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Sequential metamaterials with alternating Poisson’s
ratios
Amin Farzaneh1, Nikhil Pawar1, Carlos M. Portela 2 & Jonathan B. Hopkins 1✉

Mechanical metamaterials have been designed to achieve custom Poisson’s ratios via the

deformation of their microarchitecture. These designs, however, have yet to achieve the

capability of exhibiting Poisson’s ratios that alternate by design both temporally and spatially

according to deformation. This capability would enable dynamic shape-morphing applications

including smart materials that process mechanical information according to multiple time-

ordered output signals without requiring active control or power. Herein, both periodic and

graded metamaterials are introduced that leverage principles of differential stiffness and self-

contact to passively achieve sequential deformations, which manifest as user-specified

alternating Poisson’s ratios. An analytical approach is provided with a complementary soft-

ware tool that enables the design of such materials in two- and three-dimensions. This

advance in design capability is due to the fact that the tool computes sequential deformations

more than an order of magnitude faster than contemporary finite-element packages.

Experiments on macro- and micro-scale designs validate their predicted alternating Poisson’s

ratios.
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Mechanical metamaterials (i.e., architected materials)1

can be engineered to achieve behaviors that pre-
dominantly stem from their architecture instead of their

constituent material. Auxetic (i.e., negative Poisson’s-ratio)
behavior is one of the earliest2,3 and most popular4–10 behaviors
engineered by mechanical-metamaterial designers since such
behaviors are desirable for a variety of applications but are rarely
achieved by natural monolithic materials. Unlike such traditional
materials, which typically exhibit positive Poisson’s ratios, auxetic
materials expand laterally when they are stretched but contract
when they are compressed.

Whereas some traditional materials do naturally exhibit
negative11–13 or even zero14 Poisson’s ratios, many two-
dimensional (2D)15–19 and three-dimensional (3D)20–23

mechanical metamaterials have been engineered over the past
four decades to achieve a broader range of both negative and
positive Poisson’s ratios that can be geometrically tailored to meet
the demands of numerous applications. Medical applications
include hip replacement implants that promote osseointegration
by inducing strain in surrounding bone upon walking24 and
smart bandages with pores that passively open to release medi-
cation when swelling occurs6. Structural applications include
indentation-resistant materials that contract around impacting
objects4,5, self-anchoring fasteners and screws25, and materials
that passively change their shape, size, or surface contour in
response to particular loads4–7. Additionally, auxeticity has been
employed to realize materials with highly tunable phononic
bandgaps26,27, transmission materials that improve actuator
resolution and sensor sensitivity28, and color-changing materials
with colored voids that alter their size and thus visual prevalence
as their lattices are loaded29.

Despite the large number of engineered Poisson’s-ratio meta-
material designs, which have been proposed in the last four decades,
the field remains rich with new and creative innovations. Some of
these innovations include the incorporation of buckling30–32,
origami33–37, and kirigami38,39 to achieve increasingly demanding
Poisson’s-ratio behaviors. Others have used the random placement
of flexible elements40, fibers41,42, or pores43 to achieve stochastically
engineered negative or zero Poisson’s ratio behaviors. Graded
designs that consist of spatially varying Poisson’s-ratio architectures
have also been explored44,45. Some researchers have learned how to
achieve desired Poisson’s ratios that remain unchanged regardless

of the direction in which the lattice is loaded46,47 or how much the
lattice is deformed48–51. Still others have incorporated multi-
stability within auxetic metamaterials to study how wavefronts
dynamically propagate within their lattices52. Some designs can
even be programmed to achieve Poisson’s ratios that can be
changed from positive to negative or vice versa in response to a
variety of external stimuli ranging from heat, ultraviolet light,
magnetic fields, or moisture53–55.

Although designs currently exist that achieve a gradually
increasing or decreasing Poisson’s ratio as a function of defor-
mation magnitude30,48,49, no designs can abruptly change the
direction of their lateral deformations by alternating between
positive and negative Poisson’s ratios when loaded along a single
unchanging direction. Moreover, no designs can achieve Pois-
son’s ratios that spatially vary along the lattice geometry while
also alternating in a desired time-ordered sequence. Such cap-
abilities would enable compliant transmission mechanisms to
transform a single-actuator input into multiple synchronized
actuator outputs. These outputs could be tuned to achieve dif-
ferent but coupled displacement magnitudes and directions,
which when cycled would manifest as different amplitudes and
frequencies. Thus, such mechanisms could passively multiply an
actuator’s driving frequency (e.g., double it) while also improving
its displacement resolution. Moreover, materials with spatially
varying Poisson’s ratios that also alternate in a carefully orche-
strated time-ordered sequence would enable new means of single-
actuator locomotion (i.e., one actuator could cause the material to
undulate similar to the complex walking motion of a caterpillar).
Such materials could also be used to assist mechanical logic
devices56 toward performing simple but critically reliable com-
putations in potentially harsh environments where electronics are
likely to fail. When positioned and loaded correctly, for instance,
such a material could be used like a customized key in that it
could trigger a series of flexure-based bi-stable logic-gate inputs56

with the necessary deformation combination to perform the
mechanical logic required to withdraw a bomb’s fail-safe. In this
way, the bomb wouldn’t be capable of inadvertently exploding
prior to being armed using the metamaterial key.

This work introduces a metamaterial that enables such appli-
cations via user-specified alternating Poisson’s ratios. The concept
is inspired by the inward facing beams (colored red) of the well-
known negative-Poisson’s-ratio honeycomb3–7 shown in Fig. 1a,

Fig. 1 Sequential metamaterial that achieves an alternating Poisson’s ratio. a The concept is inspired by the inward (red) and outward (blue) facing
beams of the famous negative and positive Poisson’s-ratio honeycomb designs, respectively. b The design achieves its alternating Poisson’s ratio due, in
part, to six hard stops that collide and then redirect the motions of each unit cell rigid bodies.
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and the outward facing beams (colored blue) of the equally
popular positive-Poisson’s-ratio regular honeycomb57. Although
others have mixed the use of these two honeycomb cell designs
for other purposes58–60, here we combine different aspects of each
honeycomb cell to produce a unique metamaterial design
(Fig. 1a) with a Poisson’s ratio that can alternate as a function of
loading strain (note the similarly inward and outward facing
beam pairs shown red and blue respectively in the design’s per-
iodic unit cell). The design is able to abruptly alternate its Pois-
son’s ratio when subjected to a steady loading strain due
primarily to collisions that occur between various combinations
of the 6 carefully designed self-contacting hard stops labeled in
Fig. 1b. By tuning the geometric parameters (e.g., thicknesses and
lengths) that define these self-contacting bodies as well as the
beam pairs that connect them, the bodies will displace and collide
in a specific time-ordered sequence resulting in desired fluctua-
tions in the bulk lattice’s Poisson’s ratio. Although the concept of
time-ordered deformations achieved via self-contacting hard
stops and different-stiffness flexible elements has previously been
applied to enable metamaterials that sequentially fold61,62, this
work applies a similar concept but for the unique purpose of
achieving metamaterials that exhibit alternating Poisson’s ratios.
Herein a MATLAB tool is provided to enable the design of such
metamaterials so that they achieve the desired alternating Pois-
son’s-ratio response to a given strain input load. The tool’s theory
is verified using finite element analysis (FEA) and validated using
experimental measurements collected from macro-scale 2D unit
cells. Principles are introduced and demonstrated for stacking
different rows of identical unit cell designs in series to achieve
Poisson’s ratios that alternate both temporally and spatially along
the resulting graded material’s lattice. Finally, 3D versions of the
design are introduced, fabricated, and tested at the micro-scale.

Results
Poisson ratios that alternate with strain. FEA was used to
computationally demonstrate that the metamaterial concept
proposed in Fig. 1 could be tuned to exhibit a desired alternating
Poisson’s ratio. For the case of a lattice made of Teflon (i.e., a
Young’s modulus of 0.3657 GPa and a Poisson’s ratio of 0.46) and
with geometric parameters (defined in Fig. 2) set to those of the
specific design shown in Fig. 3a (i.e., Design I with specific values
provided in the Design I column of Supplementary Table 1), the
lattice’s response to a sinusoidal strain load is shown. Note from
Fig. 3a that as the unit cell is loaded with a sinusoidal strain along

the y-axis with a 15% strain amplitude (shown gray), the cell’s
side tabs will displace as the cell deforms with a resulting x-axis
strain (shown green) that alternates with twice the frequency as
the input load. The periodic lattice’s Poisson’s ratio can be cal-
culated by dividing that x-axis strain with the negative of the y-
axis loading strain. The resulting Poisson’s ratio is plotted in
Fig. 3a as the dashed purple line. Note from the plot that the FEA
results were calculated for a single sinusoidal loading cycle with
quasistatic loading conditions, and plotted over a period of
60 min to allow for comparison with other designs and experi-
mental data.

The Poisson’s ratio alternates primarily according to two
factors—(i) different-stiffness beams and (ii) engineered hard
stops. Note that the outward facing beams shown blue in Fig. 1a
are more compliant than the inward facing beams shown red in
the same figure. Thus, when the top tab is initially pulled upward,
as long as the bottom tab is held fixed, the outward facing beams
deform significantly more than the inward facing beams (since
they experience the same loading force) resulting in the side tabs
of the cell initially pulling inward. This occurs until the hard stops
labeled (1) in Fig. 1b make contact with themselves at which point
the side tabs immediately change direction and begin to move
outward while the top tab continues to be pulled upward. Note
that unlike the other hard stops in the design, Hard stop (1) is
unique in that both pairs consist of a mating circular feature that
fits inside of an extruded half cylinder, which causes both
contacting bodies to rotate relative to one another about an axis
located at the center of the circular feature. Thus, when engaged,
Hard stop (1) generates friction, which can lead to wear,
hysteresis, and loss of repeatability. As such, designs that require
the engagement of Hard stop (1) to function, should be fabricated
using a material with a low coefficient of friction (e.g., Teflon) to
minimize these effects.

In addition to exhibiting an alternating x-axis strain when the
unit cell is loaded in tension along the y-axis, the cell also exhibits
an alternating but oppositely directed x-axis strain when it is
loaded in compression along the same axis (Fig. 3a). When the
top tab is initially pushed downward, the outward facing beams

Fig. 2 Geometric parameters that define the proposed metamaterial unit
cell concept. The parameters can be tuned to achieve different alternating
Poisson’s ratios over time according to how the cell is loaded. Note that the
design is symmetric about the dotted red horizontal line and is almost
symmetric about the dotted blue vertical line except for the circular hard
stops labeled Hard stop (1) in Fig. 1b.

Fig. 3 Finite-element-analysis (FEA) generated plots that demonstrate
Design I’s sequential deformations given Teflon material properties.
a Plot showing how 9 still frame images of the Design I cell correspond with
the cell’s sequential deformations for a sinusoidal y-axis input strain with an
amplitude of 15%. b Plot showing the cell’s x-axis strain responses to five
different y-axis sinusoidal loading amplitudes ranging from 5% to 25%.
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again deform significantly more than the inward facing beams
since they are more compliant and thus the side tabs of the cell
initially push outward. This occurs until the hard stops labeled
Hard stop (2) in Fig. 1b make contact with themselves at which
point the side tabs immediately change direction and begin to
move inward as the inward facing beams exclusively deform while
the top tab continues to be pushed downward. Note from Fig. 2
that the tab lengths are geometrically constrained such that they
will always appropriately behave as hard stops, when necessary,
without ever interfering or colliding with each other as cell
designs are deformed. A sequence of 9 still frame images showing
the cell being sinusoidally deformed in both tension and
compression is provided in Fig. 3a where each corresponding
frame is shown labeled in the plot. An animated video of the FEA
simulation is also provided in Supplementary Movie 1.

Equally interesting to the fact that the proposed design can be
tuned to achieve desired alternating Poisson’s ratios, is the fact
that the design’s x-axis strain response is dependent on the
magnitude of the y-axis loading strain. The plot shown in Fig. 3b
demonstrates this dependence for five sinusoidal y-axis loading
strains with amplitudes ranging from 5% to 25% strain. Animated
videos showing the FEA simulations of all five loading scenarios
are provided in Supplementary Movie 1. Note that when the cell
is sinusoidally loaded with only 5% strain amplitude, the resulting
x-axis strain does not alter its frequency of oscillation but rather
moves in the opposite direction of the input load with a smaller
amplitude. When the cell is sinusoidally loaded with a strain
amplitude >20%, however, the resulting x-axis strain not only
alternates back and forth with a different frequency than the
input, but multiple hard stops are sequentially engaged during
compression (i.e., Hard stop (2) and then Hard stop (3) labeled in
Fig. 1b), which results in an x-axis strain that eventually remains
constant while the top tab is being pushed downward to its
maximum displacement.

By changing the geometric parameters defined in Fig. 2 other
versions of the design of Fig. 1 can be tuned to achieve different
alternating Poisson’s-ratio behavior. If, for instance, the beam
stiffness values of Design I are modified so that the outward
facing beams shown blue in Fig. 1a are made stiffer than the
inward facing beams shown red in the same figure, a new design
(i.e., Design II) can be created that achieves an oppositely
alternating x-axis strain response (Fig. 4). Specific values for the
geometric parameters of Design II are provided in the Design II
column of Supplementary Table 1. Note that the x-axis strain
response of Design II (shown purple in Fig. 4) to a sinusoidal y-
axis strain load with an amplitude of 15% (shown gray) alternates
in the opposite directions as the x-axis strain response of Design I
(shown green) for the same loading conditions.

The lattice design introduced in this work can also exhibit
alternating Poisson’s-ratio behavior when loaded in different
directions. Note from Fig. 4 that Design III achieves an
alternating x-axis strain response (shown brown) to the y-axis

strain input load (shown gray) even when the cell is rotated 90o

on its side. Specific values for the geometric parameters of Design
III are provided in the Design III column of Supplementary
Table 1. Although different versions of the design concept of this
work can be made to achieve alternating Poisson’s-ratio behaviors
when loaded in multiple directions, such versions will not be
isotropic (i.e., the Poisson’s-ratio behaviors will not alternate the
same when the design is loaded in different axes). Animated FEA
videos showing Designs II and III being loaded according to the
scenario plotted in Fig. 4 are provided in Supplementary Movie 2.

Analytical MATLAB tool. A MATLAB tool was created to effi-
ciently calculate how the Poisson’s ratio of different versions of
this work’s metamaterial design alternates in response to a
sinusoidal quasistatic load. The tool’s graphical user interface
(GUI) is shown in Supplementary Fig. 1. When the tool is
launched (Supplementary Fig. 1a), it prompts users to enter (i)
the properties of the lattice’s desired constituent material (i.e., its
Young’s modulus and Poisson’s ratio), (ii) the geometric para-
meters that define the lattice’s repeating unit cell, (iii) the
amplitude of the input strain load that will sinusoidally drive the
lattice, and (iv) a resolution number, called the accuracy number,
that when made larger increases the accuracy and smoothness of
the resulting plots, but also increases the computational time
required to generate the plots. After these parameters are entered,
the tool then displays a plot (Supplementary Fig. 1b) of the
resulting design’s x-axis strain response (shown blue) along with
the design’s corresponding Poisson’s ratio (shown dashed pur-
ple). It also shows an animation of the unit cell deforming with a
vertical black line sweeping over the plot corresponding to each
frame of the deformed cell. The tool then allows users to either re-
enter new parameters to generate a different cell design or save
the animation of the existing cell design as a.gif file. The
MATLAB tool is available for download (see Supplementary
Software 1) and a video showing the animated version of Sup-
plementary Fig. 1b is provided in Supplementary Movie 3.
Instructions for running the MATLAB tool are also available in
Supplementary Information.

The MATLAB tool enables the design of metamaterials with
Poisson’s ratios that alternate as desired due to the efficiency in
which the tool is able to analytically calculate the large-
deformation response of such materials to a sinusoidal strain
load. Other FEA-based approaches are too computationally
expensive and time-consuming to calculate the large-
deformation Poisson’s-ratio behavior of this work’s metamaterial
concept fast enough to enable their design. Thus, as the following
section demonstrates, the analytical tool introduced in this paper
is currently the only practical option for analyzing the proposed
metamaterials of this work fast enough to enable their design. A
description of the MATLAB tool’s underlying theory along with
its assumptions is provided in the “Methods” section.

FEA verification and experimental validation. Despite its sim-
plifying assumptions, the MATLAB tool analytically predicts the
design’s large-deformation behavior with impressive accuracy.
Figure 5a shows a plot that compares the results of the MATLAB
tool (shown blue) with two large-deformation FEA simulations
(shown green and orange) and with experimental data (shown
red) measured by loading a Design I cell made of Teflon in an
Instron mechanical testing machine. The MATLAB and FEA
results were calculated using the properties of Teflon provided
previously. The smallest accuracy number that still achieved
smooth plots (i.e., 60) was applied to the MATLAB tool and
Abaqus was used to perform the FEA simultaions. Hexahedral
elements were applied to the unit cells of the FEA simulation with

Fig. 4 The x-axis strain response of three different cell designs (i.e., Design
I, II, and III) made of Teflon to a sinusoidal y-axis strain load with an
amplitude of 15%.
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an out-of-plane thickness of 10 mm. The FEA simulation, shown
in green, was calculated assuming that the cell’s material prop-
erties are linear elastic, that no gravity is present, and that the cell
is embedded within an infinitely large lattice so that its two side
tabs are constrained to remain vertically oriented as they displace
(all of the FEA simulations provided in Figs. 3 and 4 were gen-
erated with these same assumptions). Note from Fig. 5a that this
FEA elastic simulation is almost identical to the analytical results
predicted by the MATLAB tool. The other FEA simulation,
shown orange, varies more significantly from the results of the
tool since that simulation assumes that the material properties are
not linear elastic (i.e., it assumes the Teflon stress–strain curve
provided in Supplementary Fig. 2), that gravity is pulling
downward along the y-axis direction shown, and that the cell is
not a part of a lattice so that its side tabs are allowed to rotate.
These assumptions most closely mimic the experience of the
fabricated single-cell version, which is shown being tested in the
Instron machine in two states of deformation corresponding with
the plot of Fig. 5a.

A similar comparison between the analytical MATLAB tool of
this paper, the elastic and plastic FEA simulations, and the
experimental measurements applied to Design II was also
performed as shown in Fig. 5b. Note that although the MATLAB
tool (shown blue) and FEA elastic simulation (shown green)
results are similar and the FEA plastic simulation (shown orange)
and experimental (shown red) results are also similar, both pairs
of similar results diverge from each other after the cell is
tensioned to its maximum strain. The reason for this discrepancy
is that the 15% strain load was sufficiently large to cause
significant yielding within the Design II cell, which was not
accounted for in the analytical tool or the FEA elastic simulation
results. Note that yielding is also primarily responsible for the
asymmetry observed in both the tension and compression regions
of the FEA plastic and experimental plots. Discrepancies between
the FEA plastic and experimental results shown in the
compression region of Fig. 5b are primarily due to fabrication
and fixturing imperfections, which led to asymmetric buckling
when Design II’s cell was compressed (see the top right image in
Fig. 5b). Thus, as long as minimal or no yielding occurs in the cell
designs of this work and as long as sufficient care is taken to
fabricate and fixture the cells correctly, the analytical MATLAB
tool can accurately predict their alternating Poisson’s ratios.
Animations of the FEA plastic simulations of both Designs I and
II alongside corresponding videos of the fabricated cells being
tested are provided in Supplementary Movie 4. Details pertaining

to how the cells shown in Fig. 5 were fabricated and tested are
provided in the “Methods” section.

To compare the computational efficiency of the MATLAB tool
with FEA, the time required to generate the analytical and FEA
plots of Fig. 5 were measured. Using a standard desktop
computer, the MATLAB tool generated the blue plots of Fig. 5a
and b in 21 and 15.6 s, respectively. Using the same computer,
Abaqus generated the green FEA elastic plots of Fig. 5a, b in 1670
and 619 s, respectively. Abaqus also generated the orange FEA
plastic plots of Fig. 5a, b in 2002 and 720 s, respectively. Note that
the MATLAB tool ranged from 39.7 to 95.3 times faster than the
FEA simulations, which is significantly more than an order of
magnitude more computationally efficient.

Data was also collected and compared against the FEA plastic
simulations of Designs I and II when they were both rotated 90o

on their sides as shown in Supplementary Fig. 3. These
experiments were conducted to demonstrate that the same cell’s
response to a particular loading scenario differs substantially
depending on the direction in which the cell is loaded.
Animations of these FEA plastic simulations alongside corre-
sponding videos of the fabricated cells being tested are also
provided in Supplementary Movie 5.

Graded lattices. In addition to being able to alternate its Poisson’s
ratio temporally, the metamaterial concept of this work can also
be made to alternate its Poisson’s ratio spatially along its geo-
metry as long as the lattice is graded with different (i.e., aperiodic)
rows of repeating cell designs. Consider, for instance, the graded
metamaterial design shown in Fig. 6. Its lattice consists of four
different cell designs shown in Fig. 6a, which are each repeated
four times within four different rows as shown in Fig. 6b. The
geometric parameters of each of the four cell designs defined in
Fig. 2 are provided in Supplementary Table 2. Each of these cells
were designed using the analytical MATLAB tool to indepen-
dently achieve the x-axis strain response shown in Fig. 6c to a
half-cycle sinusoidal strain load with a tensile amplitude of 13%
(shown gray). The plot of Fig. 6c accurately reflects each unit
cell’s response as long as they are separately loaded individually
or belong within a periodic lattice that consists entirely of the
same repeating cell design. Note, however, from Fig. 6d that when
the cell designs are joined together within the graded metama-
terial lattice of Fig. 6b, the resulting material responds to the same
load with a similar but notably altered behavior. The plot of
Fig. 6d is the measured data collected from the lattice of Fig. 6b
being loaded in an Instron testing machine. Although vertical
flexures (Fig. 6b) were added to the upper and lower tabs of the
top and bottom rows of the lattice so that the lattice’s Poisson’s-
ratio behavior would be minimally affected by the loading con-
straints of the Instron, the results of Fig. 6d differ from the
intended response of Fig. 6c for two primary reasons. First, each
row of cell designs frustrates the different expansion and con-
traction attempts of its neighboring rows because the rows are
directly connected together along their upper and lower tabs.
Second, each of the four cell designs of Fig. 6a exhibits a different
overall stiffness and thus, when the graded metamaterial is loaded
with a desired strain, each row experiences a different amount of
strain (i.e., the compliant rows deform more than the stiff rows).
Thus, no row within the graded metamaterial of Fig. 6b experi-
ences the 13% strain amplitude that was assumed for each indi-
vidual cell when they were being designed using the MATLAB
tool to produce the plot of Fig. 6c.

Therefore, employing the MATLAB tool to accurately design
graded metamaterials that achieve desired temporally and
spatially alternating Poisson’s-ratio behaviors requires considera-
tion of the following principles. First, designers could separate

Fig. 5 Comparisons between the analytical MATLAB tool, elastic and plastic
finite element analysis (FEA) simulations, and experimental test results for
a Design I and b Design II unit cells. Scale bars in a and b, 5 cm.
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each row of different cell designs using vertical flexures (similar to
those labeled in Fig. 6b) between their upper and lower tabs to
mitigate the issue of their different row expansions and
contractions frustrating one another’s desired deformations.
Second, designers could either make sure that the cells that
constitute each row exhibit the same stiffness as their x-axis strain
responses are being tuned using the MATLAB tool, or they could
account for the portion of the overall lattice loading strain that
each row of cells will experience if their stiffnesses are different.
Note that each row of cells will always experience the same
loading force since they are serially stacked.

Details pertaining to how the lattice shown in Fig. 6b were
fabricated and tested are provided in the “Methods” section. An
animation of an FEA simulation of the lattice (assuming gravity
and the nonlinear plastic properties of Teflon provided in
Supplementary Fig. 2) is shown in Supplementary Movie 6,
alongside a corresponding video of the fabricated lattice being
loaded by the Instron testing machine.

Three-dimensional version. This work’s proposed concept for
achieving alternating Poisson’s ratios is not limited to 2D
extrusions only. If a 2D cell design is copied and rotated 90o

about its central axis as shown in Fig. 7, a 3D unit cell version is

generated. The 2D design’s extrusion thickness must, however, be
equal to the T parameter labeled in Fig. 2 for the resulting 3D
design to be geometrically compatible. The 3D version will pos-
sess the same large-deformation Poisson’s-ratio behavior as its 2D
analog, but it will be twice as stiff. Thus, the MATLAB tool
provided in this paper enables the design of both 2D and 3D
metamaterials that achieve desired alternating Poisson’s ratios.
For the 3D designs to function the same as their 2D analogs,
however, it’s necessary that the geometry of some of the 2D hard
stops be altered. The circular feature labeled Hard stop (1) in
Fig. 1b should, for instance, be changed from a cylinder to a
sphere and the three other mating surfaces should be triangular
wedges with inverse sphere shapes cut from their ends as shown
in Fig. 7. Additionally, the flat features labeled Hard stop (5) in
Fig. 1b should be changed to triangular wedges as shown in Fig. 7.

Micro-scale validation. A 3D micro-scale version of the proposed
concept was additively fabricated from Ip-Dip photoresist
(Nanoscribe GmbH) as a single unit cell using a two-photon
lithography system (Nanoscribe PPGT). The 3D cell, shown in
Fig. 8a and Supplementary Fig. 4 was fabricated with a custom
grip on its top surface to enable the cell to be mechanically tested
in both tension and compression. The geometric parameters of
the fabricated cell as defined in Supplementary Fig. 5 are provided
in Supplementary Table 3. Note that some hard stops, many of
which are irrelevant to the functionality of the particular design,
were eliminated or simplified to better facilitate the cell’s fabri-
cation. Some features, which are unfortunately important to the
cell’s performance, had to be tapered for similar fabrication
purposes. An in situ nanoindenter (inSEM II, Nanomechanics)
was used to stretch and compress the cell along the y-axis over
two complete cycles in a period of 2000 s as shown by the gray
line in the plot of Fig. 8b. The resulting x-axis strain response,
which was determined by tracking the displacements of the cell’s
side tabs using image recognition software, is shown red in
Fig. 8b. Note that although the cell’s x-axis strain response suc-
cessfully alternates as intended, a small degree of yielding and
thus hysteresis occurs in the cell as indicated by a slightly dif-
fering second deformation cycle compared to the first. A video

Fig. 6 Graded metamaterials consisting of rows of different unit cell designs can be made to achieve both temporally and spatially alternating
Poisson’s ratios. a Four different cell designs were used within each row of (b) a graded metamaterial design example, which was fabricated from Teflon
using a laser cutter. c The x-axis strain response of each independent unit cell design in (a) for a given strain load as predicted using the analytical MATLAB
tool when the cells are not joined together. d The experimentally measured strain response of each row of cell designs to the same load when joined
together within the metamaterial lattice of (b). Scale bar in (b), 10 cm.

Fig. 7 Two-dimensional (2D) designs can be transformed into three-
dimensional (3D) versions that achieve the same alternating Poisson’s
ratio. These 3D versions are generated by rotating a copy of their 2D
version 90° about its central axis. Some 2D-version hard stops need to be
adapted for the 3D version to function with the same alternating
Poisson’s ratio.
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showing the cell being loaded next to a corresponding strain-
versus-time plot is provided in Supplementary Movie 7.

A 3 × 3 × 3 micro-scale lattice of the same cell design was also
additively fabricated from the same material using the same
system as shown in Fig. 8c. Since no custom grip was able to be
printed on its top surface without forcing all the cells within the
lattice’s top layer to be joined together, the lattice was only able to
be tested in compression along the y-axis. The x-axis strain
response of each row of cells is labeled in the plot of Fig. 8d. Each
row has a different x-axis strain response primarily because the
friction imposed by the compression tip on the lattice’s top and
bottom rows caused each row to frustrate each other’s natural
deformations. This frustration effect in conjunction with the fact
that (i) the top and bottom tab hard stops between each layer
curled in different and undesired ways during fabrication, and (ii)
each cell was not identically printed due to fabrication
imprecision, caused the top and bottom layers of the lattice to
misalign and buckle. This undesired and asymmetric buckling
caused the expected x-axis strain fluctuation to terminate
prematurely, which is why the blunted dip in the lattice’s x-axis
compressive strain response, shown in Fig. 8d, appears to occur
earlier than the corresponding dip produced by the single unit cell
shown in Fig. 8b. Thus, with improved fabrication capability and
for lattices that consist of many more unit cells than the small
3 × 3 × 3 lattice, the 3D metamaterial designs proposed in this
paper are expected to more closely approach the designed
behaviors of their single repeating cells. A video showing the
3 × 3 × 3 lattice of repeating cells being loaded next to a
corresponding strain-versus-time plot is provided in Supplemen-
tary Movie 8. Other larger (e.g., 5 × 5 × 5 cell) lattices that consist
of a different but repeating unit cell design were also fabricated as
shown in Supplementary Fig. 6.

Discussion
A metamaterial concept was introduced that uses the principles of
differential stiffness and self-contacting hard stops to achieve
Poisson’s ratios that alternate as desired from positive to negative
values or vice versa as the material is strained along multiple axes
in both tension and compression. A MATLAB tool was created to
enable the design of both 2D and 3D versions of the concept due
to the fact that the tool’s custom-developed analytical theory is

more than an order of magnitude faster than other FEA-based
computational approaches. The tool is only accurate if the
repeating unit cells that constitute the metamaterial do not
appreciably yield as they are loaded. The tool was verified using
FEA and validated experimentally using multiple macro-scale
designs, which were fabricated using assembled sheets of laser-cut
Teflon. A graded lattice consisting of rows of different unit cell
designs was also fabricated and tested to validate the concept that
a material’s Poisson’s ratio can be made to alternate both tem-
porally and spatially along its loading direction to transform a
single actuated signal into multiple output signals with coupled
but different amplitudes and frequencies. Finally, 3D lattices
consisting of micro-scale unit cells were additively fabricated and
tested to demonstrate that the concept proposed can be extended
to achieve alternating Poisson’s ratios within practical 3D
volumes and with architected features that are scaled to their
intended size. The bulk shape of such lattices, the precision (i.e.,
repeatability) of the approach used to fabricate such lattices, and
the boundary and loading conditions imparted on such lattices
can all have a significant effect on the overall Poisson’s-ratio
behavior and must be considered in the design processes.

Methods
Theory and assumptions underlying the MATLAB tool. The MATLAB tool is
especially efficient due to several simplifying assumptions. It models the design’s
cell as a collection of compliant rectangular-prism-shaped beams (shown gray in
Supplementary Fig. 7a) that join rigid-body nodes (shown black in Supplementary
Fig. 7a) together. A twist-wrench stiffness matrix is constructed to represent the
elastomechanic properties of the cell using Bernoulli–Euler beam elements
according to the theory provided in Hopkins et al. 63. The cell’s upper tab is loaded
with an infinitesimal force and the twist-wrench stiffness matrix is used to calculate
where all the rigid bodies incrementally move in response with its lower tab held
fixed. Once their positions are updated, the beams are reconstructed to join the
newly positioned rigid bodies together as if the beams had never been deformed.
This process repeats increment after increment until the top tab moves the amount
prescribed by the strain amplitude in both tension and compression directions. If
any of the rigid bodies touch at hard stops in the process, the bodies are effectively
fused together such that they are labeled with the same number as shown by the
bodies labeled B7 and B14 in Supplementary Fig. 7b. All the bodies are re-labeled
and the twist-wrench stiffness matrix is updated accordingly. The details of the
theory are provided in the script of the MATLAB code provided in Supplementary
Software 1.

Fabrication and testing details for the cells in Fig. 5. The unit cell designs of
Fig. 5 were fabricated by laser cutting two copies of each cell design from 1/8-inch

Fig. 8 Fabrication and experimental validation of a micro-scale three-dimensional (3D) unit cell and lattice that achieves an alternating Poisson’s ratio.
a An additively fabricated micro-scale unit cell with a custom grip to enable its loading in both tension and compression. b The alternating x-axis strain
response of the cell being cyclically loaded in tension and compression along the y-axis. c An additively fabricated micro-scale 3 × 3 × 3 lattice of the
repeating unit cell design. d The alternating x-axis strain response of each row of cells within the lattice to a compressive y-axis strain load. Scale bar in
a, 50 µm, and in (c), 200 µm.
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sheets of Teflon as shown in Supplementary Fig. 8a. Separator posts were used to
join the resulting pieces together so that the final unit cells would not buckle out-
of-plane when they are loaded in compression. Red-dot sticker sensing markers
were placed on the middle far edge of each design’s tabs as shown in Supple-
mentary Fig. 8b so that image recognition software could be used to track their
locations as the Instron testing machine loaded the gripping tabs with the pre-
scribed strains (Supplementary Fig. 8a, c). The six-sigma red shaded error regions
in the plots of Fig. 5 were calculated from the standard deviations of five full
loading cycles performed on each cell design.

Fabrication and testing details for the lattice in Fig. 6b. The lattice of Fig. 6b was
also assembled using two laser-cut sheets of 1/8-inch Teflon (Supplementary Fig. 9).
The sheets were separated by longer posts than those used for the individually fabri-
cated unit cells to prevent the larger lattice from buckling out of plane. Red-dot sticker
sensing markers were placed on the center edge of each row’s outermost side tabs to
enable image recognition software to measure the response of each row’s deformations
to the strain load imposed by the Instron testing machine.

Data availability
The authors declare that the data supporting the findings of this study are included in the
main text, the Supplementary Information, the GitHub repository link above, or are
available from the corresponding author upon request.

Code availability
Supplementary Software 1 is available using a GitHub repository link provided at the
following URL: https://github.com/aminfno/Metamaterial. Authors: A.F. and J.B.H.,
Title: Sequential Metamaterials with Alternating Poisson’s Ratios, Repository Name:
aminfno/Metamaterial, Year: 2021. To launch the tool, download all five MATLAB files
and locate them in the same directory on your computer. Then open the directory and
click on the Metamaterial.m file and run it in MATLAB. The tool’s graphical user
interface (GUI) will then be launched.
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