment
score distribution across the three clusters of tumor immune infiltration, as shown in d. Statistically significant differences are shown with an asterisk
(P value < 0.05, T-test). All boxplots indicate median (center line), 25th and 75th percentiles (bounds of box), and minimum and maximum (whiskers).
e Representative images of low, intermediate, and high CD8 staining by IHC (n= 42 patients). Scale bar, 55 µm. f Regression plots representing the
Pearson correlation between CLym (left)/IFNγ signature (middle) enrichment score and CD8 IHC cell density (log2 transformed) (n= 42 patients). Each
dot represents a unique patient sample, Pearson test results are shown (R2 and P value as an asterisk if <0.05), C.I., by performing a multilevel bootstrap,
have also been displayed as shaded areas. Right panel represents the Pearson correlation between CLym and IFNγ signature enrichment, samples have
been colored according to immune clustering, as shown in c, C.I. are also displayed.

Table 1 Summary of the main clinical features of the cohort
of study.

Characteristic BrM (n= 50)

Ratio female/male 1.04
Median age at diagnosis—years (±SD) 58 (13)
Median overall survival—months (±SD) 38 (39)
Ratio dead/alive 1.3
Pre-biopsy treated with CT or any other therapy—
number (%)

33 (66)

BrM brain metastases, CT chemotherapy, SD standard deviation.
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Methods
Patients. Human BrM samples (n= 50 patients) were obtained from the Vall
d’Hebron University Hospital and Clinic Hospital. The protocol to obtain samples
was approved by the Hospital IRB (PR(AG)478/2017) and informed consent was
obtained for all patients. Electronic health records of the patients were expert
reviewed and a database of clinical annotations was built (Supplementary Data 1).

Due to sample availability, not all samples had sufficient material to be analyzed
with all the techniques described in the manuscript (Supplementary Data 1).
Hence, distinct sample cohorts were used in the different analyses performed
(Supplementary Fig. 1a, b).

Cell sorting for single-cell RNA and TCR sequencing. We collected 19 samples
from 9 patients suffering from BrM of distinct tissues of origin. For 6/9 patients a
matched CSF sample, prior to surgery (named CSF t0) and in two cases after
surgery (CSF t1; +1 month from surgery) and after treatment (CSF t2; +3 months)
were collected (Supplementary Data 1; Supplementary Fig. 1b). Thus, a total of ten
CSF samples were analyzed. After resection, tumor specimens were enzymatically
digested (human tumor dissociation kit, Miltenyi) and CD45+ cells were isolated
using human CD45 TIL microbeads (Miltenyi) and stored in PBS containing
0,005% BSA. CD45+ isolation purity was between 80 and 90% depending on the
sample. CSF was extracted from the patient through a lumbar puncture, as a part
of its health care. From it, we separated 3 mL which were centrifuged at 400 × g for
10 min to obtain the cells which were stored in PBS+ 0.005% BSA. No CD45+

isolation was performed in the CSF samples.

When samples could not be immediately processed, cold methanol was
carefully added to the samples and kept at −80 °C overnight until processed. Other
samples were cryopreserved with inactivated FBS with 10% of DMSO.

Single-cell RNA and TCR sequencing. The 19 samples were loaded into the 10×
Genomics Chromium Controller for droplet-encapsulation. Single-cell gene
expression and TCR clonotypes (TCR) were produced using the Chromium Single-
Cell 5′ Library, following the manufacturer’s instructions, and sequenced on an
Illumina NovaSeq 6000. One sample (P6 CSF t0) failed the quality control of TCR
enrichment PCR and the final TCR library did not show any detectable amplifi-
cation. This could be explained by a low cell number in P6 CSF t0 sample, below
the limits of sensitivity of 10X Single-Cell V(D)J kit.

Single-cell RNA data analysis. scRNA sequenced reads were aligned and quan-
tified through CellRanger Single-Cell Software Suite (v3.1.0) to Homo Sapiens Hg38
reference genome. Next, we performed a quality control and filtering of the cells. In
tumor samples, we filtered out cells: (1) with less than 100 genes detected (to filter
cells with low RNA integrity and erythrocytes), (2) with more than 10% of expressed
mitochondrial genes (to filter degraded, broken cells) and (3) with more than 2500
genes expressed (to filter cell doublets). In CSF specimens we filtered out cells:
(1) with a given low number of expressed genes (raging between 70 and 100),
determined based on the maximization of erythrocyte filtering; (2) with more than
20% of expressed mitochondrial (MT) genes and (3) with cells with more than 2500
expressed genes (see the whole in silico analysis flow in Supplementary Fig. 2a).

Fig. 2 High-resolution map of immune infiltration of brain metastases. a UMAP projection of tumor-infiltrating cells colored according to cell lineages
(n= 9 patients, n= 9 tumor samples, n= 15,415 cells). On top right, a diagram representation of the sample cohort considered for all figure panels is
shown. A detailed UMAP projection is shown for T cell and NK and proliferating leukocyte cell clusters. Cytotoxic lymphocyte (CLym), cancer-associated
fibroblast (CAF), tumor-associated macrophage (TAM), T cell regulatory (Treg), dendritic (DC), natural killer (NK). b Heatmap showing the relative
abundance of tumor-infiltrating cell type, measured as the proportion of cells of the cell type vs. the total of sequenced cells, across tumor samples in the
UMAP projection. Some cell types have been aggregated: B cells 1 and 2 into B cells and CLym [T cell+NK], [» T cell] and [»NK] into CLym. Rows
represent cell types, sorted by variance (represented on the left, standard deviation from low to high). Columns represent patients, sorted according to the
relative abundance of CLym; the primary tumor of origin is shown below. The last column represents all patients together (pancancer, PAN). Top panel
shows a stacked bar plot representing the relative abundance of each cell type. Color legend is shown in the cell type labels of the heatmap. c Boxplot
representing G1/S and G2/M scores across cell clusters in a. Each boxplot represents a cell distribution, the total of cells represented in each boxplot is
found in b PAN column. Statistically significant differences where fold change is >0.1 are shown with an asterisk (P value < 0.05, Mann–Whitney U test).
All boxplots indicate median (center line), 25th and 75th percentiles (bounds of box), and minimum and maximum (whiskers). Proliferating (Prolif).
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The values of % of mitochondrial genes and the number of detected genes per cell
are available in Supplementary Data 7, 8.

The following downstream analyses were performed through Seurat library
(v3.0.2) for R 3.4.425. To remove batch effect by sample preservation technique
(methanol vs. fresh vs. cryopreservation) samples were integrated following Seurat
anchor integration method. It can be observed in Supplementary Fig. 2d–f how the
batch effect by preservation technique could be properly adjusted, and that there
was no batch by sample either.

Next, we sought to identify cell clusters, through Seurat. Variable genes were
called at the cohort level through vst method, with default parameters. Gene UMIs
were z-scaled and used as input for principal component analysis. Standard
deviations of the principal components were calculated to determine the
dimensions to be considered in the cell clustering. Cell clusters were identified
using the Louvain community clustering algorithm with a variable number of

dimensions depending on principal component variability (SD ≈ 2). Cluster
resolution including all cells in the cohort was set to 0.4. The same clusters were
used to generate the UMAP projections. In addition, we assigned scores for G1/S
and G2/M cell cycle phases across clusters based on previously defined gene sets20.

To better differentiate T cell subpopulations we did a re-clustering strategy of
cell clusters with: >10% cells with average (CD3E/CD3D) expression >0. To avoid
gene variability dilution, we did not adjust for cell cycle but re-clustered alone those
clusters with a strong cell cycle effect. We manually checked for the existence of
cells co-expressing T cell (e.g., CD3D/CD3E) gene markers and myeloid markers
(e.g., CD68) to ensure that doublet cell removal was effective.

Cell annotation was performed based on a three-step strategy, which provided
distinct layers of information to improve the accuracy of the annotation. (1) We
built a set of in-house expert-curated gene markers, for each cell cluster we checked
the % of cells expressing each of them along with the expression range
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(Supplementary Fig. 3b, d; 4a; 5a, b, e; 6a, b). We also performed differential gene
expression (DE) across cell clusters (performed through Seurat FindAllMarkers
method) and considered directly for cell annotation the top-gene DE between
clusters (Supplementary Figs. 3a, 5c, 6c). We also performed a pre-ranked Gene Set
Enrichment analysis (GSEA)26 based on the fold change of the DE analysis of high-
quality immune cell gene sets gathered from the literature (through Python 3.1
gseapy package: http://gseapy.rtfd.io/) (Supplementary Figs. 3c, 5d). To be more
restrictive we considered all positive enrichments with a false discovery rate (FDR)
<0.25 (according to GSEA documentation, enrichments with an FDR <0.25 are
significant).

We did two additional analyses to empower the TAM vs. Microglia cell
annotation (Supplementary Fig. 4b, c): (1) we identified the genes DE between
these two cell groups, did a manually curated revision and identified cell lineage
markers; (2) we downloaded the Macrophage and Microglia gene sets defined by
and performed a GSEA (following the same methodology above) on the ranked list
of DE genes between TAM and Microglia cell groups, previously identified27.

Trajectory analysis was performed with the Monocle package (v2.16.0)28. The
highly variable genes obtained for the integration of the data via Seurat were used
for pseudotime ordering. Dimensionality reduction was applied with the DDRTree
option.

TCR data analysis. TCR enriched libraries were mapped using CellRanger Single-
Cell Software Suite (v3.1.0) with vdj option to the GRCh38 VDJ pre-built reference
provided by 10x (v3.1.0). TCR clonotypes were obtained from cells identified as
true cells by CellRanger, containing full-length recombinant sequences and pro-
ductive CDR3 chains. Cells sharing the exact CDR3 amino acid region were
considered as clones. Exact same alpha or beta chain sequence was considered a
clonotype.

In CSF samples where multiple sample time points were available (t0, t1, t2) a
clonal evolution analysis was performed, with Fish Plot R package29, TCR clones
were treated as independent samples.

Flow cytometry. We collected 16 samples from 8 patients with BrM of distinct
tissues of origin with a matched CSF t0 sample. We pooled these together with
seven tumoral samples, which were already analyzed by scRNA and TCR
sequencing (Supplementary Data 1; Supplementary Fig. 1a, b), as the FC sample
cohort.

After resection, tumor specimens were enzymatically digested for 13/15 (human
tumor dissociation kit, Miltenyi) and CD45+ cells were isolated using CD45 TIL
microbeads (Miltenyi). For the other two samples, no CD45+ isolation was
performed (Supplementary Data 6, T: tumor, non CD45+ isolation; CD45: CD45+

isolation from the tissue). Cells from the CSF were obtained by centrifugation at
400 × g 10 min. No CD45+ isolation was performed.

For immune cell characterization of tumor and CSF samples, anti-human
antibodies against CD11b-PE (clone D12, 34755, 1:100, BD), CD45-BV510 (clone
HI30, 304036, 1:100, Biolegend), CD3-BV650 (clone, SK7, 563999, 1:100, BD
Bioscience), CD8-APC-H7 (clone SK1, 560179, 1:100, BD Bioscience), CD4-BV786
(clone OKT4, 317441, 1:100, Biolegend), CD66b-FITC (clone G10F5, 555724,
1:100, BD Bioscience), CD56-APC (clone Tuly56, 17-0566-42, 1:100,
Thermofisher), CD19-AlexaF700 (clone HIB19, 302225, 1:100, Biolegend), and
CD11c-BV605 (Clone 3.9, 301636, 1:100, Biolegend) were used. Samples were
previously incubated with Fixable Viability Stain 620 (PE-CF594) (564996, BD
BIoscience) to determine viability. Samples consisting on CD45+ isolated cells
from digested tumors with a spike of peripheral blood mononuclear cells (PBMCs)
were used to establish leukocyte populations (named as “spike”). 106 PBMCs were

added into the single staining and FMOs samples in order to establish the leukocyte
populations among the samples. Isotype control of anti-human CD45-BV510
(mouse IgG1k-BV510, 400171, 1:100, Biolegend) was also used as a control
(Supplementary Fig. 8a).

PBMCs were obtained from donors’ buffy coats. Centrifuge density separation
using Lymphosep (Biowest) was performed to obtain the PBMCs.

Immune cell populations (inside alive cells) were determined by the following
cell markers as shown in Supplementary Fig. 8b: total leukocytes (CD45+), T cells
(CD45+,CD3+), CD8+ T cells (CD45+,CD3+,CD8+), CD4+ T cells (CD45+,CD3+,
CD4+), TAMs (CD45+, CD3−, CD11b+/CD66b−), Neutrophils (CD45+, CD3−,
CD11b−/CD66b+), NK (CD45+, CD3−, CD56+), B cells (CD45+, CD3−, CD19+),
DCs (CD45+, CD3−, CD11c+).

For T cell characterization of tumor and CSF samples, anti-human antibodies
against CD45-PE-Cy5 (clone HI30, 15-0459-42, 1:100, Thermofisher), CD3-
BV650 (clone, SK7, 563999, 1:100, BD Bioscience), CD45RA-PE-cy7 (clone
HI100, 304126, 1:100, Biolegend), CCR7-FITC (clone G043H7, 353216, 1:100,
Biolegend) and FOXP3-Alexa647 (clone 259/c7, 560045, 1:50, BD Bioscience)
were used. Samples were previously incubated with LIVE/DEAD fixable yellow
dead stain kit (L34959, 1:2000, ThermoFisher Scientific) to determine viability.
As a positive control, activated PBMCs obtained from buffy coats from donors
were used. To activate PBMCs, non-treated 24-well plate was coated with 5 µg/
ml/per well of anti-human CD3 (in PBS) (clone OKT3 monoclonal antibody, 16-
0037-85, ThermoFisher Scientific). After 2 h of incubation at 37 °C, the plate was
washed and 106 PBMCs with 2 µg/ml of soluble anti-CD28 (clone CD28.2
monoclonal antibody, 16-0289-85, ThermoFisher Scientific) in RPMI 1640
(supplemented with Glutamine and inactivated FBS) were added per well and
activated for 72 h. 106 activated PBMCs (“activated PBMCs”) were added into
the single staining and FMOs samples in order to establish the leukocyte
populations among the samples. Isotype control of anti-human CD45-PeCy5
(mouse IgG1k-PeCy5, 14-4714-81, 1:100, eBioscience) was also used as a control
(Supplementary Fig. 9a)

T cell subpopulations (inside alive cells) were determined with the following cell
markers as shown in Supplementary Fig. 9b: total leukocytes (CD45+), T cells
(CD45+,CD3+), Regulatory T cells (Treg) (CD45+, FOXP3+/CD3+), Naïve T cells
(T naïve) (CD45+, CD3+, CD45RA+/CCR7+).

Samples were acquired on a BD FACSCELESTA (immune cell characterization
panel) or BD LSRFortessa™ cell analyzer (BD Biosciences) (T cell characterization
panel) and data were analyzed using FlowJo software.

Immunohistochemistry. IHC antibody (790–4460 Roche-Ventana) against anti-
CD8 (clone SP57, 790–4460) was used to stain slides from paraffin-embedded
tissues. Slides were deparaffinized and hydrated using Discovery Ultra IHC/ISH
Platform (Roche). Antigen retrieval was performed using Discovery CC1 buffer for
64 min at 95 °C. Subsequent incubation of 8 min with CM inhibitor was used for
peroxidase blockade. Incubation of primary antibody (anti-human CD8) was
performed for 20 min at 36 °C with subsequent 8 min incubation with UltraMap
anti-Rabbit antibody (HRP). As a detection system, CM ChromoMap was used
according to the manufacturer’s instructions, followed by counterstaining with
hematoxylin II (8 s), dehydration and mounting.

IHC of CD8 and corresponding quantifications were performed in 42 different
patients with BrM (Supplementary Data 1, 5). For CD8 IHC quantifications,
Visiopharm software was used. To calculate cell density the total number of
positive cells was divided by the tumoral area (positive cells/mm2). Cell density was
log2-transformed.

Fig. 3 Immune cell type identification in the CSF of BrM patients. a Left, schematic representation of BrM tumor resection and cerebrospinal fluid (CSF)
collection at different time points: t0, initial tumor resection and CSF collection at the day of surgery and prior to it; t1, CSF collection 1 month (1m) after
tumor resection; t2, CSF collection after 3 months (3m) of tumor resection. Holocranial radiotherapy was administered between t1 and t2. Right, diagram
representation of the sample cohort considered for all figure panels related to scRNA-seq (n= 6 patients, n= 16 samples) (b–d, f); and flow cytometry
(FC) (n= 8 patients, n= 16 samples) (e, f). If not specified all CSF samples have been included in the downstream analyses. b UMAP projection of tumor-
infiltrating and CSF cells, colored according to sample type n= 15,895 cells. c UMAP projection of tumor-infiltrating (n= 13,795) and CSF cells (n= 2100)
colored according to cell lineages. A detailed UMAP projection is shown for T cell and NK and proliferating leukocyte cell clusters. Cytotoxic
lymphocyte (CLym), cancer-associated fibroblast (CAF), tumor-associated macrophage (TAM), T cell regulatory (Treg), dendritic cell (DC), natural
killer (NK). d Stacked bar plot representing the relative abundance of all cells identified by scRNA-seq in the CSF. Absolute numbers of identified cells per
cell type are shown. Cell types are colored as shown in color legend. e Volcano plot comparing cell type relative abundance (inside the fraction of CD45+

cells) in the tumor vs. the CSF (n= 8 patients), according to FC experiments. x-axis represents the −log2 fold change and y-axis the −log10 P value
according to Mann–Whitney U test. Each dot represents a cell type: non-significant differences are colored gray, cell types significantly overrepresented in
the tumor are colored black and cell types significantly overrepresented in the CSF are colored blue (P value < 0.05). f Paired boxplot representing the
relative abundance of lymphocyte types in the tumor (black) vs. the CSF (blue). Left panel (FC sample cohort), distribution of the percentage of CD4+ and
CD8+ T cells and NK cells identified in the tumor and CSF, inside the fraction of CD45+ cells. Right panel (scRNA-seq sample cohort), distribution of the
relative abundance of cytotoxic lymphocytes in the tumor and CSF. Statistical significance in both panels was calculated with Mann–Whitney U test, non-
significant results were found (P value > 0.05). All boxplots indicate median (center line), 25th and 75th percentiles (bounds of box), and minimum and
maximum (whiskers).
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Targeted RNA profiling. RNA from 48 BrM samples was extracted and expression
levels for 730 immune-related and 40 additional housekeeping genes were
obtained, through PanCancer Immune Panel v1 (Nanostring®)30. A minimum of
250 ng of total RNA was used as input of Nanostring Pancancer Immune Profiling
panel. Expression levels for 730 immune-related and 40 additional housekeeping
genes were obtained.

Samples with a geometric mean expression lower than 50 counts in the
housekeeping genes were discarded due to low quality (Supplementary Fig. 1c).

For some samples, with large tissue availability (n= 7), duplicates were included
(named as Px_2). In these cases, the sample with the highest geometric mean
expression of HKs genes was included and the sample was re-named as
Px (Supplementary Fig. 1c).

Next, raw data processing was performed with NSolver® analysis software.
Expression values were adjusted for background noise thresholding by the
maximum number of counts of the negative controls. Data normalization was
performed using the geometric mean of the counts of the positive controls and the
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housekeeping genes. No batch effect was detected, see Supplementary Fig. 1d.
Expression values were log2- and z-score transformed across samples. We
calculated the enrichment scores of the distinct gene sets of interest: seven immune
population gene sets built with reference markers and IFNγ signature11; according
to the following formula:

patientZi � min patientsZð Þ
max patientsZð Þ � min patientsZð Þ ð1Þ

Equation 1. Enrichment score. μ refers to average σ to standard deviation and
patientsZ is defined as in Eq. 2.

Pi
n�i

genei�μ gene across patientsð Þ
σ gene across patientsð Þ

n signature genesð Þ
ð2Þ

Equation 2. patientsZ calculation. where n refers to number, μ to average σ to
standard deviation.

Hierarchical agglomerative clustering of the tumor samples was performed
using the Ward linkage method, through sklearn Python 3.1 package. The number
of clusters was set to three.

Whole exome sequencing. We performed whole exome DNA sequencing (WES)
of the tumors of six patients in both the tumor and germline DNA. DNA from
12 samples were extracted through QIAamp DNA mini Kit (Qiagen). Nimblegen
SeqCap EZ MedExome+mtDNA (Roche, 47Mb) was used to perform whole
exome enrichment. The libraries were sequenced on HiSeq2500 (Illumina) in
paired-end mode with a read length of 2 × 100 bp. Each sample was sequenced in a
fraction of a sequencing v4 flow cell lane, following the manufacturer’s protocol.
Image analysis, base calling and quality scoring of the run were processed using the
manufacturer’s software real-time analysis (1.18.66.3) and followed by generation
of FASTQ sequence files.

WES reads were mapped to Hg19 using the GEM3 toolkit31. Alignment files
(BAM format), containing only properly paired, uniquely mapping, reads; were
processed using Picard (v.1.110) (https://broadinstitute.github.io/picard/) to add
read groups and remove duplicates. The resulting BAM files were processed using
SAMtools (v. 1.2)32,33 and the GATK (v. 3.2.0). Somatic tumor variants were called
by Mutect234 and Strelka35 doing a matched normal analysis. Only those mutations
reported by both callers were considered for further analyses.

The biological relevance of all mutations was annotated through Cancer
Genome Interpreter (CGI; v1907)36, which was run considering the primary tumor
of origin as input cancer type. The mutational tumor burden was calculated
considering as numerator the number of non-synonymous mutations (as predicted
by CGI) and the library size (47 Mb) as denominator.

Statistical analyses. All statistical analyses were performed with Python 3.7 SciPy
library37, including the following calculations: Entropy, Spearman correlation,
Pearson correlation, T-test, Mann–Whitney U test, Wilcoxon test and Fisher exact
test. Survival analysis, including Kaplan–Meier and log-rank tests, were performed
through Python 3.7 lifelines package. All statistical tests have been performed as
two-sided. Exact p values of statistical analyses can be found in Source Data.

Data availability
All sequence data, including scRNA, TCR, and WES have been deposited in the
European Genome Archive (EGA) under accession code EGAS00001004751. Nanostring
data have been deposited in Gene Expression Omnibus (GEO) and is under accession
code GSE159407. Source data are provided with this paper.

Code availability
The R and Python codes, and software dependencies, to reproduce all paper figures are
available in bitbucket (https://bitbucket.org/carlotarp1/brainmets_csf).
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